51
|
Griessenberger H, Hoedlmoser K, Heib DPJ, Lechinger J, Klimesch W, Schabus M. Consolidation of temporal order in episodic memories. Biol Psychol 2012; 91:150-5. [PMID: 22705480 PMCID: PMC3427018 DOI: 10.1016/j.biopsycho.2012.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/30/2012] [Accepted: 05/31/2012] [Indexed: 10/28/2022]
Abstract
Even though it is known that sleep benefits declarative memory consolidation, the role of sleep in the storage of temporal sequences has rarely been examined. Thus we explored the influence of sleep on temporal order in an episodic memory task followed by sleep or sleep deprivation. Thirty-four healthy subjects (17 men) aged between 19 and 28 years participated in the randomized, counterbalanced, between-subject design. Parameters of interests were NREM/REM cycles, spindle activity and spindle-related EEG power spectra. Participants of both groups (sleep group/sleep deprivation group) performed retrieval in the evening, morning and three days after the learning night. Results revealed that performance in temporal order memory significantly deteriorated over three days only in sleep deprived participants. Furthermore our data showed a positive relationship between the ratios of the (i) first NREM/REM cycle with more REM being associated with delayed temporal order recall. Most interestingly, data additionally indicated that (ii) memory enhancers in the sleep group show more fast spindle related alpha power at frontal electrode sites possibly indicating access to a yet to be consolidated memory trace. We suggest that distinct sleep mechanisms subserve different aspects of episodic memory and are jointly involved in sleep-dependent memory consolidation.
Collapse
Affiliation(s)
- H Griessenberger
- Laboratory for Sleep and Consciousness Research, University of Salzburg, Department of Psychology, Division of Physiological Psychology, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | | | | | | | | | | |
Collapse
|
52
|
Barakat M, Carrier J, Debas K, Lungu O, Fogel S, Vandewalle G, Hoge RD, Bellec P, Karni A, Ungerleider LG, Benali H, Doyon J. Sleep spindles predict neural and behavioral changes in motor sequence consolidation. Hum Brain Mapp 2012; 34:2918-28. [PMID: 22674673 DOI: 10.1002/hbm.22116] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 03/28/2012] [Accepted: 04/03/2012] [Indexed: 11/07/2022] Open
Abstract
The purpose of this study was to investigate the predictive function of sleep spindles in motor sequence consolidation. BOLD responses were acquired in 10 young healthy subjects who were trained on an explicitly known 5-item sequence using their left nondominant hand, scanned at 9:00 pm while performing that same task and then were retested and scanned 12 h later after a night of sleep during which polysomnographic measures were recorded. An automatic algorithm was used to detect sleep spindles and to quantify their characteristics (i.e., density, amplitude, and duration). Analyses revealed significant positive correlations between gains in performance and the amplitude of spindles. Moreover, significant increases in BOLD signal were observed in several motor-related areas, most of which were localized in the right hemisphere, particularly in the right cortico-striatal system. Such increases in BOLD signal also correlated positively with the amplitude of spindles at several derivations. Taken together, our results show that sleep spindles predict neural and behavioral changes in overnight motor sequence consolidation.
Collapse
Affiliation(s)
- Marc Barakat
- Functional Neuroimaging Unit, Centre de recherche de l'institut gériatrique de l'université de Montréal, Québec, Canada; Center of Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montréal, Québec, Canada; Centre de recherche en neuropsychologie et en cognition, Department of Psychology, University of Montreal, Montreal, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Shao S, Shen K, Yu K, Wilder-Smith EPV, Li X. Frequency-domain EEG source analysis for acute tonic cold pain perception. Clin Neurophysiol 2012; 123:2042-9. [PMID: 22538122 DOI: 10.1016/j.clinph.2012.02.084] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 02/01/2012] [Accepted: 02/02/2012] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate electrocortical responses to tonic cold pain by frequency-domain electroencephalogram (EEG) source analysis, and to identify potential electrocortical indices of acute tonic pain. METHODS Scalp EEG data were recorded from 26 healthy subjects under tonic cold pain (CP) and no-pain control (NP) conditions. EEG power spectra and the standardized low-resolution brain electromagnetic tomography (sLORETA) localized EEG cortical sources were compared between the two conditions in five frequency bands: 1-4 Hz, 4-8 Hz, 8-12 Hz, 12-18 Hz and 18-30 Hz. RESULTS In line with the EEG power spectral results, the source power significantly differed between the CP and NP conditions in 8-12 Hz (CP<NP) and 18-30 Hz (CP>NP) in extensive brain regions. Besides, there were also significantly different 4-8 Hz and 12-18 Hz source activities between the two conditions. Among the significant source activities, the left medial frontal and left superior frontal 4-8 Hz activities, the anterior cingulate 8-12 Hz activity and the posterior cingulate 12-18 Hz activity showed significant negative correlations with subjective pain ratings. CONCLUSIONS The brain's perception of tonic cold pain was characterized by cortical source power changes across different frequency bands in multiple brain regions. Oscillatory activities that significantly correlated with subjective pain ratings were found in the prefrontal and cingulate regions. SIGNIFICANCE These findings may offer useful measures for objective pain assessment and provide a basis for pain treatment by modulation of neural oscillations at specific frequencies in specific brain regions.
Collapse
Affiliation(s)
- Shiyun Shao
- Department of Mechanical Engineering, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
54
|
Wamsley EJ, Tucker MA, Shinn AK, Ono KE, McKinley SK, Ely AV, Goff DC, Stickgold R, Manoach DS. Reduced sleep spindles and spindle coherence in schizophrenia: mechanisms of impaired memory consolidation? Biol Psychiatry 2012; 71:154-61. [PMID: 21967958 PMCID: PMC3561714 DOI: 10.1016/j.biopsych.2011.08.008] [Citation(s) in RCA: 314] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/15/2011] [Accepted: 08/13/2011] [Indexed: 11/27/2022]
Abstract
BACKGROUND Sleep spindles are thought to induce synaptic changes and thereby contribute to memory consolidation during sleep. Patients with schizophrenia show dramatic reductions of both spindles and sleep-dependent memory consolidation, which may be causally related. METHODS To examine the relations of sleep spindle activity to sleep-dependent consolidation of motor procedural memory, 21 chronic, medicated schizophrenia outpatients and 17 healthy volunteers underwent polysomnography on two consecutive nights. On the second night, participants were trained on the finger-tapping motor sequence task (MST) at bedtime and tested the following morning. The number, density, frequency, duration, amplitude, spectral content, and coherence of stage 2 sleep spindles were compared between groups and examined in relation to overnight changes in MST performance. RESULTS Patients failed to show overnight improvement on the MST and differed significantly from control participants who did improve. Patients also exhibited marked reductions in the density (reduced 38% relative to control participants), number (reduced 36%), and coherence (reduced 19%) of sleep spindles but showed no abnormalities in the morphology of individual spindles or of sleep architecture. In patients, reduced spindle number and density predicted less overnight improvement on the MST. In addition, reduced amplitude and sigma power of individual spindles correlated with greater severity of positive symptoms. CONCLUSIONS The observed sleep spindle abnormalities implicate thalamocortical network dysfunction in schizophrenia. In addition, the findings suggest that abnormal spindle generation impairs sleep-dependent memory consolidation in schizophrenia, contributes to positive symptoms, and is a promising novel target for the treatment of cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Erin J. Wamsley
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA 02215, Harvard Medical School, Boston, MA, 02215
| | - Matthew A. Tucker
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA 02215, Harvard Medical School, Boston, MA, 02215
| | - Ann K. Shinn
- Psychotic Disorders Division, McLean Hospital, Belmont, MA 02478
| | - Kim E. Ono
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA 02129
| | - Sophia K. McKinley
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA 02215, Harvard Medical School, Boston, MA, 02215
| | - Alice V. Ely
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA 02215, Harvard Medical School, Boston, MA, 02215
| | - Donald C. Goff
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA 02129
| | - Robert Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA 02215, Harvard Medical School, Boston, MA, 02215
| | - Dara S. Manoach
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA 02129,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129
| |
Collapse
|
55
|
Abstract
While there is ample agreement that the cognitive role of sleep is explained by sleep-dependent synaptic changes, consensus is yet to be established as to the nature of these changes. Some researchers believe that sleep promotes global synaptic downscaling, leading to a non-Hebbian reset of synaptic weights that is putatively necessary for the acquisition of new memories during ensuing waking. Other investigators propose that sleep also triggers experience-dependent, Hebbian synaptic upscaling able to consolidate recently acquired memories. Here, I review the molecular and physiological evidence supporting these views, with an emphasis on the calcium signaling pathway. I argue that the available data are consistent with sleep promoting experience-dependent synaptic embossing, understood as the simultaneous non-Hebbian downscaling and Hebbian upscaling of separate but complementary sets of synapses, heterogeneously activated at the time of memory encoding and therefore differentially affected by sleep.
Collapse
Affiliation(s)
- Sidarta Ribeiro
- Brain Institute, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil.
| |
Collapse
|
56
|
Spoormaker VI, Czisch M, Maquet P, Jäncke L. Large-scale functional brain networks in human non-rapid eye movement sleep: insights from combined electroencephalographic/functional magnetic resonance imaging studies. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2011; 369:3708-3729. [PMID: 21893524 DOI: 10.1098/rsta.2011.0078] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This paper reviews the existing body of knowledge on the neural correlates of spontaneous oscillations, functional connectivity and brain plasticity in human non-rapid eye movement (NREM) sleep. The first section reviews the evidence that specific sleep events as slow waves and spindles are associated with transient increases in regional brain activity. The second section describes the changes in functional connectivity during NREM sleep, with a particular focus on changes within a low-frequency, large-scale functional brain network. The third section will discuss the possibility that spontaneous oscillations and differential functional connectivity are related to brain plasticity and systems consolidation, with a particular focus on motor skill acquisition. Implications for the mode of information processing per sleep stage and future experimental studies are discussed.
Collapse
Affiliation(s)
- Victor I Spoormaker
- RG Neuroimaging, Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany.
| | | | | | | |
Collapse
|
57
|
KOKKINOS VASILEIOS, KOSTOPOULOS GEORGEK. Human non-rapid eye movement stage II sleep spindles are blocked upon spontaneous K-complex coincidence and resume as higher frequency spindles afterwards. J Sleep Res 2011; 20:57-72. [DOI: 10.1111/j.1365-2869.2010.00830.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
58
|
Barakat M, Doyon J, Debas K, Vandewalle G, Morin A, Poirier G, Martin N, Lafortune M, Karni A, Ungerleider LG, Benali H, Carrier J. Fast and slow spindle involvement in the consolidation of a new motor sequence. Behav Brain Res 2011; 217:117-21. [PMID: 20974183 DOI: 10.1016/j.bbr.2010.10.019] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 10/04/2010] [Accepted: 10/15/2010] [Indexed: 11/30/2022]
Affiliation(s)
- M Barakat
- Unité de Neuroimagerie Fonctionnelle, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Mölle M, Born J. Slow oscillations orchestrating fast oscillations and memory consolidation. PROGRESS IN BRAIN RESEARCH 2011; 193:93-110. [PMID: 21854958 DOI: 10.1016/b978-0-444-53839-0.00007-7] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Slow-wave sleep (SWS) facilitates the consolidation of hippocampus-dependent declarative memory. Based on the standard two-stage memory model, we propose that memory consolidation during SWS represents a process of system consolidation which is orchestrated by the neocortical <1Hz electroencephalogram (EEG) slow oscillation and involves the reactivation of newly encoded representations and their subsequent redistribution from temporary hippocampal to neocortical long-term storage sites. Indeed, experimental induction of slow oscillations during non-rapid eye movement (non-REM) sleep by slowly alternating transcranial current stimulation distinctly improves consolidation of declarative memory. The slow oscillations temporally group neuronal activity into up-states of strongly enhanced neuronal activity and down-states of neuronal silence. In a feed-forward efferent action, this grouping is induced not only in the neocortex but also in other structures relevant to consolidation, namely the thalamus generating 10-15Hz spindles, and the hippocampus generating sharp wave-ripples, with the latter well known to accompany a replay of newly encoded memories taking place in hippocampal circuitries. The feed-forward synchronizing effect of the slow oscillation enables the formation of spindle-ripple events where ripples and accompanying reactivated hippocampal memory information become nested into the single troughs of spindles. Spindle-ripple events thus enable reactivated memory-related hippocampal information to be fed back to neocortical networks in the excitable slow oscillation up-state where they can induce enduring plastic synaptic changes underlying the effective formation of long-term memories.
Collapse
Affiliation(s)
- Matthias Mölle
- Department of Neuroendocrinology, University of Lübeck, Lübeck, Germany.
| | | |
Collapse
|
60
|
Fogel SM, Smith CT. The function of the sleep spindle: a physiological index of intelligence and a mechanism for sleep-dependent memory consolidation. Neurosci Biobehav Rev 2010; 35:1154-65. [PMID: 21167865 DOI: 10.1016/j.neubiorev.2010.12.003] [Citation(s) in RCA: 421] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 11/30/2010] [Accepted: 12/09/2010] [Indexed: 11/26/2022]
Abstract
Until recently, the electrophysiological mechanisms involved in strengthening new memories into a more permanent form during sleep have been largely unknown. The sleep spindle is an event in the electroencephalogram (EEG) characterizing Stage 2 sleep. Sleep spindles may reflect, at the electrophysiological level, an ideal mechanism for inducing long-term synaptic changes in the neocortex. Recent evidence suggests the spindle is highly correlated with tests of intellectual ability (e.g.; IQ tests) and may serve as a physiological index of intelligence. Further, spindles increase in number and duration in sleep following new learning and are correlated with performance improvements. Spindle density and sigma (14-16Hz) spectral power have been found to be positively correlated with performance following a daytime nap, and animal studies suggest the spindle is involved in a hippocampal-neocortical dialogue necessary for memory consolidation. The findings reviewed here collectively provide a compelling body of evidence that the function of the sleep spindle is related to intellectual ability and memory consolidation.
Collapse
Affiliation(s)
- Stuart M Fogel
- University of Montreal, Montreal, Quebec, Canada, H3W 1W5.
| | | |
Collapse
|
61
|
Peirano PD, Algarín CR, Chamorro RA, Reyes SC, Durán SA, Garrido MI, Lozoff B. Sleep alterations and iron deficiency anemia in infancy. Sleep Med 2010; 11:637-42. [PMID: 20620103 DOI: 10.1016/j.sleep.2010.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Revised: 02/26/2010] [Accepted: 03/09/2010] [Indexed: 10/19/2022]
Abstract
Iron deficiency anemia (IDA) continues to be the most common single nutrient deficiency in the world. An estimated 20-25% of the world's infants have IDA, with at least as many having iron deficiency without anemia. Infants are at particular risk due to rapid growth and limited dietary sources of iron. We found that infants with IDA showed different motor activity patterning in all sleep-waking states and several differences in sleep states organization. Sleep alterations were still apparent years after correction of anemia with iron treatment in the absence of subsequent IDA. We suggest that altered sleep patterns may represent an underlying mechanism that interferes with optimal brain functioning during sleep and wakefulness in former IDA children.
Collapse
Affiliation(s)
- Patricio D Peirano
- Sleep and Functional Neurobiology Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile.
| | | | | | | | | | | | | |
Collapse
|
62
|
Causa L, Held CM, Causa J, Estévez PA, Perez CA, Chamorro R, Garrido M, Algarín C, Peirano P. Automated Sleep-Spindle Detection in Healthy Children Polysomnograms. IEEE Trans Biomed Eng 2010; 57:2135-46. [DOI: 10.1109/tbme.2010.2052924] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|