51
|
de Moura MCDS, Hazime FA, Marotti Aparicio LV, Grecco LAC, Brunoni AR, Hasue RH. Effects of transcranial direct current stimulation (tDCS) on balance improvement: a systematic review and meta-analysis. Somatosens Mot Res 2019; 36:122-135. [PMID: 31181963 DOI: 10.1080/08990220.2019.1624517] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background: Transcranial direct current stimulation (tDCS) has emerged as a promising therapeutic tool to improve balance and optimize rehabilitation strategies. However, current literature shows the methodological heterogeneity of tDCS protocols and results, hindering any clear conclusions about the effects of tDCS on postural control. Objective: Evaluate the effectiveness of tDCS on postural control, and identify the most beneficial target brain areas and the effect on different populations. Methods: Two independent reviewers selected randomized tDCS clinical-trials studies from PubMed, Scopus, Web of Science, and reference lists of retrieved articles published between 1998 and 2017. Most frequently reported centre of pressure (COP) variables were selected for meta-analysis. Other postural control outcomes were discussed in the review. Results: Thirty studies were included in the systematic review, and 11 were submitted to a meta-analysis. A reduction of COP displacement area has been significantly achieved by tDCS, evidencing an improvement in balance control. Individuals with cerebral palsy (CP) and healthy young adults are mostly affected by stimulation. The analysis of the impact of tDCS over different brain areas revealed a significant effect after primary motor cortex (M1) stimulation, however, with no clear results after cerebellar stimulation due to divergent results among studies. Conclusions: tDCS appears to improve balance control, more evident in healthy and CP subjects. Effects are observed when primary MI is stimulated. Cerebellar stimulation should be better investigated.
Collapse
Affiliation(s)
- Maria Clara D Soares de Moura
- a Department of Physical Therapy, Communication Sciences and Disorders, and Occupational Therapy, Faculty of Medicine , University of São Paulo , São Paulo , Brazil
| | - Fuad A Hazime
- b Department of Physical Therapy , Federal University of Piauí , Piauí , Brazil
| | - Luana V Marotti Aparicio
- c Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27) and National Institute of Biomarkers in Psychiatry (INBioN), Department and Institute of Psychiatry, Hospital of Clinics, Faculty of Medicine , University of São Paulo , São Paulo , Brazil
| | | | - André R Brunoni
- c Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27) and National Institute of Biomarkers in Psychiatry (INBioN), Department and Institute of Psychiatry, Hospital of Clinics, Faculty of Medicine , University of São Paulo , São Paulo , Brazil.,e Department of Psychiatry and Psychotherapy , Ludwig-Maximilians-University , Munich , Germany
| | - Renata Hydeé Hasue
- a Department of Physical Therapy, Communication Sciences and Disorders, and Occupational Therapy, Faculty of Medicine , University of São Paulo , São Paulo , Brazil
| |
Collapse
|
52
|
Anodal Transcranial Direct Current Stimulation over the Vertex Enhances Leg Motor Cortex Excitability Bilaterally. Brain Sci 2019; 9:brainsci9050098. [PMID: 31035662 PMCID: PMC6562544 DOI: 10.3390/brainsci9050098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/19/2019] [Accepted: 04/26/2019] [Indexed: 12/16/2022] Open
Abstract
In many studies, anodal transcranial Direct Current Stimulation (tDCS) is applied near the vertex to simultaneously facilitate leg motor cortex (M1) of both hemispheres and enhance recovery of gait and balance in neurological disorders. However, its effect on the excitability of leg M1 in either hemisphere is not well known. In this double-blind sham-controlled study, corticospinal excitability changes induced in leg M1 of both hemispheres by anodal (2 mA for 20 minutes) or sham tDCS (for 20 min) over the vertex were evaluated. Peak amplitudes of Transcranial Magnetic Stimulation (TMS) induced motor evoked potentials (MEPs) were measured over the contralateral Tibialis Anterior (TA) muscle before and up to 40 min after tDCS in 11 normal participants. Analysis of data from all participants found significant overall increase in the excitability of leg M1 after tDCS. However, in individual subjects there was variability in observed effects. In 4 participants, 20 min of tDCS increased mean MEPs of TAs on both sides; in 4 participants there was increased mean MEP only on one side and in 3 subjects there was no change. It’s not known if the benefits of tDCS in improving gait and balance are dependent on excitability changes induced in one or both leg M1; such information may be useful to predict treatment outcomes.
Collapse
|
53
|
Seidel O, Ragert P. Effects of Transcranial Direct Current Stimulation of Primary Motor Cortex on Reaction Time and Tapping Performance: A Comparison Between Athletes and Non-athletes. Front Hum Neurosci 2019; 13:103. [PMID: 31024275 PMCID: PMC6460944 DOI: 10.3389/fnhum.2019.00103] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/07/2019] [Indexed: 12/19/2022] Open
Abstract
Recent studies provided compelling evidence that physical activity leads to specific changes on a functional and structural level of brain organization. The observed neural adaptions are specific to the sport and manifested in those brain regions which are associated with neuronal processing of sport-specific skills. Techniques of non-invasive brain stimulation have been shown to induce neuroplastic changes and thereby also facilitate task performance. In the present study, we investigated the influence of transcranial direct current stimulation (tDCS) over the leg area of the primary motor cortex (M1) on simple reaction time tasks (RTT) and tapping tasks (TT) as a comparison between trained football (FB) and handball players (HB) and non-athletes (NA). We hypothesized that anodal tDCS over M1 (leg area) would lead to specific behavioral gains in RTT and TT performance of the lower extremity as compared to sham condition. On an exploratory level, we aimed at revealing if trained athletes would show stronger tDCS-induced behavioral gains as compared to NA, and, furthermore, if there are any differential effects between FB and HB. A total number of 46 participants were enrolled in a sham-controlled, double-blinded, cross-over study. A test block consisting of RTT and TT was performed before, during, after as well as 30 min after a 20-min tDCS application. Additionally, the specificity of tDCS-induced changes was examined by testing upper extremity using the same experimental design as a control condition. Our data showed no group- or sport-specific tDCS-induced effects (online and offline) on RTT and TT neither for lower nor upper extremities. These findings indicate that neither athletes nor NA seems to benefit from a brief period of tDCS application in speed-related motor tasks. However, more knowledge on neuronal processing of RTT and TT performance in trained athletes, the influence of tDCS parameters including stimulation sites, and the effect of inter-individual differences are required in order to draw a comprehensive picture of whether tDCS can help to enhance motor abilities on a high-performance level.
Collapse
Affiliation(s)
- Oliver Seidel
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Patrick Ragert
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
54
|
Park SK, Yang DJ, Kim JH, Heo JW, Park SH, Uhm YH, Yoon JH. Effects of cranio-cervical flexion with transcranial direct current stimulation on muscle activity and neck functions in patients with cervicogenic headache. J Phys Ther Sci 2019; 31:24-28. [PMID: 30774200 PMCID: PMC6348184 DOI: 10.1589/jpts.31.24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/07/2018] [Indexed: 11/24/2022] Open
Abstract
[Purpose] To present an efficient treatment regimen for patients with cervicogenic headache by comparatively analyzing the neck disability index (NDI) and cervical muscle activity after an exercise intervention. [Participants and Methods] Thirty patients with cervicogenic headache were assigned to the cranio-cervical flexion group (n=15) and cranio-cervical flexion plus transcranial direct current stimulation (tDCS) group (n=15). Intervention was administered for four weeks, after which the participants' NDI and sternocleidomastoid muscle activity were measured. [Results] The treatment group demonstrated a significantly greater change in NDI after the intervention compared to the control group. The treatment group also showed a significantly greater change in sternocleidomastoid muscle activity than the control group. [Conclusion] Our results show that applying tDCS during cranio-cervical flexion exercise can strengthen the sternocleidomastoid muscle more effectively while improving pain and associated functions in patients with cervicogenic headache. These results would contribute towards developing a more efficient treatment for patients with cervicogenic headache.
Collapse
Affiliation(s)
- Seung Kyu Park
- Department of Physical Therapy, Graduate School of Physical Therapy, Sehan University: Yeongam-gun, Jeollanam-do 526-702, Republic of Korea
| | - Dae Jung Yang
- Department of Physical Therapy, Graduate School of Physical Therapy, Sehan University: Yeongam-gun, Jeollanam-do 526-702, Republic of Korea
| | - Je Ho Kim
- Department of Physical Therapy, Graduate School of Physical Therapy, Sehan University: Yeongam-gun, Jeollanam-do 526-702, Republic of Korea
| | - Jae Won Heo
- Department of Physical Therapy, Kyungbuk College, Republic of Korea
| | - Sam Heon Park
- Department of Physical Therapy, Graduate School of Physical Therapy, Sehan University: Yeongam-gun, Jeollanam-do 526-702, Republic of Korea
| | - Yo Han Uhm
- Department of Physical Therapy, Graduate School of Physical Therapy, Sehan University: Yeongam-gun, Jeollanam-do 526-702, Republic of Korea
| | - Jong Hyuk Yoon
- Department of Physical Therapy, Graduate School of Physical Therapy, Sehan University: Yeongam-gun, Jeollanam-do 526-702, Republic of Korea
| |
Collapse
|
55
|
Ghosh S. Improvement of gait and balance by non-invasive brain stimulation: its use in rehabilitation. Expert Rev Neurother 2019; 19:133-144. [DOI: 10.1080/14737175.2019.1564042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Soumya Ghosh
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, University of Western Australia, Nedlands, Australia
| |
Collapse
|
56
|
Lu C, Amundsen Huffmaster SL, Tuite PJ, MacKinnon CD. The effects of anodal tDCS over the supplementary motor area on gait initiation in Parkinson's disease with freezing of gait: a pilot study. J Neurol 2018; 265:2023-2032. [PMID: 29956025 PMCID: PMC7089588 DOI: 10.1007/s00415-018-8953-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVE We investigated if anodal transcranial direct current stimulation (A-tDCS), applied over the supplementary motor areas (SMAs), could improve gait initiation in Parkinson's disease (PD) with freezing of gait (FOG). METHODS In this double-blinded cross-over pilot study, ten PD with FOG underwent two stimulation sessions: A-tDCS (1 mA, 10 min) and sham stimulation. Eight blocks of gait initiation were collected per session: (1) pre-tDCS, with acoustic cueing; (2) pre-tDCS, self-initiated (no cue); and (3-8) post-tDCS, self-initiated. Gait initiation kinetics were analyzed with two-way repeated measures ANOVAs for the effects of A-tDCS. RESULTS A-tDCS did not significantly improve the magnitude or timing of anticipatory postural adjustments or the execution of the first step during self-initiated gait compared with baseline measures (p > .13). The lack of significant change was not due to an inability to generate functional APAs since external cueing markedly improved gait initiation (p < .01). CONCLUSIONS A single dose of A-tDCS over the SMAs did not improve self-initiated gait in PD and FOG. Alternative approaches using a different dose or cortical target are worthy of exploration since individuals demonstrated the capacity to improve. SIGNIFICANCE Neuromodulation strategies tailored to facilitate SMA activity may be ineffective for the treatment of gait initiation impairment in people with PD and FOG.
Collapse
Affiliation(s)
- Chiahao Lu
- Department of Neurology, University of Minnesota, Minneapolis, MN, 55414, USA.
| | | | - Paul J Tuite
- Department of Neurology, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Colum D MacKinnon
- Department of Neurology, University of Minnesota, Minneapolis, MN, 55414, USA
| |
Collapse
|
57
|
Foerster ÁS, Rezaee Z, Paulus W, Nitsche MA, Dutta A. Effects of Cathode Location and the Size of Anode on Anodal Transcranial Direct Current Stimulation Over the Leg Motor Area in Healthy Humans. Front Neurosci 2018; 12:443. [PMID: 30022928 PMCID: PMC6039564 DOI: 10.3389/fnins.2018.00443] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 06/12/2018] [Indexed: 12/30/2022] Open
Abstract
Objective: Non-invasive brain stimulation such as transcranial direct current stimulation (tDCS) involves passing low currents through the brain and is a promising tool for the modulation of cortical excitability. In this study, we investigated the effects of cathode location and the size of anode for anodal tDCS of the right-leg area of the motor cortex, which is challenging due to its depth and orientation in the inter-hemispheric fissure. Methods: We first computationally investigated the effects of cathode location and the size of the anode to find the best montage for specificity of stimulation effects for the targeted leg motor area using finite element analysis (FEA). We then compared the best electrode montage found from FEA with the conventional montage (contralateral supraorbital cathode) via neurophysiological testing of both, the targeted as well as the contralateral leg motor area. Results: The conventional anodal tDCS electrode montage for leg motor cortex stimulation using a large-anode (5 cm × 7 cm, current strength 2 mA) affected the contralateral side more strongly in both the FEA and the neurophysiological testing when compared to other electrode montages. A small-anode (3.5 cm × 1 cm at 0.2 mA) with the same current density at the electrode surface and identical contralateral supraorbital cathode placement improved specificity. The best cathode location for the small-anode in terms of specificity for anodal tDCS of the right-leg motor area was T7 (10-10 EEG system). Conclusion: A small-anode (3.5 cm × 1 cm) with the same current density at the electrode surface as a large-anode (5 cm × 7 cm) resulted in similar cortical excitability alterations of the targeted leg motor cortex respresentation. In relation to the other stimulation conditions, the small-anode montage with the cathode positioned at T7 resulted in the best specificity.
Collapse
Affiliation(s)
- Águida S Foerster
- Department of Clinical Neurophysiology, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Göttingen, Germany.,IfADo - Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany
| | - Zeynab Rezaee
- Department of Biomedical Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, United States
| | - Walter Paulus
- Department of Clinical Neurophysiology, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Michael A Nitsche
- IfADo - Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany.,Department of Neurology, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Anirban Dutta
- Department of Biomedical Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, United States
| |
Collapse
|
58
|
Geiger M, Supiot A, Zory R, Aegerter P, Pradon D, Roche N. The effect of transcranial direct current stimulation (tDCS) on locomotion and balance in patients with chronic stroke: study protocol for a randomised controlled trial. Trials 2017; 18:492. [PMID: 29061169 PMCID: PMC5654046 DOI: 10.1186/s13063-017-2219-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/29/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Following stroke, patients are often left with hemiparesis that reduces balance and gait capacity. A recent, non-invasive technique, transcranial direct current stimulation, can be used to modify cortical excitability when used in an anodal configuration. It also increases the excitability of spinal neuronal circuits involved in movement in healthy subjects. Many studies in patients with stroke have shown that this technique can improve motor, sensory and cognitive function. For example, anodal tDCS has been shown to improve motor performance of the lower limbs in patients with stroke, such as voluntary quadriceps strength, toe-pinch force and reaction time. Nevertheless, studies of motor function have been limited to simple tasks. Surprisingly, the effects of tDCS on the locomotion and balance of patients with chronic stroke have never been evaluated. In this study, we hypothesise that anodal tDCS will improve balance and gait parameters in patients with chronic stroke-related hemiparesis through its effects at cortical and spinal level. METHODS/DESIGN This is a prospective, randomised, placebo-controlled, double-blinded, single-centre, cross-over study over 36 months. Forty patients with chronic stroke will be included. Each patient will participate in three visits: an inclusion visit, and two visits during which they will all undergo either one 30-min session of transcranial direct current stimulation or one 30-min session of placebo stimulation in a randomised order. Evaluations will be carried out before, during and twice after stimulation. The primary outcome is the variability of the displacement of the centre of mass during gait and a static-balance task. Secondary outcomes include clinical and functional measures before and after stimulation. A three-dimensional gait analysis, and evaluation of static balance on a force platform will be also conducted before, during and after stimulation. DISCUSSION These results should constitute a useful database to determine the aspects of complex motor function that are the most improved by transcranial direct current stimulation in patients with hemiparesis. It is the first essential step towards validating this technique as a treatment, coupled with task-oriented training. TRIAL REGISTRATION ClinicalTrials.gov, ID: NCT02134158 . First received on 18 December 2013; last updated on 14 September 2016. Other study ID numbers: P120135 / AOM12126, 2013-A00952-43.
Collapse
Affiliation(s)
- M Geiger
- Inserm Unit 1179, Team 3: Technologies and Innovative Therapies Applied to Neuromuscular diseases, UVSQ, CIC 805, Physiology-Functional Testing Ward, AP-HP, Raymond Poincaré Teaching Hospital, Garches, France. .,CIAMS, Université Paris-Sud, Université Paris-Saclay, 91405, Orsay Cedex, France. .,CIAMS, Université d'Orléans, 45067, Orléans, France.
| | - A Supiot
- Inserm Unit 1179, Team 3: Technologies and Innovative Therapies Applied to Neuromuscular diseases, UVSQ, CIC 805, Physiology-Functional Testing Ward, AP-HP, Raymond Poincaré Teaching Hospital, Garches, France.,CIAMS, Université Paris-Sud, Université Paris-Saclay, 91405, Orsay Cedex, France.,CIAMS, Université d'Orléans, 45067, Orléans, France
| | - R Zory
- Laboratory of Human Motricity, Sport, Education and Health (EA 6312), University of Nice Sophia Antipolis, Nice, France
| | - P Aegerter
- Assistance Publique-Hôpitaux de Paris, Hôpital Ambroise Paré, Unité de Recherche Clinique (URC), Boulogne, France
| | - D Pradon
- Inserm Unit 1179, Team 3: Technologies and Innovative Therapies Applied to Neuromuscular diseases, UVSQ, CIC 805, Physiology-Functional Testing Ward, AP-HP, Raymond Poincaré Teaching Hospital, Garches, France
| | - N Roche
- Inserm Unit 1179, Team 3: Technologies and Innovative Therapies Applied to Neuromuscular diseases, UVSQ, CIC 805, Physiology-Functional Testing Ward, AP-HP, Raymond Poincaré Teaching Hospital, Garches, France
| |
Collapse
|
59
|
Inoue T, Ninuma S, Hayashi M, Okuda A, Asaka T, Maejima H. Effects of long-term exercise and low-level inhibition of GABAergic synapses on motor control and the expression of BDNF in the motor related cortex. Neurol Res 2017; 40:18-25. [DOI: 10.1080/01616412.2017.1382801] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Takahiro Inoue
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Shuta Ninuma
- Department of Health Sciences, School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masataka Hayashi
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Akane Okuda
- Department of Health Sciences, School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tadayoshi Asaka
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Hiroshi Maejima
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
60
|
Seidel O, Carius D, Kenville R, Ragert P. Motor learning in a complex balance task and associated neuroplasticity: a comparison between endurance athletes and nonathletes. J Neurophysiol 2017; 118:1849-1860. [PMID: 28659467 DOI: 10.1152/jn.00419.2017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 11/22/2022] Open
Abstract
Studies suggested that motor expertise is associated with functional and structural brain alterations, which positively affect sensorimotor performance and learning capabilities. The purpose of the present study was to unravel differences in motor skill learning and associated functional neuroplasticity between endurance athletes (EA) and nonathletes (NA). For this purpose, participants had to perform a multimodal balance task (MBT) training on 2 sessions, which were separated by 1 wk. Before and after MBT training, a static balance task (SBT) had to be performed. MBT-induced functional neuroplasticity and neuromuscular alterations were assessed by means of functional near-infrared spectroscopy (fNIRS) and electromyography (EMG) during SBT performance. We hypothesized that EA would showed superior initial SBT performance and stronger MBT-induced improvements in SBT learning rates compared with NA. On a cortical level, we hypothesized that MBT training would lead to differential learning-dependent functional changes in motor-related brain regions [such as primary motor cortex (M1)] during SBT performance. In fact, EA showed superior initial SBT performance, whereas learning rates did not differ between groups. On a cortical level, fNIRS recordings (time × group interaction) revealed a stronger MBT-induced decrease in left M1 and inferior parietal lobe (IPL) for deoxygenated hemoglobin in EA. Even more interesting, learning rates were correlated with fNIRS changes in right M1/IPL. On the basis of these findings, we provide novel evidence for superior MBT training-induced functional neuroplasticity in highly trained athletes. Future studies should investigate these effects in different sports disciplines to strengthen previous work on experience-dependent neuroplasticity.NEW & NOTEWORTHY Motor expertise is associated with functional/structural brain plasticity. How such neuroplastic reorganization translates into altered motor learning processes remains elusive. We investigated endurance athletes (EA) and nonathletes (NA) in a multimodal balance task (MBT). EA showed superior static balance performance (SBT), whereas MBT-induced SBT improvements did not differ between groups. Functional near-infrared spectroscopy recordings revealed a differential MBT training-induced decrease of deoxygenated hemoglobin in left primary motor cortex and inferior parietal lobe between groups.
Collapse
Affiliation(s)
- Oliver Seidel
- Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany; and.,Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Daniel Carius
- Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany; and
| | - Rouven Kenville
- Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany; and.,Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Patrick Ragert
- Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany; and .,Department of Neurology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
61
|
Electrical brain stimulation induces dendritic stripping but improves survival of silent neurons after optic nerve damage. Sci Rep 2017; 7:627. [PMID: 28377608 PMCID: PMC5428431 DOI: 10.1038/s41598-017-00487-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/27/2017] [Indexed: 12/29/2022] Open
Abstract
Repetitive transorbital alternating current stimulation (rtACS) improves vision in patients with chronic visual impairments and an acute treatment increased survival of retinal neurons after optic nerve crush (ONC) in rodent models of visual system injury. However, despite this protection no functional recovery could be detected in rats, which was interpreted as evidence of “silent survivor” cells. We now analysed the mechanisms underlying this “silent survival” effect. Using in vivo microscopy of the retina we investigated the survival and morphology of fluorescent neurons before and after ONC in animals receiving rtACS or sham treatment. One week after the crush, more neurons survived in the rtACS-treated group compared to sham-treated controls. In vivo imaging further revealed that in the initial post-ONC period, rtACS induced dendritic pruning in surviving neurons. In contrast, dendrites in untreated retinae degenerated slowly after the axonal trauma and neurons died. The complete loss of visual evoked potentials supports the hypothesis that cell signalling is abolished in the surviving neurons. Despite this evidence of “silencing”, intracellular free calcium imaging showed that the cells were still viable. We propose that early after trauma, complete dendritic stripping following rtACS protects neurons from excitotoxic cell death by silencing them.
Collapse
|
62
|
Saruco E, Di Rienzo F, Nunez-Nagy S, Rubio-Gonzalez MA, Jackson PL, Collet C, Saimpont A, Guillot A. Anodal tDCS over the primary motor cortex improves motor imagery benefits on postural control: A pilot study. Sci Rep 2017; 7:480. [PMID: 28352100 PMCID: PMC5428691 DOI: 10.1038/s41598-017-00509-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/28/2017] [Indexed: 11/09/2022] Open
Abstract
Performing everyday actions requires fine postural control, which is a major focus of functional rehabilitation programs. Among the various range of training methods likely to improve balance and postural stability, motor imagery practice (MIP) yielded promising results. Transcranial direct current stimulation (tDCS) applied over the primary motor cortex was also found to potentiate the benefits of MIP on upper-limb motor tasks. Yet, combining both techniques has not been tested for tasks requiring fine postural control. To determine the impact of MIP and the additional effects of tDCS, 14 participants performed a postural control task before and after two experimental (MIP + anodal or sham tDCS over the primary motor cortex) and one control (control task + sham tDCS) conditions, in a double blind randomized study. Data revealed a significant decrease of the time required to perform the postural task. Greater performance gains were recorded when MIP was paired with anodal tDCS and when the task involved the most complex postural adjustments. Altogether, findings highlight short-term effects of MIP on postural control and suggest that combining MIP with tDCS might also be effective in rehabilitation programs for regaining postural skills in easily fatigable persons and neurologic populations.
Collapse
Affiliation(s)
- Elodie Saruco
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité (EA 7424, LIBM), F-69622, Villeurbanne, France
| | - Franck Di Rienzo
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité (EA 7424, LIBM), F-69622, Villeurbanne, France
| | - Susana Nunez-Nagy
- Universidad de Alcalá, Unidad de Fisioterapia. Campus Universitario, Ctra. Madrid Barcelona, 28801, Alcalá de Henares, Madrid, Spain
| | - Miguel A Rubio-Gonzalez
- Facultad de Ciencias, UNED, Departamento Automática e Informática, Paseo Senda del Rey 9, 28040, Madrid, Spain
| | - Philip L Jackson
- Université Laval, École de Psychologie, Ville de Québec, Québec, Canada.,Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Québec, Canada
| | - Christian Collet
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité (EA 7424, LIBM), F-69622, Villeurbanne, France
| | - Arnaud Saimpont
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité (EA 7424, LIBM), F-69622, Villeurbanne, France
| | - Aymeric Guillot
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité (EA 7424, LIBM), F-69622, Villeurbanne, France. .,Institut Universitaire de France, Paris, France.
| |
Collapse
|
63
|
Pohjola H, Tolmunen T, Kotilainen T, Lehto SM. Using transcranial direct current stimulation to enhance performance in balance tasks. Clin Neurophysiol 2017; 128:501-502. [DOI: 10.1016/j.clinph.2016.11.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 11/29/2016] [Indexed: 11/29/2022]
|
64
|
Reply to: “Using transcranial direct current stimulation to enhance performance in balance tasks”. Clin Neurophysiol 2017; 128:503-504. [DOI: 10.1016/j.clinph.2016.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 11/17/2022]
|
65
|
Kaminski E, Hoff M, Rjosk V, Steele CJ, Gundlach C, Sehm B, Villringer A, Ragert P. Anodal Transcranial Direct Current Stimulation Does Not Facilitate Dynamic Balance Task Learning in Healthy Old Adults. Front Hum Neurosci 2017; 11:16. [PMID: 28197085 PMCID: PMC5281631 DOI: 10.3389/fnhum.2017.00016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/09/2017] [Indexed: 11/27/2022] Open
Abstract
Older adults frequently experience a decrease in balance control that leads to increased numbers of falls, injuries and hospitalization. Therefore, evaluating older adults’ ability to maintain balance and examining new approaches to counteract age-related decline in balance control is of great importance for fall prevention and healthy aging. Non-invasive brain stimulation techniques such as transcranial direct current stimulation (tDCS) have been shown to beneficially influence motor behavior and motor learning. In the present study, we investigated the influence of tDCS applied over the leg area of the primary motor cortex (M1) on balance task learning of healthy elderly in a dynamic balance task (DBT). In total, 30 older adults were enrolled in a cross-sectional, randomized design including two consecutive DBT training sessions. Only during the first DBT session, either 20 min of anodal tDCS (a-tDCS) or sham tDCS (s-tDCS) were applied and learning improvement was compared between the two groups. Our data showed that both groups successfully learned to perform the DBT on both training sessions. Interestingly, between-group analyses revealed no difference between the a-tDCS and the s-tDCS group regarding their level of task learning. These results indicate that the concurrent application of tDCS over M1 leg area did not elicit DBT learning enhancement in our study cohort. However, a regression analysis revealed that DBT performance can be predicted by the kinematic profile of the movement, a finding that may provide new insights for individualized approaches of treating balance and gait disorders.
Collapse
Affiliation(s)
- Elisabeth Kaminski
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Maike Hoff
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Viola Rjosk
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Christopher J Steele
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany; Department of Psychiatry, Cerebral Imaging Centre, Douglas Mental Health Institute, McGill UniversityMontreal, QC, Canada
| | - Christopher Gundlach
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany; Faculty of Psychology, Department of Experimental Psychology and Methods, University of LeipzigLeipzig, Germany
| | - Bernhard Sehm
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany; Mind and Brain Institute, Charité and Humboldt UniversityBerlin, Germany
| | - Patrick Ragert
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany; Faculty of Sport Science, Institute for General Kinesiology and Exercise Science, University of LeipzigLeipzig, Germany
| |
Collapse
|
66
|
Lattari E, Costa SS, Campos C, de Oliveira AJ, Machado S, Maranhao Neto GA. Can transcranial direct current stimulation on the dorsolateral prefrontal cortex improves balance and functional mobility in Parkinson’s disease? Neurosci Lett 2017; 636:165-169. [DOI: 10.1016/j.neulet.2016.11.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 12/22/2022]
|