51
|
Hao T, Chen H, Wu S, Tian H. LRG ameliorates steatohepatitis by activating the AMPK/mTOR/SREBP1 signaling pathway in C57BL/6J mice fed a high‑fat diet. Mol Med Rep 2019; 20:701-708. [PMID: 31180545 DOI: 10.3892/mmr.2019.10304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 04/25/2019] [Indexed: 02/05/2023] Open
Abstract
The pathogenesis of nonalcoholic fatty liver disease non‑alcoholic steatohepatitis (NASH) has not been fully elucidated, and there are currently no effective treatments for NASH. The aim of the present study was to explore the therapeutic effects of the glucagon‑like peptide‑1 (GLP‑1) receptor agonist liraglutide (LRG) on NASH and the underlying mechanisms. C57BL6J mice were fed a high‑fat diet (HFD) for 8 weeks to induce hepatic steatosis, and then LRG was injected subcutaneously for 4 weeks. The expression of sterol regulatory element‑binding protein 1 (SREBP1) and adenosine monophosphate‑activated protein kinase (AMPK) as well as the phosphorylation of mechanistic target of rapamycin (mTOR) and p70 ribosomal S6 kinase (p70S6K) were determined by western blot analysis. The intracellular distribution of SREBP1 was assessed by immunofluorescence staining. The results revealed that LRG treatment ameliorated HFD‑induced hepatic lipid accumulation and inhibited body weight gain. In addition, LRG treatment significantly suppressed the expression of hepatic SREBP1 as well as the phosphorylation of mTOR and p70S6K; it also increased the phosphorylation of AMPK and acetyl coenzyme A carboxylase. Furthermore, LRG treatment inhibited the hepatic nuclear translocation of SREBP1. It was suggested that the GLP‑1 receptor agonist LRG may have ameliorated hepatic steatosis by activating the AMPK/mTOR/SREBP1 signaling pathway as opposed to inhibiting body weight gain.
Collapse
Affiliation(s)
- Tao Hao
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hongying Chen
- Core Facility, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Sisi Wu
- Core Facility, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Haoming Tian
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
52
|
Capuani B, Pacifici F, Della-Morte D, Lauro D. Glucagon Like Peptide 1 and MicroRNA in Metabolic Diseases: Focusing on GLP1 Action on miRNAs. Front Endocrinol (Lausanne) 2018; 9:719. [PMID: 30581418 PMCID: PMC6293193 DOI: 10.3389/fendo.2018.00719] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/13/2018] [Indexed: 12/25/2022] Open
Abstract
Glucagon like peptide 1 (GLP1) is an incretin hormone released from the enteroendocrine L-type cells of the lower gastrointestinal tract. The active isoforms of GLP1 are rapidly degraded (<2 min) by protease dipeptidyl peptidase-4 (DPP-4) after their release. Among its functions, GLP1 exerts a pivotal role in regulating glucose and lipid metabolism. In particular, GLP1 increases glucose stimulated insulin secretion, functional pancreatic β-cell mass and decreases glucagon secretion from pancreatic α-cells. GLP1 can also be a regulator of lipid and lipoprotein metabolism ameliorating diabetic dyslipidemia, liver steatosis, and promoting satiety. Interestingly, it has been found that GLP1 and GLP1 agonists can modulate the expression of different microRNAs (miRNAs), a ~22 nucleotides small non-coding RNAs, key modulators of protein expression. In particular, in pancreas, GLP1 increases the expression levels of miRNA-212 and miRNA-132, stimulating insulin secretion. Similarly, GLP1 decreases miRNA-338 levels, leading to an increase of pancreatic β-cell function, followed by an improvement of diabetic conditions. Moreover, GLP1 modulation of miRNAs expression in the liver regulates hepatic lipid storage. Indeed, GLP1 down-regulates miRNA-34a and miRNA-21 and up-regulates miRNA-200b and miRNA-200c expression in liver, reducing intra hepatic lipid accumulation and liver steatosis. Clinical and pre-clinical studies, discussed in this review, suggest that modulation of GLP1/miRNAs pathway may be a useful and innovative therapeutic strategy for prevention and treatment of metabolic disorders, such as diabetes mellitus and liver steatosis.
Collapse
Affiliation(s)
- Barbara Capuani
- Department of Systems Medicine, University of Rome “Tor Vergata,”, Rome, Italy
| | - Francesca Pacifici
- Department of Systems Medicine, University of Rome “Tor Vergata,”, Rome, Italy
| | - David Della-Morte
- Department of Systems Medicine, University of Rome “Tor Vergata,”, Rome, Italy
| | - Davide Lauro
- Department of Systems Medicine, University of Rome “Tor Vergata,”, Rome, Italy
- Department of Medical Science, University Hospital—Fondazione Policlinico di Tor Vergata, Rome, Italy
| |
Collapse
|
53
|
Kalogirou M, Sinakos E. Treating nonalcoholic steatohepatitis with antidiabetic drugs: Will GLP-1 agonists end the struggle? World J Hepatol 2018; 10:790-794. [PMID: 30533179 PMCID: PMC6280165 DOI: 10.4254/wjh.v10.i11.790] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/10/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is highly associated with insulin resistance (IR), type 2 diabetes mellitus and metabolic syndrome, being characterized as the hepatic component of metabolic syndrome. Despite its high prevalence, no pharmacological treatment has been established, as of yet. A growing body of evidence, however, shows that reducing IR can result in improvement of the biochemical and histological features of nonalcoholic steatohepatitis (NASH)-the aggressive form of NAFLD that can lead to cirrhosis and hepatocellular carcinoma. Unfortunately, the several trials that have assessed the effect of various antidiabetic agents to date have failed to establish an effective and safe treatment regimen for patients with NAFLD. Glucagon-like peptide-1 (commonly known as GLP-1) agonists are a novel class of antidiabetic drugs that improve insulin sensitivity and promote weight loss. They also appear to have a direct effect on the lipid metabolism of hepatocytes, reducing hepatic steatosis. Several trials have demonstrated that GLP-1 agonists can reduce aminotransferase levels and improve liver histology in patients with NAFLD, suggesting that these agents could serve as an alternative treatment option for these patients. This manuscript discusses the role and potential mechanisms of GLP-1 agonists in the treatment of NASH.
Collapse
Affiliation(s)
- Maria Kalogirou
- 4 Department of Internal Medicine, Hippocrates Hospital, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - Emmanouil Sinakos
- 4 Department of Internal Medicine, Hippocrates Hospital, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece.
| |
Collapse
|
54
|
Connolly JJ, Ooka K, Lim JK. Future Pharmacotherapy for Non-alcoholic Steatohepatitis (NASH): Review of Phase 2 and 3 Trials. J Clin Transl Hepatol 2018; 6:264-275. [PMID: 30271738 PMCID: PMC6160309 DOI: 10.14218/jcth.2017.00056] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 02/16/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) results from inflammation and hepatocyte injury in the setting of hepatic steatosis. Non-alcoholic steatohepatitis increases the risk of progression to liver fibrosis and cirrhosis, and is the most rapidly growing etiology for liver failure and indication for liver transplantation in the USA. Weight loss and lifestyle modification remain the standard first-line treatment, as no USA Food and Drug Administration-approved pharmacotherapy currently exists. The past decade has seen an explosion of interest in drug development targeting pathologic pathways in non-alcoholic steatohepatitis, with numerous phase 2 and 3 trials currently in progress. Here, we concisely review the major targets and mechanisms of action by class, summarize results from completed pivotal phase 2 studies, and provide a detailed outline of key active studies with trial data for drugs in development, including obeticholic acid, elafibranor, cenicriviroc and selonsertib.
Collapse
Affiliation(s)
- James J. Connolly
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Kohtaro Ooka
- Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Joseph K. Lim
- Yale Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
55
|
Pappachan JM, Babu S, Krishnan B, Ravindran NC. Non-alcoholic Fatty Liver Disease: A Clinical Update. J Clin Transl Hepatol 2017; 5:384-393. [PMID: 29226105 PMCID: PMC5719196 DOI: 10.14218/jcth.2017.00013] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/31/2017] [Accepted: 06/24/2017] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently the most common chronic liver disease in developed countries because of the obesity epidemic. The disease increases liver-related morbidity and mortality, and often increases the risk for other comorbidities, such as type 2 diabetes and cardiovascular disease. Insulin resistance related to metabolic syndrome is the main pathogenic trigger that, in association with adverse genetic, humoral, hormonal and lifestyle factors, precipitates development of NAFLD. Biochemical markers and radiological imaging, along with liver biopsy in selected cases, help in diagnosis and prognostication. Intense lifestyle changes aiming at weight loss are the main therapeutic intervention to manage cases. Insulin sensitizers, antioxidants, lipid lowering agents, incretin-based drugs, weight loss medications, bariatric surgery and liver transplantation may be necessary for management in some cases along with lifestyle measures. This review summarizes the latest evidence on the epidemiology, natural history, pathogenesis, diagnosis and management of NAFLD.
Collapse
Affiliation(s)
- Joseph M Pappachan
- Department of Endocrinology, Diabetes & Metabolism, Royal Lancaster Infirmary, University Hospitals of Morecambe Bay NHS Trust, Lancaster, UK
| | - Shithu Babu
- Department of Medicine, Dorset County Hospital, Dorchester, UK
| | - Babu Krishnan
- Department of Gastroenterology & Hepatology, Royal Bournemouth Hospital, Bournemouth, UK
| | - Nishal C Ravindran
- Department of Gastroenterology & Hepatology, Hinchingbrooke Hospital, Hinchingbrooke, Huntingdon, UK
| |
Collapse
|
56
|
Dhir G, Cusi K. Glucagon like peptide-1 receptor agonists for the management of obesity and non-alcoholic fatty liver disease: a novel therapeutic option. J Investig Med 2017; 66:7-10. [PMID: 28918389 DOI: 10.1136/jim-2017-000554] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2017] [Indexed: 12/14/2022]
Abstract
Obesity is a major risk factor for the development of type 2 diabetes mellitus (T2DM), and is associated with a cluster of metabolic factors that lead to poor cardiovascular outcomes. In non-alcoholic fatty liver disease (NAFLD), liver fat (triglyceride) accumulation closely mirrors adipose tissue dysfunction and insulin resistance in obesity and T2DM. It is now recognized as the most common chronic liver disease in Westernized societies, often progressing to more severe forms of the disease such as nonalcoholic steatohepatitis (NASH), or cirrhosis and hepatocellular carcinoma. However, NAFLD remains largely overlooked by healthcare providers although it affects about two-thirds of patients with obesity and it promotes the development of T2DM. NAFLD mirrors adipose tissue and systemic insulin resistance, the liver being a 'barometer' of metabolic health. Although pioglitazone is emerging as the treatment of choice for NASH in patients with insulin-resistance, or those with T2DM, many other options are being tested. Due to their overall safety and efficacy, glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are becoming one of the cornerstones for the management of both obesity and T2DM, and a novel alternative for the treatment of NAFLD. In this review, we will briefly summarize the status of GLP-1RA for the treatment of obesity and NAFLD.
Collapse
Affiliation(s)
- Gauri Dhir
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, Florida, USA.,Division of Endocrinology, Diabetes and Metabolism, Malcom Randall VA Medical Center, Gainesville, Florida, USA
| | - Kenneth Cusi
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, Florida, USA.,Division of Endocrinology, Diabetes and Metabolism, Malcom Randall VA Medical Center, Gainesville, Florida, USA
| |
Collapse
|
57
|
Seo D, Faintuch BL, Aparecida de Oliveira E, Faintuch J. Pancreas and liver uptake of new radiolabeled incretins (GLP-1 and Exendin-4) in models of diet-induced and diet-restricted obesity. Nucl Med Biol 2017; 49:57-64. [DOI: 10.1016/j.nucmedbio.2017.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/02/2017] [Accepted: 03/15/2017] [Indexed: 01/19/2023]
|
58
|
Athyros VG, Alexandrides TK, Bilianou H, Cholongitas E, Doumas M, Ganotakis ES, Goudevenos J, Elisaf MS, Germanidis G, Giouleme O, Karagiannis A, Karvounis C, Katsiki N, Kotsis V, Kountouras J, Liberopoulos E, Pitsavos C, Polyzos S, Rallidis LS, Richter D, Tsapas AG, Tselepis AD, Tsioufis K, Tziomalos K, Tzotzas T, Vasiliadis TG, Vlachopoulos C, Mikhailidis DP, Mantzoros C. The use of statins alone, or in combination with pioglitazone and other drugs, for the treatment of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis and related cardiovascular risk. An Expert Panel Statement. Metabolism 2017; 71:17-32. [PMID: 28521870 DOI: 10.1016/j.metabol.2017.02.014] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/23/2017] [Accepted: 02/25/2017] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD), the most common liver disease, is characterized by accumulation of fat (>5% of the liver tissue), in the absence of alcohol abuse or other chronic liver diseases. It is closely related to the epidemic of obesity, metabolic syndrome or type 2 diabetes mellitus (T2DM). NAFLD can cause liver inflammation and progress to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis or hepatocellular cancer (HCC). Nevertheless, cardiovascular disease (CVD) is the most common cause of death in NAFLD/NASH patients. Current guidelines suggest the use of pioglitazone both in patients with T2DM and in those without. The use of statins, though considered safe by the guidelines, have very limited use; only 10% in high CVD risk patients are on statins by tertiary centers in the US. There are data from several animal studies, 5 post hoc analyses of prospective long-term survival studies, and 5 rather small biopsy proven NASH studies, one at baseline and on at the end of the study. All these studies provide data for biochemical and histological improvement of NAFLD/NASH with statins and in the clinical studies large reductions in CVD events in comparison with those also on statins and normal liver. Ezetimibe was also reported to improve NAFLD. Drugs currently in clinical trials seem to have potential for slowing down the evolution of NAFLD and for reducing liver- and CVD-related morbidity and mortality, but it will take time before they are ready to be used in everyday clinical practice. The suggestion of this Expert Panel is that, pending forthcoming randomized clinical trials, physicians should consider using a PPARgamma agonist, such as pioglitazone, or, statin use in those with NAFLD/NASH at high CVD or HCC risk, alone and/or preferably in combination with each other or with ezetimibe, for the primary or secondary prevention of CVD, and the avoidance of cirrhosis, liver transplantation or HCC, bearing in mind that CVD is the main cause of death in NAFLD/NASH patients.
Collapse
Affiliation(s)
- Vasilios G Athyros
- 2nd Prop. Department of Internal Medicine, Hippocration Hospital, Medical School of Aristotle University Thessaloniki, Greece.
| | - Theodore K Alexandrides
- Department of Internal Medicine, Division of Endocrinology, University of Patras Medical School, Patras, Greece
| | - Helen Bilianou
- Lipid Clinic, Cardiology Department, Tzaneio Hospital, Piraeus, Greece
| | - Evangelos Cholongitas
- 4th Prop. Department of Internal Medicine, Hippocration Hospital, Division of Gastroenterology and Hepatology, Medical School of Aristotle University Thessaloniki, Greece
| | - Michael Doumas
- 2nd Prop. Department of Internal Medicine, Hippocration Hospital, Medical School of Aristotle University Thessaloniki, Greece
| | - Emmanuel S Ganotakis
- Department of Internal Medicine University Hospital of Crete, University of Crete Medical School, Heraklion, Greece
| | - John Goudevenos
- Department of Cardiology Medical School, University Hospital of Ioannina, Ioannina, Greece
| | - Moses S Elisaf
- Department of Internal Medicine, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Georgios Germanidis
- 1st Department of Internal Medicine, Gastroenterology and Hepatology Section, AHEPA Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | - Olga Giouleme
- 2nd Prop. Department of Internal Medicine, Hippocration Hospital, Medical School of Aristotle University Thessaloniki, Greece
| | - Asterios Karagiannis
- 2nd Prop. Department of Internal Medicine, Hippocration Hospital, Medical School of Aristotle University Thessaloniki, Greece
| | - Charalambos Karvounis
- First Cardiology Department, AHEPA Hospital, Medical School, Aristotle University Thessaloniki, Greece
| | - Niki Katsiki
- 2nd Prop. Department of Internal Medicine, Hippocration Hospital, Medical School of Aristotle University Thessaloniki, Greece
| | - Vasilios Kotsis
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University Thessaloniki, Greece
| | - Jannis Kountouras
- 2nd Prop. Department of Internal Medicine, Hippocration Hospital, Medical School of Aristotle University Thessaloniki, Greece
| | - Evangelos Liberopoulos
- Department of Internal Medicine, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Christos Pitsavos
- 1st Cardiology Clinic, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Stergios Polyzos
- 2nd Prop. Propedeutic Department of Internal Medicine, Hippocration Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Loukianos S Rallidis
- 2nd Department of Cardiology, University General Hospital Attikon, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Apostolos G Tsapas
- 2nd Department of Internal Medicine-Diabetology, Hippocration Hospital, Aristotle University Thessaloniki, Medical School, Thessaloniki, Greece
| | - Alexandros D Tselepis
- Atherothrombosis Research Centre/Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Konstantinos Tsioufis
- 1st Cardiology Clinic, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Tziomalos
- 1st Prop. Department of Internal Medicine, AHEPA Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | | | - Themistoklis G Vasiliadis
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University Thessaloniki, Greece
| | - Charalambos Vlachopoulos
- 1st Cardiology Clinic, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, UK
| | - Christos Mantzoros
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|