51
|
He R, Yang X, Li T, He Y, Xie X, Chen Q, Zhang Z, Cheng T. A Machine Learning-Based Predictive Model of Epidermal Growth Factor Mutations in Lung Adenocarcinomas. Cancers (Basel) 2022; 14:4664. [PMID: 36230590 PMCID: PMC9563411 DOI: 10.3390/cancers14194664] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Data from 758 patients with lung adenocarcinoma were retrospectively collected. All patients had undergone computed tomography imaging and EGFR gene testing. Radiomic features were extracted using the medical imaging tool 3D-Slicer and were combined with the clinical features to build a machine learning prediction model. The high-dimensional feature set was screened for optimal feature subsets using principal component analysis (PCA) and the least absolute shrinkage and selection operator (LASSO). Model prediction of EGFR mutation status in the validation group was evaluated using multiple classifiers. We showed that six clinical features and 622 radiomic features were initially collected. Thirty-one radiomic features with non-zero correlation coefficients were obtained by LASSO regression, and 24 features correlated with label values were obtained by PCA. The shared radiomic features determined by these two methods were selected and combined with the clinical features of the respective patient to form a subset of features related to EGFR mutations. The full dataset was partitioned into training and test sets at a ratio of 7:3 using 10-fold cross-validation. The area under the curve (AUC) of the four classifiers with cross-validations was: (1) K-nearest neighbor (AUCmean = 0.83, Acc = 81%); (2) random forest (AUCmean = 0.91, Acc = 83%); (3) LGBM (AUCmean = 0.94, Acc = 88%); and (4) support vector machine (AUCmean = 0.79, Acc = 83%). In summary, the subset of radiographic and clinical features selected by feature engineering effectively predicted the EGFR mutation status of this NSCLC patient cohort.
Collapse
Affiliation(s)
- Ruimin He
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
- Department of Radiation Oncology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiaohua Yang
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
| | - Tengxiang Li
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
| | - Yaolin He
- Department of Radiation Oncology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiaoxue Xie
- Department of Radiation Oncology, Hunan Cancer Hospital, Changsha 410013, China
| | - Qilei Chen
- Department of Computer Science, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Zijian Zhang
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, China
| | - Tingting Cheng
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, China
- Department of General Practice, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
52
|
Yoon HJ, Choi J, Kim E, Um SW, Kang N, Kim W, Kim G, Park H, Lee HY. Deep learning analysis to predict EGFR mutation status in lung adenocarcinoma manifesting as pure ground-glass opacity nodules on CT. Front Oncol 2022; 12:951575. [PMID: 36119545 PMCID: PMC9478848 DOI: 10.3389/fonc.2022.951575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022] Open
Abstract
Background Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) showed potency as a non-invasive therapeutic approach in pure ground-glass opacity nodule (pGGN) lung adenocarcinoma. However, optimal methods of extracting information about EGFR mutation from pGGN lung adenocarcinoma images remain uncertain. We aimed to develop, validate, and evaluate the clinical utility of a deep learning model for predicting EGFR mutation status in lung adenocarcinoma manifesting as pGGN on computed tomography (CT). Methods We included 185 resected pGGN lung adenocarcinomas in the primary cohort. The patients were divided into training (n = 125), validation (n = 23), and test sets (n = 37). A preoperative CT-based deep learning model with clinical factors as well as clinical and radiomics models was constructed and applied to the test set. We evaluated the clinical utility of the deep learning model by applying it to 83 GGNs that received EGFR-TKI from an independent cohort (clinical validation set), and treatment response was regarded as the reference standard. Results The prediction efficiencies of each model were compared in terms of area under the curve (AUC). Among the 185 pGGN lung adenocarcinomas, 122 (65.9%) were EGFR-mutant and 63 (34.1%) were EGFR-wild type. The AUC of the clinical, radiomics, and deep learning with clinical models to predict EGFR mutations were 0.50, 0.64, and 0.85, respectively, for the test set. The AUC of deep learning with the clinical model in the validation set was 0.72. Conclusions Deep learning approach of CT images combined with clinical factors can predict EGFR mutations in patients with lung adenocarcinomas manifesting as pGGN, and its clinical utility was demonstrated in a real-world sample.
Collapse
Affiliation(s)
- Hyun Jung Yoon
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Radiology, Veterans Health Service Medical Center, Seoul, South Korea
| | - Jieun Choi
- Department of Artificial Intelligence, Sungkyunkwan University, Suwon, South Korea
| | - Eunjin Kim
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Sang-Won Um
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
| | - Noeul Kang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Division of Allergy, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Wook Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Geena Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hyunjin Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, South Korea
- *Correspondence: Ho Yun Lee, ; Hyunjin Park,
| | - Ho Yun Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
- *Correspondence: Ho Yun Lee, ; Hyunjin Park,
| |
Collapse
|
53
|
Deng K, Wang L, Liu Y, Li X, Hou Q, Cao M, Ng NN, Wang H, Chen H, Yeom KW, Zhao M, Wu N, Gao P, Shi J, Liu Z, Li W, Tian J, Song J. A deep learning-based system for survival benefit prediction of tyrosine kinase inhibitors and immune checkpoint inhibitors in stage IV non-small cell lung cancer patients: A multicenter, prognostic study. EClinicalMedicine 2022; 51:101541. [PMID: 35813093 PMCID: PMC9256845 DOI: 10.1016/j.eclinm.2022.101541] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND For clinical decision making, it is crucial to identify patients with stage IV non-small cell lung cancer (NSCLC) who may benefit from tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs). In this study, a deep learning-based system was designed and validated using pre-therapy computed tomography (CT) images to predict the survival benefits of EGFR-TKIs and ICIs in stage IV NSCLC patients. METHODS This retrospective study collected data from 570 patients with stage IV EGFR-mutant NSCLC treated with EGFR-TKIs at five institutions between 2010 and 2021 (data of 314 patients were from a previously registered study), and 129 patients with stage IV NSCLC treated with ICIs at three institutions between 2017 and 2021 to build the ICI test dataset. Five-fold cross-validation was applied to divide the EGFR-TKI-treated patients from four institutions into training and internal validation datasets randomly in a ratio of 80%:20%, and the data from another institution was used as an external test dataset. An EfficientNetV2-based survival benefit prognosis (ESBP) system was developed with pre-therapy CT images as the input and the probability score as the output to identify which patients would receive additional survival benefit longer than the median PFS. Its prognostic performance was validated on the ICI test dataset. For diagnosing which patient would receive additional survival benefit, the accuracy of ESBP was compared with the estimations of three radiologists and three oncologists with varying degrees of expertise (two, five, and ten years). Improvements in the clinicians' diagnostic accuracy with ESBP assistance were then quantified. FINDINGS ESBP achieved positive predictive values of 80·40%, 75·40%, and 77·43% for additional EGFR-TKI survival benefit prediction using the probability score of 0·2 as the threshold on the training, internal validation, and external test datasets, respectively. The higher ESBP score (>0·2) indicated a better prognosis for progression-free survival (hazard ratio: 0·36, 95% CI: 0·19-0·68, p<0·0001) in patients on the external test dataset. Patients with scores >0·2 in the ICI test dataset also showed better survival benefit (hazard ratio: 0·33, 95% CI: 0·18-0·55, p<0·0001). This suggests the potential of ESBP to identify the two subgroups of benefiting patients by decoding the commonalities from pre-therapy CT images (stage IV EGFR-mutant NSCLC patients receiving additional survival benefit from EGFR-TKIs and stage IV NSCLC patients receiving additional survival benefit from ICIs). ESBP assistance improved the diagnostic accuracy of the clinicians with two years of experience from 47·91% to 66·32%, and the clinicians with five years of experience from 53·12% to 61·41%. INTERPRETATION This study developed and externally validated a preoperative CT image-based deep learning model to predict the survival benefits of EGFR-TKI and ICI therapies in stage IV NSCLC patients, which will facilitate optimized and individualized treatment strategies. FUNDING This study received funding from the National Natural Science Foundation of China (82001904, 81930053, and 62027901), and Key-Area Research and Development Program of Guangdong Province (2021B0101420005).
Collapse
Affiliation(s)
- Kexue Deng
- Department of radiology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, USTC, Hefei, Anhui, China
| | - Lu Wang
- Library of Shengjing Hospital of China Medical University, Shenyang, China
- School of Health Management, China Medical University, Shenyang, Liaoning, China
| | - Yuchan Liu
- Department of radiology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, USTC, Hefei, Anhui, China
| | - Xin Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qiuyang Hou
- Department of radiology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, USTC, Hefei, Anhui, China
| | - Mulan Cao
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Nathan Norton Ng
- Department of Radiology, School of Medicine Stanford University, Stanford CA 94305, United States
| | - Huan Wang
- Radiation oncology department of thoracic cancer, Liaoning Cancer Hospital and Institute, Liaoning, China
| | - Huanhuan Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kristen W. Yeom
- Department of Radiology, School of Medicine Stanford University, Stanford CA 94305, United States
| | - Mingfang Zhao
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ning Wu
- PET-CT center, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Gao
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jingyun Shi
- Department of Radiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Chengdu, Sichuan, China
| | - Jie Tian
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Beijing, China
| | - Jiangdian Song
- School of Health Management, China Medical University, Shenyang, Liaoning, China
- Corresponding author at: School of Health Management, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
54
|
Wu L, Li J, Ruan X, Ren J, Ping X, Chen B. Prediction of VEGF and EGFR Expression in Peripheral Lung Cancer Based on the Radiomics Model of Spectral CT Enhanced Images. Int J Gen Med 2022; 15:6725-6738. [PMID: 36039307 PMCID: PMC9419990 DOI: 10.2147/ijgm.s374002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/03/2022] [Indexed: 12/02/2022] Open
Abstract
Background Energy spectrum CT is an effective method to evaluate the biological behavior of lung cancer. Radiomics is a non-invasive technology to obtain histological information related to lung cancer. Purpose To investigate the value of the radiomics models on the bases of enhanced spectral CT images of peripheral lung cancer to predict the expression of the vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR). Material and Methods This study retrospectively analyzed 73 patients with peripheral lung cancer confirmed by postoperative pathology. All patients underwent dual-phase enhanced spectral CT scans before surgery. Regions of interest (ROI) were delineated in the arterial phase and venous phase. Key radiomics features were extracted and models were established to predict the expression of VEGF and EGFR, respectively. All models were established based on the expression levels of VEGF and EGFR in tissues detected by immunohistochemical staining as reference standards. Receiver operating characteristic (ROC) curve and calibration curve were used to evaluate the predictive performance of each model, and decision curve analysis (DCA) was used to evaluate the clinical utility of the models. Results In predicting the expression level of VEGF, the combined (COMB) model composed of one spectral feature and two radiomics features achieved the best performance with area under ROC (AUC) 0.867 (95% CI: 0.767–0.966), accuracy of 0.812, sensitivity of 0.879, and specificity of 0.667. According to the expression level of EGFR, three importance radiomics features were retained in the arterial and venous phases to establish the multiphase phase model which has the best performance with AUC of 0.950 (95% confidence interval: 0.89–1.00), accuracy of 0.896, sensitivity of 0.868, and specificity of 1. Conclusion The radiomics model of enhanced spectral CT images of peripheral lung cancer can predict the expression of EGFR and VEGF.
Collapse
Affiliation(s)
- Linhua Wu
- Department of Radiology, General Hosipital of Ningxia Medical University, YinChuan, Ningxia Hui Autonomous Region, People's Republic of China
| | - Jian Li
- Department of Radiology, General Hosipital of Ningxia Medical University, YinChuan, Ningxia Hui Autonomous Region, People's Republic of China
| | - Xiaowei Ruan
- Department of Radiology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region, People's Republic of China
| | - Jialiang Ren
- Department of Pharmaceuticals Diagnosis, GE Healthcare, Beijing, People's Republic of China
| | - Xuejun Ping
- Department of Clinical Medical Faculty, Medical University of Ningxia, Yinchuan, Ningxia Hui Autonomous Region, People's Republic of China
| | - Bing Chen
- Department of Radiology, General Hosipital of Ningxia Medical University, YinChuan, Ningxia Hui Autonomous Region, People's Republic of China
| |
Collapse
|
55
|
Huo JW, Luo TY, Diao L, Lv FJ, Chen WD, Yu RZ, Li Q. Using combined CT-clinical radiomics models to identify epidermal growth factor receptor mutation subtypes in lung adenocarcinoma. Front Oncol 2022; 12:846589. [PMID: 36059655 PMCID: PMC9434115 DOI: 10.3389/fonc.2022.846589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background To investigate the value of computed tomography (CT)-based radiomics signatures in combination with clinical and CT morphological features to identify epidermal growth factor receptor (EGFR)-mutation subtypes in lung adenocarcinoma (LADC). Methods From February 2012 to October 2019, 608 patients were confirmed with LADC and underwent chest CT scans. Among them, 307 (50.5%) patients had a positive EGFR-mutation and 301 (49.5%) had a negative EGFR-mutation. Of the EGFR-mutant patients, 114 (37.1%) had a 19del -mutation, 155 (50.5%) had a L858R-mutation, and 38 (12.4%) had other rare mutations. Three combined models were generated by incorporating radiomics signatures, clinical, and CT morphological features to predict EGFR-mutation status. Patients were randomly split into training and testing cohorts, 80% and 20%, respectively. Model 1 was used to predict positive and negative EGFR-mutation, model 2 was used to predict 19del and non-19del mutations, and model 3 was used to predict L858R and non-L858R mutations. The receiver operating characteristic curve and the area under the curve (AUC) were used to evaluate their performance. Results For the three models, model 1 had AUC values of 0.969 and 0.886 in the training and validation cohorts, respectively. Model 2 had AUC values of 0.999 and 0.847 in the training and validation cohorts, respectively. Model 3 had AUC values of 0.984 and 0.806 in the training and validation cohorts, respectively. Conclusion Combined models that incorporate radiomics signature, clinical, and CT morphological features may serve as an auxiliary tool to predict EGFR-mutation subtypes and contribute to individualized treatment for patients with LADC.
Collapse
Affiliation(s)
- Ji-wen Huo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tian-you Luo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Le Diao
- Ocean International Center, The Infervision Medical Technology Co., Ltd., Beijing, China
| | - Fa-jin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei-dao Chen
- Ocean International Center, The Infervision Medical Technology Co., Ltd., Beijing, China
| | - Rui-ze Yu
- Ocean International Center, The Infervision Medical Technology Co., Ltd., Beijing, China
| | - Qi Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Qi Li,
| |
Collapse
|
56
|
Fan Y, Dong Y, Sun X, Wang H, Zhao P, Wang H, Jiang X. Development and validation of MRI-based radiomics signatures as new markers for preoperative assessment of EGFR mutation and subtypes from bone metastases. BMC Cancer 2022; 22:889. [PMID: 35964032 PMCID: PMC9375915 DOI: 10.1186/s12885-022-09985-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background This study aimed to develop and externally validate contrast-enhanced (CE) T1-weighted MRI-based radiomics for the identification of epidermal growth factor receptor (EGFR) mutation, exon-19 deletion and exon-21 L858R mutation from MR imaging of spinal bone metastasis from primary lung adenocarcinoma. Methods A total of 159 patients from our hospital between January 2017 and September 2021 formed a primary set, and 24 patients from another center between January 2017 and October 2021 formed an independent validation set. Radiomics features were extracted from the CET1 MRI using the Pyradiomics method. The least absolute shrinkage and selection operator (LASSO) regression was applied for selecting the most predictive features. Radiomics signatures (RSs) were developed based on the primary training set to predict EGFR mutations and differentiate between exon-19 deletion and exon-21 L858R. The RSs were validated on the internal and external validation sets using the Receiver Operating Characteristic (ROC) curve analysis. Results Eight, three, and five most predictive features were selected to build RS-EGFR, RS-19, and RS-21 for predicting EGFR mutation, exon-19 deletion and exon-21 L858R, respectively. The RSs generated favorable prediction efficacies for the primary (AUCs, RS-EGFR vs. RS-19 vs. RS-21, 0.851 vs. 0.816 vs. 0.814) and external validation (AUCs, RS-EGFR vs. RS-19 vs. RS-21, 0.807 vs. 0.742 vs. 0.792) sets. Conclusions Radiomics features from the CE MRI could be used to detect the EGFR mutation, increasing the certainty of identifying exon-19 deletion and exon-21 L858R mutations based on spinal metastasis MR imaging. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09985-4.
Collapse
Affiliation(s)
- Ying Fan
- School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, 110122, People's Republic of China
| | - Yue Dong
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, People's Republic of China
| | - Xinyan Sun
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, People's Republic of China
| | - Huan Wang
- Radiation Oncology Department of Thoracic Cancer, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, People's Republic of China
| | - Peng Zhao
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, People's Republic of China
| | - Hongbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Xiran Jiang
- School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, 110122, People's Republic of China.
| |
Collapse
|
57
|
Crombé A, Lafon M, Nougaret S, Kind M, Cousin S. Ranking the most influential predictors of CT-based radiomics feature values in metastatic lung adenocarcinoma. Eur J Radiol 2022; 155:110472. [PMID: 35985090 DOI: 10.1016/j.ejrad.2022.110472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/09/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE To investigate which acquisition, post-processing, tumor, and patient characteristics contribute the most to the value of radiomics features (RFs) in lung adenocarcinoma in order to better understand and order the potential sources of bias in radiomics studies in a multivariate setting. METHODS This single-center retrospective study included all consecutive patients with newly-diagnosed lung adenocarcinoma treated between December 2016 and September 2018 who had pre-treatment contrast-enhanced CT-scan showing ≥ 2 target lesions per response evaluation criteria in solid tumors (RECIST) v1.1. All measurable lesions were manually segmented; 49 RFs were extracted using LIFEx v7.0.0. Afterwards, we reverted the usual radiomics approach (i.e., predicting a clinical outcome base on multiple RFs). To do so, for each RF, random forests and linear regression algorithms were trained using cross-validation to predict the RF value depending on the following variables: patient, mutational status, phase of CT-scan acquisition, discretization (binsize), lesion location, lesion volume, and best response obtained during the first line of treatment (partial response per RECIST vs other). The most important contributors to the value of reproducible RFs (intra-class correlation coefficient > 0.80) according to the best random forests model (selected via R-squared) were ranked. RESULTS 101 patients (median age: 62.3) were included, with a median of 5 target lesions per patient (range: 2-10) providing 466 segmented lesions. Twenty-nine RFs were reproducible. The most important predictors of the reproducible RFs values were, in order: tumor volume, binsize, tumor location, CT-scan phase, KRAS mutation, and treatment response (average importance: 61.7%, 57.4%, 8.1%, 3.3%, 3%, and 2.7%, respectively). The treatment response and KRAS and EGFR/ROS1/ALK mutational status remained independently correlated with the RF value for 64.3%, 32.1%, and 50% reproducible RFs, respectively. CONCLUSION Tumor volume, location, acquisition and post-processing parameters should systematically be incorporated in radiomics-based modeling; however, most reproducible RFs do have significant relationships with mutational status and treatment response.
Collapse
Affiliation(s)
- Amandine Crombé
- Department of Oncologic Imaging, Institut Bergonié, Regional Comprehensive Cancer, F-33076 Bordeaux, France; Department of Imaging, Pellegrin University Hospital, F-33300 Bordeaux, France; University of Bordeaux, UMR CNRS 5251, INRIA Project team Models in Oncology (Monc), F-33400 Talence, France.
| | - Mathilde Lafon
- Department of Medical Oncology, Institut Bergonié, Regional Comprehensive Cancer, F-33076 Bordeaux, France
| | - Stéphanie Nougaret
- Department of Radiology, Institut Régional du Cancer de Montpellier, Montpellier Cancer Research Institute, INSERM U1194, University of Montpellier, F-34295 Montpellier, France
| | - Michèle Kind
- Department of Oncologic Imaging, Institut Bergonié, Regional Comprehensive Cancer, F-33076 Bordeaux, France
| | - Sophie Cousin
- Department of Medical Oncology, Institut Bergonié, Regional Comprehensive Cancer, F-33076 Bordeaux, France
| |
Collapse
|
58
|
Shi J, Zhao Z, Jiang T, Ai H, Liu J, Chen X, Luo Y, Fan H, Jiang X. A deep learning approach with subregion partition in MRI image analysis for metastatic brain tumor. Front Neuroinform 2022; 16:973698. [PMID: 35991287 PMCID: PMC9382021 DOI: 10.3389/fninf.2022.973698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeTo propose a deep learning network with subregion partition for predicting metastatic origins and EGFR/HER2 status in patients with brain metastasis.MethodsWe retrospectively enrolled 140 patients with clinico-pathologically confirmed brain metastasis originated from primary NSCLC (n = 60), breast cancer (BC, n = 60) and other tumor types (n = 20). All patients underwent contrast-enhanced brain MRI scans. The brain metastasis was subdivided into phenotypically consistent subregions using patient-level and population-level clustering. A residual network with a global average pooling layer (RN-GAP) was proposed to calculate deep learning-based features. Features from each subregion were selected with least absolute shrinkage and selection operator (LASSO) to build logistic regression models (LRs) for predicting primary tumor types (LR-NSCLC for the NSCLC origin and LR-BC for the BC origin), EGFR mutation status (LR-EGFR) and HER2 status (LR-HER2).ResultsThe brain metastasis can be partitioned into a marginal subregion (S1) and an inner subregion (S2) in the MRI image. The developed models showed good predictive performance in the training (AUCs, LR-NSCLC vs. LR-BC vs. LR-EGFR vs. LR-HER2, 0.860 vs. 0.909 vs. 0.850 vs. 0.900) and validation (AUCs, LR-NSCLC vs. LR-BC vs. LR-EGFR vs. LR-HER2, 0.819 vs. 0.872 vs. 0.750 vs. 0.830) set.ConclusionOur proposed deep learning network with subregion partitions can accurately predict metastatic origins and EGFR/HER2 status of brain metastasis, and hence may have the potential to be non-invasive and preoperative new markers for guiding personalized treatment plans in patients with brain metastasis.
Collapse
Affiliation(s)
- Jiaxin Shi
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Zilong Zhao
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Tao Jiang
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Hua Ai
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Jiani Liu
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Xinpu Chen
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Yahong Luo
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Huijie Fan
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- *Correspondence: Huijie Fan,
| | - Xiran Jiang
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, China
- Xiran Jiang,
| |
Collapse
|
59
|
Radiomics for Detection of the EGFR Mutation in Liver Metastatic NSCLC. Acad Radiol 2022; 30:1039-1046. [PMID: 35907759 DOI: 10.1016/j.acra.2022.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 12/09/2022]
Abstract
RATIONALE AND OBJECTIVES The research aims to investigate whether MRI radiomics on hepatic metastasis from primary nonsmall cell lung cancer (NSCLC) can be used to differentiate patients with epidermal growth factor receptor (EGFR) mutations from those with EGFR wild-type, and develop a prediction model based on combination of primary tumor and the metastasis. MATERIALS AND METHODS A total of 130 patients were enrolled between Aug. 2017 and Dec. 2021, all pathologically confirmed harboring hepatic metastasis from primary NSCLC. The pyradiomics was used to extract radiomics features from intra- and peritumoral areas of both primary tumor and metastasis. The least absolute shrinkage and selection operator (LASSO) regression was applied to identify most predictive features and to develop radiomics signatures (RSs) for prediction of the EGFR mutation status. The receiver operating characteristic (ROC) curve analysis was performed to assess the prediction capability of the developed RSs. RESULTS A RS-Primary and a RS-Metastasis were derived from the primary tumor and metastasis, respectively. The RS-Combine by combination of the primary tumor and metastasis achieved the highest prediction performance in the training (AUCs, RS-Primary vs. RS-Metastasis vs. RS-Combine, 0.826 vs. 0.821 vs. 0.908) and testing (AUCs, RS-Primary vs. RS-Metastasis vs. RS-Combine, 0.760 vs. 0.791 vs. 0.884) set. The smoking status showed significant difference between EGFR mutant and wild-type groups (p < 0.05) in the training set. CONCLUSION The study indicates that hepatic metastasis-based radiomics can be used to detect the EGFR mutation. The developed multiorgan combined radiomics signature may be helpful to guide individual treatment strategies for patients with metastatic NSCLC.
Collapse
|
60
|
Guan X, Lu N, Zhang J. Evaluation of Epidermal Growth Factor Receptor 2 Status in Gastric Cancer by CT-Based Deep Learning Radiomics Nomogram. Front Oncol 2022; 12:905203. [PMID: 35898877 PMCID: PMC9309372 DOI: 10.3389/fonc.2022.905203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose To explore the role of computed tomography (CT)-based deep learning and radiomics in preoperative evaluation of epidermal growth factor receptor 2 (HER2) status in gastric cancer. Materials and methods The clinical data on gastric cancer patients were evaluated retrospectively, and 357 patients were chosen for this study (training cohort: 249; test cohort: 108). The preprocessed enhanced CT arterial phase images were selected for lesion segmentation, radiomics and deep learning feature extraction. We integrated deep learning features and radiomic features (Inte). Four methods were used for feature selection. We constructed models with support vector machine (SVM) or random forest (RF), respectively. The area under the receiver operating characteristics curve (AUC) was used to assess the performance of these models. We also constructed a nomogram including Inte-feature scores and clinical factors. Results The radiomics-SVM model showed good classification performance (AUC, training cohort: 0.8069; test cohort: 0.7869). The AUC of the ResNet50-SVM model and the Inte-SVM model in the test cohort were 0.8955 and 0.9055. The nomogram also showed excellent discrimination achieving greater AUC (training cohort, 0.9207; test cohort, 0.9224). Conclusion CT-based deep learning radiomics nomogram can accurately and effectively assess the HER2 status in patients with gastric cancer before surgery and it is expected to assist physicians in clinical decision-making and facilitates individualized treatment planning.
Collapse
Affiliation(s)
- Xiao Guan
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Na Lu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | | |
Collapse
|
61
|
Maniar A, Wei AZ, Dercle L, Bien HH, Fojo T, Bates SE, Schwartz LH. Novel biomarkers in NSCLC: Radiomic analysis, kinetic analysis, and circulating tumor DNA. Semin Oncol 2022; 49:S0093-7754(22)00042-2. [PMID: 35914982 DOI: 10.1053/j.seminoncol.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/06/2022] [Indexed: 11/11/2022]
Abstract
Current radiographic methods of measuring treatment response for patients with nonsmall cell lung cancer have significant limitations. Recently, new modalities using standard of care images or minimally invasive blood-based DNA tests have gained interest as methods of evaluating treatment response. This article highlights three emerging modalities: radiomic analysis, kinetic analysis and serum-based measurement of circulating tumor DNA, with a focus on the clinical evidence supporting these methods. Additionally, we discuss the possibility of combining these modalities to develop a robust biomarker with strong correlation to clinically meaningful outcomes that could impact clinical trial design and patient care. At Last, we focus on how these methods specifically apply to a Veteran population.
Collapse
Affiliation(s)
- Ashray Maniar
- Columbia University Irving Medical Center, Division of Hematology and Oncology, New York, NY
| | - Alexander Z Wei
- Columbia University Irving Medical Center, Division of Hematology and Oncology, New York, NY
| | - Laurent Dercle
- Columbia University Irving Medical Center, Division of Radiology, New York, NY
| | - Harold H Bien
- Northport VA Medical Center, Division of Hematology and Oncology, Northport, NY
| | - Tito Fojo
- Columbia University Irving Medical Center, Division of Hematology and Oncology, New York, NY; James J. Peters Bronx VA Medical Center, Division of Hematology and Oncology, Bronx, NY
| | - Susan E Bates
- Columbia University Irving Medical Center, Division of Hematology and Oncology, New York, NY; Northport VA Medical Center, Division of Hematology and Oncology, Northport, NY.
| | - Lawrence H Schwartz
- Columbia University Irving Medical Center, Division of Radiology, New York, NY
| |
Collapse
|
62
|
Xiong Z, Jiang Y, Tian D, Zhang J, Guo Y, Li G, Qin D, Li Z. Radiomics for identifying lung adenocarcinomas with predominant lepidic growth manifesting as large pure ground-glass nodules on CT images. PLoS One 2022; 17:e0269356. [PMID: 35749350 PMCID: PMC9231804 DOI: 10.1371/journal.pone.0269356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022] Open
Abstract
Purpose To explore the value of radiomics in the identification of lung adenocarcinomas with predominant lepidic growth in pure ground-glass nodules (pGGNs) larger than 10 mm. Methods We retrospectively analyzed CT images of 204 patients with large pGGNs (≥ 10 mm) pathologically diagnosed as minimally invasive adenocarcinomas (MIAs), lepidic predominant adenocarcinomas (LPAs), and non-lepidic predominant adenocarcinomas (NLPAs). All pGGNs in the two groups (MIA/LPA and NLPA) were randomly divided into training and test cohorts. Forty-seven patients from another center formed the external validation cohort. Baseline features, including clinical data and CT morphological and quantitative parameters, were collected to establish a baseline model. The radiomics model was built with the optimal radiomics features. The combined model was developed using the rad_score and independent baseline predictors. The performance of the models was evaluated using the area under the receiver operating characteristic curve (AUC) and compared using the DeLong test. The differential diagnosis performance of the models was compared with three radiologists (with 20+, 10+, and 3 years of experience) in the test cohort. Results The radiomics (training AUC: 0.833; test AUC: 0.804; and external validation AUC: 0.792) and combined (AUC: 0.849, 0.820, and 0.775, respectively) models performed better for discriminating than the baseline model (AUC: 0.756, 0.762, and 0.725, respectively) developed by tumor location and mean CT value of the whole nodule. The DeLong test showed that the AUCs of the combined and radiomics models were significantly increased in the training cohort. The highest AUC value of the radiologists was 0.600. Conclusion The application of CT radiomics improved the identification performance of lung adenocarcinomas with predominant lepidic growth appearing as pGGNs larger than 10 mm.
Collapse
Affiliation(s)
- Ziqi Xiong
- Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yining Jiang
- Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Di Tian
- Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jingyu Zhang
- Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yan Guo
- GE Healthcare, Beijing, China
| | - Guosheng Li
- Department of Pathology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Dongxue Qin
- Department of Radiology, the Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhiyong Li
- Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- * E-mail:
| |
Collapse
|
63
|
Fan Y, Dong Y, Wang H, Wang H, Sun X, Wang X, Zhao P, Luo Y, Jiang X. Development and externally validate MRI-based nomogram to assess EGFR and T790M mutations in patients with metastatic lung adenocarcinoma. Eur Radiol 2022; 32:6739-6751. [PMID: 35729427 DOI: 10.1007/s00330-022-08955-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/20/2022] [Accepted: 06/08/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This study aims to explore values of multi-parametric MRI-based radiomics for detecting the epidermal growth factor receptor (EGFR) mutation and resistance (T790M) mutation in lung adenocarcinoma (LA) patients with spinal metastasis. METHODS This study enrolled a group of 160 LA patients from our hospital (between Jan. 2017 and Feb. 2021) to build a primary cohort. An external cohort was developed with 32 patients from another hospital (between Jan. 2017 and Jan. 2021). All patients underwent spinal MRI (including T1-weighted (T1W) and T2-weighted fat-suppressed (T2FS)) scans. Radiomics features were extracted from the metastasis for each patient and selected to develop radiomics signatures (RSs) for detecting the EGFR and T790M mutations. The clinical-radiomics nomogram models were constructed with RSs and important clinical parameters. The receiver operating characteristics (ROC) curve was used to evaluate the predication capabilities of each model. Calibration and decision curve analyses (DCA) were constructed to verify the performance of the models. RESULTS For detecting the EGFR and T790M mutation, the developed RSs comprised 9 and 4 most important features, respectively. The constructed nomogram models incorporating RSs and smoking status showed favorite prediction efficacy, with AUCs of 0.849 (Sen = 0.685, Spe = 0.885), 0.828 (Sen = 0.964, Spe = 0.692), and 0.778 (Sen = 0.611, Spe = 0.929) in the training, internal validation, and external validation sets for detecting the EGFR mutation, respectively, and with AUCs of 0.0.842 (Sen = 0.750, Spe = 0.867), 0.823 (Sen = 0.667, Spe = 0.938), and 0.800 (Sen = 0.875, Spe = 0.800) in the training, internal validation, and external validation sets for detecting the T790M mutation, respectively. CONCLUSIONS Radiomics features from the spinal metastasis were predictive on both EGFR and T790M mutations. The constructed nomogram models can be potentially considered as new markers to guild treatment management in LA patients with spinal metastasis. KEY POINTS • To our knowledge, this study was the first approach to detect the EGFR T790M mutation based on spinal metastasis in patients with lung adenocarcinoma. • We identified 13 MRI features that were strongly associated with the EGFR T790M mutation. • The proposed nomogram models can be considered as potential new markers for detecting EGFR and T790M mutations based on spinal metastasis.
Collapse
Affiliation(s)
- Ying Fan
- School of Intelligent Medicine, China Medical University, Liaoning, 110122, People's Republic of China
| | - Yue Dong
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning, 110042, People's Republic of China
| | - Huan Wang
- Radiation Oncology Department of Thoracic Cancer, Liaoning Cancer Hospital and Institute, Liaoning, 110042, People's Republic of China
| | - Hongbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Xinyan Sun
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning, 110042, People's Republic of China
| | - Xiaoyu Wang
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning, 110042, People's Republic of China
| | - Peng Zhao
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning, 110042, People's Republic of China
| | - Yahong Luo
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning, 110042, People's Republic of China
| | - Xiran Jiang
- School of Intelligent Medicine, China Medical University, Liaoning, 110122, People's Republic of China.
| |
Collapse
|
64
|
Cao R, Pang Z, Wang X, Du Z, Chen H, Liu J, Yue Z, Wang H, Luo Y, Jiang X. Radiomics evaluates the EGFR mutation status from the brain metastasis: a multi-center study. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac7192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/19/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. To develop and externally validate habitat-based MRI radiomics for preoperative prediction of the EGFR mutation status based on brain metastasis (BM) from primary lung adenocarcinoma (LA). Approach. We retrospectively reviewed 150 and 38 patients from hospital 1 and hospital 2 between January 2017 and December 2021 to form a primary and an external validation cohort, respectively. Radiomics features were calculated from the whole tumor (W), tumor active area (TAA) and peritumoral oedema area (POA) in the contrast-enhanced T1-weighted (T1CE) and T2-weighted (T2W) MRI image. The least absolute shrinkage and selection operator was applied to select the most important features and to develop radiomics signatures (RSs) based on W (RS-W), TAA (RS-TAA), POA (RS-POA) and in combination (RS-Com). The area under receiver operating characteristic curve (AUC) and accuracy analysis were performed to assess the performance of radiomics models. Main results. RS-TAA and RS-POA outperformed RS-W in terms of AUC, ACC and sensitivity. The multi-region combined RS-Com showed the best prediction performance in the primary validation (AUCs, RS-Com versus RS-W versus RS-TAA versus RS-POA, 0.901 versus 0.699 versus 0.812 versus 0.883) and external validation (AUCs, RS-Com versus RS-W versus RS-TAA versus RS-POA, 0.900 versus 0.637 versus 0.814 versus 0.842) cohort. Significance. The developed habitat-based radiomics models can accurately detect the EGFR mutation in patients with BM from primary LA, and may provide a preoperative basis for personal treatment planning.
Collapse
|
65
|
Machine Learning-Based Radiomics for Prediction of Epidermal Growth Factor Receptor Mutations in Lung Adenocarcinoma. DISEASE MARKERS 2022; 2022:2056837. [PMID: 35578691 PMCID: PMC9107363 DOI: 10.1155/2022/2056837] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/13/2022] [Accepted: 04/23/2022] [Indexed: 12/20/2022]
Abstract
Identifying an epidermal growth factor receptor (EGFR) mutation is important because EGFR tyrosine kinase inhibitors are the first-line treatment of choice for patients with EGFR mutation-positive lung adenocarcinomas (LUAC). This study is aimed at developing and validating a radiomics-based machine learning (ML) approach to identify EGFR mutations in patients with LUAC. We retrospectively collected data from 201 patients with positive EGFR mutation LUAC (140 in the training cohort and 61 in the validation cohort). We extracted 1316 radiomics features from preprocessed CT images and selected 14 radiomics features and 1 clinical feature which were most relevant to mutations through filter method. Subsequently, we built models using 7 ML approaches and established the receiver operating characteristic (ROC) curve to assess the discriminating performance of these models. In terms of predicting EGFR mutation, the model derived from radiomics features and combined models (radiomics features and relevant clinical factors) had an AUC of 0.79 (95% confidence interval (CI): 0.77-0.82), 0.86 (0.87-0.88), respectively. Our study offers a radiomics-based ML model using filter methods to detect the EGFR mutation in patients with LUAC. This convenient and low-cost method may be of help to noninvasively identify patients before obtaining tumor sample for molecule testing.
Collapse
|
66
|
Chen Q, Li Y, Cheng Q, Van Valkenburgh J, Sun X, Zheng C, Zhang R, Yuan R. EGFR Mutation Status and Subtypes Predicted by CT-Based 3D Radiomic Features in Lung Adenocarcinoma. Onco Targets Ther 2022; 15:597-608. [PMID: 35669165 PMCID: PMC9165655 DOI: 10.2147/ott.s352619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/06/2022] [Indexed: 11/23/2022] Open
Abstract
Objective In this study, we aim to establish a non-invasive tool to predict epidermal growth factor receptor (EGFR) mutation status and subtypes based on radiomic features of computed tomography (CT). Methods A total of 233 lung adenocarcinoma patients were investigated and randomly divided into the training and test cohorts. In this study, 2300 radiomic features were extracted from original and filtered (Exponential, Laplacian of Gaussian, Logarithm, Gabor, Wavelet) CT images. The radiomic features were divided into four categories, including histogram, volumetric, morphologic, and texture features. An RF-BFE algorithm was developed to select the features for building the prediction models. Clinicopathological features (including age, gender, smoking status, TNM staging, maximum diameter, location, and growth pattern) were combined to establish an integrated model with radiomic features. ROC curve and AUC quantified the effectiveness of the predictor of EGFR mutation status and subtypes. Results A set of 10 features were selected to predict EGFR mutation status between EGFR mutant and wild type, while 9 selected features were used to predict mutation subtypes between exon 19 deletion and exon 21 L858R mutation. To predict the EGFR mutation status, the AUC of the training cohort was 0.778 and the AUC of the test cohort was 0.765. To predict the EGFR mutation subtypes, the AUC of training cohort was 0.725 and the AUC of test cohort was 0.657. The integrated model showed the most optimal predictive performance with EGFR mutation status (AUC = 0.870 and 0.759) and subtypes (AUC = 0.797 and 0.554) in the training and test cohorts. Conclusion CT-based radiomic features can extract information on tumor heterogeneity in lung adenocarcinoma. In addition, we have established a radiomic model and an integrated model to non-invasively predict the EGFR mutation status and subtypes of lung adenocarcinoma, which is conducive to saving clinical costs and guiding targeted therapy.
Collapse
Affiliation(s)
- Quan Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, People’s Republic of China
| | - Yan Li
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Qiguang Cheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, People’s Republic of China
| | - Juno Van Valkenburgh
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xiaotian Sun
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, People’s Republic of China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, People’s Republic of China
| | - Ruiguang Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Correspondence: Ruiguang Zhang, Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China, Email
| | - Rong Yuan
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, People’s Republic of China
- Rong Yuan, Department of Radiology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, People’s Republic of China, Email
| |
Collapse
|
67
|
Dong Y, Jiang Z, Li C, Dong S, Zhang S, Lv Y, Sun F, Liu S. Development and validation of novel radiomics-based nomograms for the prediction of EGFR mutations and Ki-67 proliferation index in non-small cell lung cancer. Quant Imaging Med Surg 2022; 12:2658-2671. [PMID: 35502390 PMCID: PMC9014164 DOI: 10.21037/qims-21-980] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/20/2022] [Indexed: 07/30/2023]
Abstract
BACKGROUND We developed and validated novel radiomics-based nomograms to identify epidermal growth factor receptor (EGFR) mutations and the Ki-67 proliferation index of non-small cell lung cancer. METHODS We enrolled 132 patients with histologically verified non-small cell lung cancer from four hospital institutions who underwent computed tomography (CT) scans. EGFR mutations and the Ki-67 proliferation index were measured from tumor tissues. A total of 1,287 radiomic features were extracted, and a three-stage feature selection method was implemented to acquire the most valuable radiomic features. Finally, the radiomic scores and nomograms of the two tasks were established and tested. Receiver operating characteristic curves, calibration curves, and decision curves were used to evaluate their prediction performance and clinical utility. RESULTS In task [1], smoking status and histological type were significantly associated with EGFR mutations. After feature selection, 10 features were used to establish radiomic score, which showed good performance [area under the curve (AUC) =0.800] in the validation cohort. The radiomic nomogram had an AUC of 0.798 (95% CI: 0.664 to 0.931) with a C-index of 0.798 in the validation cohort. In task [2], gender, smoking status, histological type, and stage showed a significant correlation with Ki-67 proliferation index expression. A total of 28 features were selected to develop a radiomic score, with an AUC of 0.820 in the validation cohort. The final nomogram showed an AUC of 0.828 (95% CI: 0.703 to 0.953) with a C-index of 0.828 in the validation cohort. CONCLUSIONS EGFR mutations and Ki-67 proliferation index in non-small cell lung cancer can be predicted efficiently by the novel radiomic scores and nomograms.
Collapse
Affiliation(s)
- Yinjun Dong
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Postdoctoral Research Workstation, Liaocheng People’s Hospital, Liaocheng, China
| | - Zekun Jiang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chaowei Li
- Department of Clinical Drug Research, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shuai Dong
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shengdong Zhang
- Department of Radiology, Yinan Branch of Qilu Hospital of Shandong University, Yinan County People’s Hospital, Linyi, China
| | - Yunhong Lv
- Department of Mathematics and Information Technology, Xingtai University, Xingtai, China
- Department of Mathematics and Statistics, University of Windsor, Windsor, Ontario, Canada
| | - Fenghao Sun
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuguang Liu
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
68
|
Zhang G, Deng L, Zhang J, Cao Y, Li S, Ren J, Qian R, Peng S, Zhang X, Zhou J, Zhang Z, Kong W, Pu H. Development of a Nomogram Based on 3D CT Radiomics Signature to Predict the Mutation Status of EGFR Molecular Subtypes in Lung Adenocarcinoma: A Multicenter Study. Front Oncol 2022; 12:889293. [PMID: 35574401 PMCID: PMC9098955 DOI: 10.3389/fonc.2022.889293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThis study aimed to noninvasively predict the mutation status of epidermal growth factor receptor (EGFR) molecular subtype in lung adenocarcinoma based on CT radiomics features.MethodsIn total, 728 patients with lung adenocarcinoma were included, and divided into three groups according to EGFR mutation subtypes. 1727 radiomics features were extracted from the three-dimensional images of each patient. Wilcoxon test, least absolute shrinkage and selection operator regression, and multiple logistic regression were used for feature selection. ROC curve was used to evaluate the predictive performance of the model. Nomogram was constructed by combining radiomics features and clinical risk factors. Calibration curve was used to evaluate the goodness of fit of the model. Decision curve analysis was used to evaluate the clinical applicability of the model.ResultsThere were three, two, and one clinical factor and fourteen, thirteen, and four radiomics features, respectively, which were significantly related to each EGFR molecular subtype. Compared with the clinical and radiomics models, the combined model had the highest predictive performance in predicting EGFR molecular subtypes [Del-19 mutation vs. wild-type, AUC=0.838 (95% CI, 0.799-0.877); L858R mutation vs. wild-type, AUC=0.855 (95% CI, 0.817-0.894); and Del-19 mutation vs. L858R mutation, AUC=0.906 (95% CI, 0.869-0.943), respectively], and it has a stable performance in the validation set [AUC was 0.813 (95% CI, 0.740-0.886), 0.852 (95% CI, 0.790-0.913), and 0.875 (95% CI, 0.781-0.929), respectively].ConclusionOur combined model showed good performance in predicting EGFR molecular subtypes in patients with lung adenocarcinoma. This model can be applied to patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Guojin Zhang
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Guojin Zhang, ; Hong Pu, ; Weifang Kong,
| | - Liangna Deng
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jing Zhang
- Department of Radiology, Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, China
| | - Yuntai Cao
- Department of Radiology, Affiliated Hospital of Qinghai University, Xining, China
| | - Shenglin Li
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jialiang Ren
- Department of Pharmaceuticals Diagnosis, GE Healthcare, Beijing, China
| | - Rong Qian
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Shengkun Peng
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xiaodi Zhang
- Clinical Science Department, Philips (China) Investment Co., Ltd., Chengdu, China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhuoli Zhang
- Department of Radiology and BME, University of California Irvine, Irvine, CA, United States
| | - Weifang Kong
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Guojin Zhang, ; Hong Pu, ; Weifang Kong,
| | - Hong Pu
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Guojin Zhang, ; Hong Pu, ; Weifang Kong,
| |
Collapse
|
69
|
Deep Neural Networks and Machine Learning Radiomics Modelling for Prediction of Relapse in Mantle Cell Lymphoma. Cancers (Basel) 2022; 14:cancers14082008. [PMID: 35454914 PMCID: PMC9028737 DOI: 10.3390/cancers14082008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Mantle cell lymphoma (MCL) is an aggressive lymphoid tumour with a poor prognosis. There exist no routine biomarkers for the early prediction of relapse. Our study compared the potential of radiomics-based machine learning and 3D deep learning models as non-invasive biomarkers to risk-stratify MCL patients, thus promoting precision imaging in clinical oncology. Abstract Mantle cell lymphoma (MCL) is a rare lymphoid malignancy with a poor prognosis characterised by frequent relapse and short durations of treatment response. Most patients present with aggressive disease, but there exist indolent subtypes without the need for immediate intervention. The very heterogeneous behaviour of MCL is genetically characterised by the translocation t(11;14)(q13;q32), leading to Cyclin D1 overexpression with distinct clinical and biological characteristics and outcomes. There is still an unfulfilled need for precise MCL prognostication in real-time. Machine learning and deep learning neural networks are rapidly advancing technologies with promising results in numerous fields of application. This study develops and compares the performance of deep learning (DL) algorithms and radiomics-based machine learning (ML) models to predict MCL relapse on baseline CT scans. Five classification algorithms were used, including three deep learning models (3D SEResNet50, 3D DenseNet, and an optimised 3D CNN) and two machine learning models based on K-nearest Neighbor (KNN) and Random Forest (RF). The best performing method, our optimised 3D CNN, predicted MCL relapse with a 70% accuracy, better than the 3D SEResNet50 (62%) and the 3D DenseNet (59%). The second-best performing method was the KNN-based machine learning model (64%) after principal component analysis for improved accuracy. Our optimised CNN developed by ourselves correctly predicted MCL relapse in 70% of the patients on baseline CT imaging. Once prospectively tested in clinical trials with a larger sample size, our proposed 3D deep learning model could facilitate clinical management by precision imaging in MCL.
Collapse
|
70
|
Liu M, Wang S, Yu H, Zhu Y, Wang L, Zhang M, Wu Z, Li X, Li W, Tian J. A Lung-Parenchyma-Contrast Hybrid Network For EGFR Gene Mutation Prediction In Lung Cancer. 2022 IEEE 19TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI) 2022. [DOI: 10.1109/isbi52829.2022.9761614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Meili Liu
- Beihang University,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine,Beijing,China
| | - Shuo Wang
- Beihang University,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine,Beijing,China
| | - He Yu
- Sichuan University,West China Hospital,Department of Respiratory and Critical Care Medicine,Chengdu,China
| | - Yongbei Zhu
- Beihang University,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine,Beijing,China
| | - Liusu Wang
- Beihang University,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine,Beijing,China
| | - Mingyu Zhang
- Beihang University,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine,Beijing,China
| | - Zhangjie Wu
- Beihang University,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine,Beijing,China
| | - Xiaohu Li
- Anhui Medical University,First Affiliated Hospital,Department of Radiology
| | - Weimin Li
- Sichuan University,West China Hospital,Department of Respiratory and Critical Care Medicine,Chengdu,China
| | - Jie Tian
- Beihang University,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine,Beijing,China
| |
Collapse
|
71
|
Silva F, Pereira T, Neves I, Morgado J, Freitas C, Malafaia M, Sousa J, Fonseca J, Negrão E, Flor de Lima B, Correia da Silva M, Madureira AJ, Ramos I, Costa JL, Hespanhol V, Cunha A, Oliveira HP. Towards Machine Learning-Aided Lung Cancer Clinical Routines: Approaches and Open Challenges. J Pers Med 2022; 12:480. [PMID: 35330479 PMCID: PMC8950137 DOI: 10.3390/jpm12030480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/28/2022] [Accepted: 03/10/2022] [Indexed: 12/15/2022] Open
Abstract
Advancements in the development of computer-aided decision (CAD) systems for clinical routines provide unquestionable benefits in connecting human medical expertise with machine intelligence, to achieve better quality healthcare. Considering the large number of incidences and mortality numbers associated with lung cancer, there is a need for the most accurate clinical procedures; thus, the possibility of using artificial intelligence (AI) tools for decision support is becoming a closer reality. At any stage of the lung cancer clinical pathway, specific obstacles are identified and "motivate" the application of innovative AI solutions. This work provides a comprehensive review of the most recent research dedicated toward the development of CAD tools using computed tomography images for lung cancer-related tasks. We discuss the major challenges and provide critical perspectives on future directions. Although we focus on lung cancer in this review, we also provide a more clear definition of the path used to integrate AI in healthcare, emphasizing fundamental research points that are crucial for overcoming current barriers.
Collapse
Affiliation(s)
- Francisco Silva
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- FCUP—Faculty of Science, University of Porto, 4169-007 Porto, Portugal
| | - Tania Pereira
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
| | - Inês Neves
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- ICBAS—Abel Salazar Biomedical Sciences Institute, University of Porto, 4050-313 Porto, Portugal
| | - Joana Morgado
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
| | - Cláudia Freitas
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Mafalda Malafaia
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- FEUP—Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Joana Sousa
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
| | - João Fonseca
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- FEUP—Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Eduardo Negrão
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
| | - Beatriz Flor de Lima
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
| | - Miguel Correia da Silva
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
| | - António J. Madureira
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Isabel Ramos
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - José Luis Costa
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Venceslau Hespanhol
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - António Cunha
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- UTAD—University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Hélder P. Oliveira
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- FCUP—Faculty of Science, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
72
|
Noninvasive Method for Predicting the Expression of Ki67 and Prognosis in Non-Small-Cell Lung Cancer Patients: Radiomics. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:7761589. [PMID: 35340222 PMCID: PMC8942651 DOI: 10.1155/2022/7761589] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/18/2022]
Abstract
Purpose In this study, we aimed to develop and validate a noninvasive method based on radiomics to evaluate the expression of Ki67 and prognosis of patients with non-small-cell lung cancer (NSCLC). Patients and Methods. A total of 120 patients with NSCLC were enrolled in this retrospective study. All patients were randomly assigned to a training dataset (n = 85) and test dataset (n = 35). According to the preprocessed F-FDG PET/CT image of each patient, a total of 384 radiomics features were extracted from the segmentation of regions of interest (ROIs). The Spearman correlation test and least absolute shrinkage and selection operator (LASSO), after normalization on the features matrix, were applied to reduce the dimensionality of the features. Furthermore, multivariable logistic regression analysis was used to propose a model for predicting Ki67. The survival curve was used to explore the prognostic significance of radiomics features. Results A total of 62 Ki67 positive patients and 58 Ki67 negative patients formed the training set and test training dataset and test dataset. Radiomics signatures showed good performance in predicting the expression of Ki67 with AUCs of 0.86 (training dataset) and 0.85 (test dataset). Validation and calibration showed that the radiomics had a strong predictive power in patients with NSCLC survival, which was significantly close to the effect of Ki67 expression on the survival of patients with NSCLC. Conclusion Radiomics signatures based on preoperative F-FDG PET/CT could distinguish the expression of Ki67, which also had a strong predictive performance for the survival outcome.
Collapse
|
73
|
Mining whole-lung information by artificial intelligence for predicting EGFR genotype and targeted therapy response in lung cancer: a multicohort study. Lancet Digit Health 2022; 4:e309-e319. [DOI: 10.1016/s2589-7500(22)00024-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/18/2021] [Accepted: 01/28/2022] [Indexed: 01/02/2023]
|
74
|
Zhang H, Nguyen TD, Zhang J, Marcille M, Spincemaille P, Wang Y, Gauthier SA, Sweeney EM. QSMRim-Net: Imbalance-aware learning for identification of chronic active multiple sclerosis lesions on quantitative susceptibility maps. Neuroimage Clin 2022; 34:102979. [PMID: 35247730 PMCID: PMC8892132 DOI: 10.1016/j.nicl.2022.102979] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND PURPOSE Chronic active multiple sclerosis (MS) lesions are characterized by a paramagnetic rim at the edge of the lesion and are associated with increased disability in patients. Quantitative susceptibility mapping (QSM) is an MRI technique that is sensitive to chronic active lesions, termed rim + lesions on the QSM. We present QSMRim-Net, a data imbalance-aware deep neural network that fuses lesion-level radiomic and convolutional image features for automated identification of rim + lesions on QSM. METHODS QSM and T2-weighted-Fluid-Attenuated Inversion Recovery (T2-FLAIR) MRI of the brain were collected at 3 T for 172 MS patients. Rim + lesions were manually annotated by two human experts, followed by consensus from a third expert, for a total of 177 rim + and 3986 rim negative (rim-) lesions. Our automated rim + detection algorithm, QSMRim-Net, consists of a two-branch feature extraction network and a synthetic minority oversampling network to classify rim + lesions. The first network branch is for image feature extraction from the QSM and T2-FLAIR, and the second network branch is a fully connected network for QSM lesion-level radiomic feature extraction. The oversampling network is designed to increase classification performance with imbalanced data. RESULTS On a lesion-level, in a five-fold cross validation framework, the proposed QSMRim-Net detected rim + lesions with a partial area under the receiver operating characteristic curve (pROC AUC) of 0.760, where clinically relevant false positive rates of less than 0.1 were considered. The method attained an area under the precision recall curve (PR AUC) of 0.704. QSMRim-Net out-performed other state-of-the-art methods applied to the QSM on both pROC AUC and PR AUC. On a subject-level, comparing the predicted rim + lesion count and the human expert annotated count, QSMRim-Net achieved the lowest mean square error of 0.98 and the highest correlation of 0.89 (95% CI: 0.86, 0.92). CONCLUSION This study develops a novel automated deep neural network for rim + MS lesion identification using T2-FLAIR and QSM images.
Collapse
Affiliation(s)
- Hang Zhang
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA; Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Thanh D Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Jinwei Zhang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA; Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Melanie Marcille
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | | | - Yi Wang
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA; Department of Radiology, Weill Cornell Medicine, New York, NY, USA; Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Susan A Gauthier
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA; Department of Neurology, Weill Cornell Medicine, New York, NY, USA; Feil Family Brain and Mind Institute, Weill Cornell Medicine, New York, NY, USA
| | - Elizabeth M Sweeney
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE) Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
75
|
Ma JW, Li M. Molecular typing of lung adenocarcinoma with computed tomography and CT image-based radiomics: a narrative review of research progress and prospects. Transl Cancer Res 2022; 10:4217-4231. [PMID: 35116717 PMCID: PMC8797562 DOI: 10.21037/tcr-21-1037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022]
Abstract
Objective The purpose of this paper was to perform a narrative review of current research evidence on conventional computed tomography (CT) imaging features and CT image-based radiomic features for predicting gene mutations in lung adenocarcinoma and discuss how to translate the research findings to guide future practice. Background Lung cancer, especially lung adenocarcinoma, is the leading cause of cancer-related deaths. With advances in the diagnosis and treatment of lung adenocarcinoma with the emergence of molecular testing, the prediction of oncogenes and even drug resistance gene mutations have become key to individualized and precise clinical treatment in order to prolong survival and improve quality of life. The progress of imageological examination includes the development of CT and radiomics are promising quantitative methods for predicting different gene mutations in lung adenocarcinoma, especially common mutations, such as epidermal growth factor receptor (EGFR) mutation, anaplastic lymphoma kinase (ALK) mutation and Kirsten rat sarcoma viral oncogene (KRAS) mutation. Methods The PubMed electronic database was searched along with a set of terms specific to lung adenocarcinoma, radiomics (including texture analysis), CT, computed tomography, EGFR, ALK, KRAS, rearranging transfection (RET) rearrangement and c-ros oncogene 1 (ROS-1), v-raf murine sarcoma viral oncogene homolog B1 (BRAF), and human epidermal growth factor receptor 2 (HER2) mutations et al. This review has been reported in compliance with the Narrative Review checklist guidelines. From each full-text article, information was extracted regarding a set of terms above. Conclusions Research on the application of conventional CT features and CT image-based radiomic features for predicting the gene mutation status of lung adenocarcinoma is still in a preliminary stage. Noninvasively determination of mutation status in lung adenocarcinoma before targeted therapy with conventional CT features and CT image-based radiomic features remains both hopes and challenges. Before radiomics could be applied in clinical practice, more work needs to be done.
Collapse
Affiliation(s)
- Jing-Wen Ma
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Li
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
76
|
Zhu H, Song Y, Huang Z, Zhang L, Chen Y, Tao G, She Y, Sun X, Yu H. Accurate prediction of epidermal growth factor receptor mutation status in early-stage lung adenocarcinoma, using radiomics and clinical features. Asia Pac J Clin Oncol 2022; 18:586-594. [PMID: 35098682 DOI: 10.1111/ajco.13641] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To develop a nomogram based on CT radiomics and clinical features to predict the epidermal growth factor receptor (EGFR) mutations in early-stage lung adenocarcinomas. METHODS A retrospective analysis of postoperative patients with pathologically confirmed lung adenocarcinoma, which had been tested for EGFR mutations was performed from January 2015 to December 2015. Patients were randomly assigned to training and validation cohorts. A total of 1,078 radiomics features were extracted. least absolute shrinkage and selection operator (LASSO) regression analysis was applied to select clinical and radiomics features, and to establish predictive models. The radiomics score (rad-score) of each patient was calculated. The discrimination of the model was evaluated with area under the curve. RESULTS 1092 patients (444 men and 648 women; mean age: 59.59±9.6) were enrolled. The radiomics signature consisted of 28 radiomics features and emphysema. The mean validation cohort result of the rad-score for patients with EGFR mutations (0.814±0.988) was significantly higher than those with EGFR wild-type (0.315±1.237; p = 0.001). When combined with clinical features, LASSO regression analysis revealed four radiomics features, emphysema, and three clinical features including sex, age, and histologic subtype as associated with to EGFR mutation status. The nomogram that combined radiomics and clinical features significantly improved the predictive discrimination (AUC: 0.723), which is better than that of the radiomics signature alone (AUC: 0.646). CONCLUSION A relationship between selected radiomics features and EGFR mutant lung adenocarcinomas is demonstrated. A nomogram, combining radiomics features and clinical features for EGFR prediction in early-stage lung adenocarcinomas, has shown a moderate discriminatory efficiency and high sensitivity, providing additional information for clinicians.
Collapse
Affiliation(s)
- Huiyuan Zhu
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China.,Department of Radiology, Shanghai Pulmonary Hospital Affiliated to Tongji University, Shanghai, China
| | - Yueqiang Song
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, P.R. China
| | - Zike Huang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lian Zhang
- Department of Radiology, Jiading Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Yanqing Chen
- Department of Radiology, People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi, China
| | - Guangyu Tao
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yunlang She
- Department of Thoracic surgery, Shanghai Pulmonary Hospital Affiliated to Tongji University, Shanghai, China
| | - Xiwen Sun
- Department of Radiology, Shanghai Pulmonary Hospital Affiliated to Tongji University, Shanghai, China
| | - Hong Yu
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
77
|
Prediction for Mitosis-Karyorrhexis Index Status of Pediatric Neuroblastoma via Machine Learning Based 18F-FDG PET/CT Radiomics. Diagnostics (Basel) 2022; 12:diagnostics12020262. [PMID: 35204353 PMCID: PMC8871335 DOI: 10.3390/diagnostics12020262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/23/2022] Open
Abstract
Accurate differentiation of intermediate/high mitosis-karyorrhexis index (MKI) from low MKI is vital for the further management of neuroblastoma. The purpose of this research was to investigate the efficacy of 18F-FDG PET/CT–based radiomics features for the prediction of MKI status of pediatric neuroblastoma via machine learning. A total of 102 pediatric neuroblastoma patients were retrospectively enrolled and divided into training (68 patients) and validation sets (34 patients) in a 2:1 ratio. Clinical characteristics and radiomics features were extracted by XGBoost algorithm and were used to establish radiomics and clinical models for MKI status prediction. A combined model was developed, encompassing clinical characteristics and radiomics features and presented as a radiomics nomogram. The predictive performance of the models was evaluated by AUC and decision curve analysis. The radiomics model yielded AUC of 0.982 (95% CI: 0.916, 0.999) and 0.955 (95% CI: 0.823, 0.997) in the training and validation sets, respectively. The clinical model yielded AUC of 0.746 and 0.670 in the training and validation sets, respectively. The combined model demonstrated AUC of 0.988 (95% CI: 0.924, 1.000) and 0.951 (95% CI: 0.818, 0.996) in the training and validation sets, respectively. The radiomics features could non-invasively predict MKI status of pediatric neuroblastoma with high accuracy.
Collapse
|
78
|
Lou C, Sati P, Absinta M, Clark K, Dworkin JD, Valcarcel AM, Schindler MK, Reich DS, Sweeney EM, Shinohara RT. Fully automated detection of paramagnetic rims in multiple sclerosis lesions on 3T susceptibility-based MR imaging. Neuroimage Clin 2022; 32:102796. [PMID: 34644666 PMCID: PMC8503902 DOI: 10.1016/j.nicl.2021.102796] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/16/2021] [Accepted: 08/17/2021] [Indexed: 11/21/2022]
Abstract
Paramagnetic rim lesions are an important subtype of multiple sclerosis lesion. Automated methods can accelerate the assessment of paramagnetic rim lesions. APRL automatically identifies and accurately classifies paramagnetic rim lesions.
Background and Purpose The presence of a paramagnetic rim around a white matter lesion has recently been shown to be a hallmark of a particular pathological type of multiple sclerosis lesion. Increased prevalence of these paramagnetic rim lesions is associated with a more severe disease course in MS, but manual identification is time-consuming. We present APRL, a method to automatically detect paramagnetic rim lesions on 3T T2*-phase images. Methods T1-weighted, T2-FLAIR, and T2*-phase MRI of the brain were collected at 3T for 20 subjects with MS. The images were then processed with automated lesion segmentation, lesion center detection, lesion labelling, and lesion-level radiomic feature extraction. A total of 951 lesions were identified, 113 (12%) of which contained a paramagnetic rim. We divided our data into a training set (16 patients, 753 lesions) and a testing set (4 patients, 198 lesions), fit a random forest classification model on the training set, and assessed our ability to classify paramagnetic rim lesions on the test set. Results The number of paramagnetic rim lesions per subject identified via our automated lesion labelling method was highly correlated with the gold standard count per subject, r = 0.86 (95% CI [0.68, 0.94]). The classification algorithm using radiomic features classified lesions with an area under the curve of 0.82 (95% CI [0.74, 0.92]). Conclusion This study develops a fully automated technique, APRL, for the detection of paramagnetic rim lesions using standard T1 and FLAIR sequences and a T2*phase sequence obtained on 3T MR images.
Collapse
Affiliation(s)
- Carolyn Lou
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE) Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Martina Absinta
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kelly Clark
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE) Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jordan D Dworkin
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA
| | - Alessandra M Valcarcel
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE) Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Elizabeth M Sweeney
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE) Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA; Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
79
|
Yan Q, Wang W, Zhao W, Zuo L, Wang D, Chai X, Cui J. Differentiating nontuberculous mycobacterium pulmonary disease from pulmonary tuberculosis through the analysis of the cavity features in CT images using radiomics. BMC Pulm Med 2022; 22:4. [PMID: 34991543 PMCID: PMC8740493 DOI: 10.1186/s12890-021-01766-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/24/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To differentiate nontuberculous mycobacteria (NTM) pulmonary diseases from pulmonary tuberculosis (PTB) by analyzing the CT radiomics features of their cavity. METHODS 73 patients of NTM pulmonary diseases and 69 patients of PTB with the cavity in Shandong Province Chest Hospital and Qilu Hospital of Shandong University were retrospectively analyzed. 20 patients of NTM pulmonary diseases and 20 patients of PTB with the cavity in Jinan Infectious Disease Hospitall were collected for external validation of the model. 379 cavities as the region of interesting (ROI) from chest CT images were performed by 2 experienced radiologists. 80% of cavities were allocated to the training set and 20% to the validation set using a random number generated by a computer. 1409 radiomics features extracted from the Huiying Radcloud platform were used to analyze the two kinds of diseases' CT cavity characteristics. Feature selection was performed using analysis of variance (ANOVA) and least absolute shrinkage and selection operator (LASSO) methods, and six supervised learning classifiers (KNN, SVM, XGBoost, RF, LR, and DT models) were used to analyze the features. RESULTS 29 optimal features were selected by the variance threshold method, K best method, and Lasso algorithm.and the ROC curve values are obtained. In the training set, the AUC values of the six models were all greater than 0.97, 95% CI were 0.95-1.00, the sensitivity was greater than 0.92, and the specificity was greater than 0.92. In the validation set, the AUC values of the six models were all greater than 0.84, 95% CI were 0.76-1.00, the sensitivity was greater than 0.79, and the specificity was greater than 0.79. In the external validation set, The AUC values of the six models were all greater than 0.84, LR classifier has the highest precision, recall and F1-score, which were 0.92, 0.94, 0.93. CONCLUSION The radiomics features extracted from cavity on CT images can provide effective proof in distinguishing the NTM pulmonary disease from PTB, and the radiomics analysis shows a more accurate diagnosis than the radiologists. Among the six classifiers, LR classifier has the best performance in identifying two diseases.
Collapse
Affiliation(s)
- Qinghu Yan
- Department of Radiology, Shandong Public Health Clinical Center, Jinan, 250013, China
| | - Wuzhang Wang
- Department of Radiology, Shandong Public Health Clinical Center, Jinan, 250013, China
| | - Wenlong Zhao
- Department of Radiology, Shandong Public Health Clinical Center, Jinan, 250013, China
| | - Liping Zuo
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Dongdong Wang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xiangfei Chai
- Huiying Medical Technology (Beijing) Co., Ltd, Beijing, 100192, China
| | - Jia Cui
- Department of Radiology, Shandong Public Health Clinical Center, Jinan, 250013, China.
| |
Collapse
|
80
|
Ortiz AFH, Camacho TC, Vásquez AF, del Castillo Herazo V, Neira JGA, Yepes MM, Camacho EC. Clinical and CT patterns to predict EGFR mutation in patients with non-small cell lung cancer: A systematic literature review and meta-analysis. Eur J Radiol Open 2022; 9:100400. [PMID: 35198656 PMCID: PMC8844749 DOI: 10.1016/j.ejro.2022.100400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 12/16/2022] Open
Abstract
Purpose This study aims to determine if the presence of specific clinical and computed tomography (CT) patterns are associated with epidermal growth factor receptor (EGFR) mutation in patients with non-small cell lung cancer. Methods A systematic literature review and meta-analysis was carried out in 6 databases between January 2002 and July 2021. The relationship between clinical and CT patterns to detect EGFR mutation was measured and pooled using odds ratios (OR). These results were used to build several mathematical models to predict EGFR mutation. Results 34 retrospective diagnostic accuracy studies met the inclusion and exclusion criteria. The results showed that ground-glass opacities (GGO) have an OR of 1.86 (95%CI 1.34 −2.57), air bronchogram OR 1.60 (95%CI 1.38 – 1.85), vascular convergence OR 1.39 (95%CI 1.12 – 1.74), pleural retraction OR 1.99 (95%CI 1.72 – 2.31), spiculation OR 1.42 (95%CI 1.19 – 1.70), cavitation OR 0.70 (95%CI 0.57 – 0.86), early disease stage OR 1.58 (95%CI 1.14 – 2.18), non-smoker status OR 2.79 (95%CI 2.34 – 3.31), female gender OR 2.33 (95%CI 1.97 – 2.75). A mathematical model was built, including all clinical and CT patterns assessed, showing an area under the curve (AUC) of 0.81. Conclusions GGO, air bronchogram, vascular convergence, pleural retraction, spiculated margins, early disease stage, female gender, and non-smoking status are significant risk factors for EGFR mutation. At the same time, cavitation is a protective factor for EGFR mutation. The mathematical model built acts as a good predictor for EGFR mutation in patients with lung adenocarcinoma. GGO, air bronchogram, vascular convergence, pleural retraction, and spiculated margins, are risk factors for EGFR mutation. Early disease stage, female gender and non-smoking status are risk factors for EGFR mutation. Cavitation is a protective factor for EGFR mutation.
Collapse
Affiliation(s)
- Andrés Felipe Herrera Ortiz
- Radiology, Fundación Santa Fe de Bogotá, Bogotá, Colombia
- Universidad El Bosque, Bogotá, Colombia
- Corresponding author at: Radiology, Fundación Santa Fe de Bogotá, Bogotá, Colombia.
| | | | - Andrés Francisco Vásquez
- Radiology, Fundación Santa Fe de Bogotá, Bogotá, Colombia
- Universidad El Bosque, Bogotá, Colombia
| | | | | | - María Mónica Yepes
- Radiology, Fundación Santa Fe de Bogotá, Bogotá, Colombia
- Universidad El Bosque, Bogotá, Colombia
| | | |
Collapse
|
81
|
Chen W, Hua Y, Mao D, Wu H, Tan M, Ma W, Huang X, Lu J, Li C, Li M. A Computed Tomography-Derived Radiomics Approach for Predicting Uncommon EGFR Mutation in Patients With NSCLC. Front Oncol 2021; 11:722106. [PMID: 34976788 PMCID: PMC8716946 DOI: 10.3389/fonc.2021.722106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
PURPOSE This study aims to develop a CT-based radiomics approach for identifying the uncommon epidermal growth factor receptor (EGFR) mutation in patients with non-small cell lung cancer (NSCLC). METHODS This study involved 223 NSCLC patients (107 with uncommon EGFR mutation-positive and 116 with uncommon EGFR mutation-negative). A total of 1,269 radiomics features were extracted from the non-contrast-enhanced CT images after image segmentation and preprocessing. Support vector machine algorithm was used for feature selection and model construction. Receiver operating characteristic curve analysis was applied to evaluate the performance of the radiomics signature, the clinicopathological model, and the integrated model. A nomogram was developed and evaluated by using the calibration curve and decision curve analysis. RESULTS The radiomics signature demonstrated a good performance for predicting the uncommon EGFR mutation in the training cohort (area under the curve, AUC = 0.802; 95% confidence interval, CI: 0.736-0.858) and was verified in the validation cohort (AUC = 0.791, 95% CI: 0.642-0.899). The integrated model combined radiomics signature with clinicopathological independent predictors exhibited an incremental performance compared with the radiomics signature or the clinicopathological model. A nomogram based on the integrated model was developed and showed good calibration (Hosmer-Lemeshow test, P = 0.92 in the training cohort and 0.608 in the validation cohort) and discrimination capacity (AUC of 0.816 in the training cohort and 0.795 in the validation cohort). CONCLUSION Radiomics signature combined with the clinicopathological features can predict uncommon EGFR mutation in NSCLC patients.
Collapse
Affiliation(s)
| | - Yanqing Hua
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | - Ming Li
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
82
|
Yoon JH, Sun SH, Xiao M, Yang H, Lu L, Li Y, Schwartz LH, Zhao B. Convolutional Neural Network Addresses the Confounding Impact of CT Reconstruction Kernels on Radiomics Studies. Tomography 2021; 7:877-892. [PMID: 34941646 PMCID: PMC8707549 DOI: 10.3390/tomography7040074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/31/2021] [Accepted: 11/29/2021] [Indexed: 11/20/2022] Open
Abstract
Achieving high feature reproducibility while preserving biological information is one of the main challenges for the generalizability of current radiomics studies. Non-clinical imaging variables, such as reconstruction kernels, have shown to significantly impact radiomics features. In this study, we retrain an open-source convolutional neural network (CNN) to harmonize computerized tomography (CT) images with various reconstruction kernels to improve feature reproducibility and radiomic model performance using epidermal growth factor receptor (EGFR) mutation prediction in lung cancer as a paradigm. In the training phase, the CNN was retrained and tested on 32 lung cancer patients’ CT images between two different groups of reconstruction kernels (smooth and sharp). In the validation phase, the retrained CNN was validated on an external cohort of 223 lung cancer patients’ CT images acquired using different CT scanners and kernels. The results showed that the retrained CNN could be successfully applied to external datasets with different CT scanner parameters, and harmonization of reconstruction kernels from sharp to smooth could significantly improve the performance of radiomics model in predicting EGFR mutation status in lung cancer. In conclusion, the CNN based method showed great potential in improving feature reproducibility and generalizability by harmonizing medical images with heterogeneous reconstruction kernels.
Collapse
Affiliation(s)
- Jin H. Yoon
- Department of Radiology, New York Presbyterian Hospital, Columbia University Irving Medical Center, New York, NY 10039, USA; (J.H.Y.); (S.H.S.); (H.Y.); (L.H.S.); (B.Z.)
| | - Shawn H. Sun
- Department of Radiology, New York Presbyterian Hospital, Columbia University Irving Medical Center, New York, NY 10039, USA; (J.H.Y.); (S.H.S.); (H.Y.); (L.H.S.); (B.Z.)
| | - Manjun Xiao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China;
| | - Hao Yang
- Department of Radiology, New York Presbyterian Hospital, Columbia University Irving Medical Center, New York, NY 10039, USA; (J.H.Y.); (S.H.S.); (H.Y.); (L.H.S.); (B.Z.)
| | - Lin Lu
- Department of Radiology, New York Presbyterian Hospital, Columbia University Irving Medical Center, New York, NY 10039, USA; (J.H.Y.); (S.H.S.); (H.Y.); (L.H.S.); (B.Z.)
- Correspondence: (L.L.); (Y.L.); Tel.: +1-212-342-3018 (L.L.)
| | - Yajun Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China;
- Correspondence: (L.L.); (Y.L.); Tel.: +1-212-342-3018 (L.L.)
| | - Lawrence H. Schwartz
- Department of Radiology, New York Presbyterian Hospital, Columbia University Irving Medical Center, New York, NY 10039, USA; (J.H.Y.); (S.H.S.); (H.Y.); (L.H.S.); (B.Z.)
| | - Binsheng Zhao
- Department of Radiology, New York Presbyterian Hospital, Columbia University Irving Medical Center, New York, NY 10039, USA; (J.H.Y.); (S.H.S.); (H.Y.); (L.H.S.); (B.Z.)
| |
Collapse
|
83
|
Huo JW, Huang XT, Li X, Gong JW, Luo TY, Li Q. Pneumonic-type lung adenocarcinoma with different ranges exhibiting different clinical, imaging, and pathological characteristics. Insights Imaging 2021; 12:169. [PMID: 34787725 PMCID: PMC8599601 DOI: 10.1186/s13244-021-01114-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/25/2021] [Indexed: 02/08/2023] Open
Abstract
Background Pneumonic-type lung adenocarcinoma (PLADC) with different ranges might exhibit different imaging and clinicopathological features. This study divided PLADC into localized PLADC (L-PLADC) and diffuse PLADC (D-PLADC) based on imaging and aimed to clarify the differences in clinical, imaging, and pathologic characteristics between the two new subtypes. Results The data of 131 patients with L-PLADC and 117 patients with D-PLADC who were pathologically confirmed and underwent chest computed tomography (CT) at our institute from December 2014 to December 2020 were retrospectively collected. Patients with L-PLADC were predominantly female, non-smokers, and without respiratory symptoms and elevated white blood cell count and C-reactive protein level, whereas those with D-PLADC were predominantly male, smokers, and had respiratory symptoms and elevated white blood cell count and C-reactive protein level (all p < 0.05). Pleural retraction was more common in L-PLADC, whereas interlobular fissure bulging, hypodense sign, air space, CT angiogram sign, coexisting nodules, pleural effusion, and lymphadenopathy were more frequent in D-PLADC (all p < 0.001). Among the 129 patients with surgically resected PLADC, the most common histological subtype of L-PLADC was acinar-predominant growth pattern (76.7%, 79/103), whereas that of D-PLADC was invasive mucinous adenocarcinoma (80.8%, 21/26). Among the 136 patients with EGFR mutation status, L-PLADC had a significantly higher EGFR mutation rate than D-PLADC (p < 0.001). Conclusions L-PLADC and D-PLADC have different clinical, imaging, and pathological characteristics. This new imaging-based classification may help improve our understanding of PLADC and develop personalized treatment plans, with concomitant implications for patient outcomes.
Collapse
Affiliation(s)
- Ji-Wen Huo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yu zhong District, Chongqing, 400016, China
| | - Xing-Tao Huang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yu zhong District, Chongqing, 400016, China
| | - Xian Li
- Department of Pathology, Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jun-Wei Gong
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yu zhong District, Chongqing, 400016, China
| | - Tian-You Luo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yu zhong District, Chongqing, 400016, China
| | - Qi Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yu zhong District, Chongqing, 400016, China.
| |
Collapse
|
84
|
Yao X, Mao L, Yi K, Han Y, Li W, Xiao Y, Ji J, Wang Q, Ren K. Radiomic Signature as a Diagnostic Factor for Classification of Histologic Subtypes of Lung Cancer. JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS 2021. [DOI: 10.1166/jmihi.2021.3564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
<sec> <title>Objectives:</title> To discuss the application of radiomics using Computerized Tomography (CT) analysis, for improving its diagnostic efficacy in lung, specifically in distinguishing Squamous Cell Carcinoma (SCC), lung Adenocarcinoma (ADC),
and Small Cell Lung Cancer (SCLC). </sec> <sec> <title>Methods:</title> The pathology of 189 identified cases of lung cancer was analyzed, retrospectively (60 patients with SCC, 69 patients with lung ADC and 60 patients with SCLC). A neural network was used
to determine whether the pulmonary or mediastinal window was selected to extract effective radiomic features. The key features of radiomic signature were retrieved by a Least Absolute Shrinkage and Selection Operator (LASSO) multiple logistic regression model. Next, receiver operating characteristic
curve and Area Under the Curve (AUC) analysis were used to evaluate the performance of the radiomic signature in both, training(129 patients) and validation cohorts (60 patients). </sec> <sec> <title>Results:</title> About 295 features were extracted from
a manually outlined tumor region. Features extracted from mediastinal window CT scans had a better prognostic ability than pulmonary window scans. The average accuracy for mediastinal window scans was 0.933. Our analysis revealed that the radiomic features extracted from mediastinal window
scans had the potential to build a prediction model for distinguishing between SCC, lung ADC, and SCLC. The performance of the radiomic signature to diagnose SCC and SCLC in validation cohorts proved effective, with AUC values of 0.869 and 0.859, respectively. </sec> <sec> <title>Conclusions:</title>
A unique radiomic signature was constructed as a diagnostic factor for different histologic subtypes of lung cancer. Patients with lung cancer may benefit from this proposed radiomic signature. </sec>
Collapse
Affiliation(s)
- Xiang Yao
- Department of Radiology, Xiang’an Hospital of XiaMen University, XiaMen 361000, Fujian, China
| | - Ling Mao
- The School of Economics, XiaMen University, XiaMen, Fujian, 361000, China
| | - Ke Yi
- Department of Respiratory and Critical Care Medicine, Sichuan Science City Hospital, Mianyang, Sichuan, 621000, China
| | - Yuxiao Han
- Yang Zhou University, Yangzhou, Jiangsu, 225000, China
| | - Wentao Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Yingqi Xiao
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, China
| | - Jun Ji
- Department of Pathology, Sunning People’s Hospital, Xuzhou, Jiangsu, 221000, China
| | - Qingqing Wang
- Department of Nephrology, Xuzhou Children’s Hospital, Xuzhou, Jiangsu, 221000, China
| | - Ke Ren
- Department of Radiology, Xiang’an Hospital of XiaMen University, XiaMen 361000, Fujian, China
| |
Collapse
|
85
|
Fan Y, Dong Y, Yang H, Chen H, Yu Y, Wang X, Wang X, Yu T, Luo Y, Jiang X. Subregional radiomics analysis for the detection of the EGFR mutation on thoracic spinal metastases from lung cancer. Phys Med Biol 2021; 66. [PMID: 34633298 DOI: 10.1088/1361-6560/ac2ea7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/11/2021] [Indexed: 01/20/2023]
Abstract
The present study intended to use radiomic analysis of spinal metastasis subregions to detect epidermal growth factor receptor (EGFR) mutation. In total, 94 patients with thoracic spinal metastasis originated from primary lung adenocarcinoma (2017-2020) were studied. All patients underwent T1-weighted (T1W) and T2 fat-suppressed (T2FS) MRI scans. The spinal metastases (tumor region) were subdivided into phenotypically consistent subregions based on patient- and population-level clustering: Three subregions, S1, S2 and S3, and the total tumor region. Radiomics features were extracted from each subregion and from the whole tumor region as well. Least shrinkage and selection operator (LASSO) regression were used for feature selection and radiomics signature definition. Detection performance of S3 was better than all other regions using T1W (AUCs, S1 versus S2 versus S3 versus whole tumor, 0.720 versus 0.764 versus 0.786 versus 0.758) and T2FS (AUCs, S1 versus S2 versus S3 versus whole tumor, 0.791 versus 0.708 versus 0.838 versus 0.797) MRI. The multi-regional radiomics signature derived from the joint of inner subregion S3 from T1W and T2FS MRI achieved the best detection capabilities with AUCs of 0.879 (ACC = 0.774, SEN = 0.838, SPE = 0.840) and 0.777 (ACC = 0.688, SEN = 0.947, SPE = 0.615) in the training and test sets, respectively. Our study revealed that MRI-based radiomic analysis of spinal metastasis subregions has the potential to detect the EGFR mutation in patients with primary lung adenocarcinoma.
Collapse
Affiliation(s)
- Ying Fan
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, 110122, People's Republic of China
| | - Yue Dong
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, People's Republic of China
| | - Huazhe Yang
- Department of Biophysics, School of Intelligent Medicine, China Medical University, Shenyang, 110122, People's Republic of China
| | - Huanhuan Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Yalian Yu
- Department of Otorhinolaryngology, the First Affiliated Hospital of China Medical University, Shenyang, 110122, People's Republic of China
| | - Xiaoyu Wang
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, People's Republic of China
| | - Xinling Wang
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, People's Republic of China
| | - Tao Yu
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, People's Republic of China
| | - Yahong Luo
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, People's Republic of China
| | - Xiran Jiang
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, 110122, People's Republic of China
| |
Collapse
|
86
|
Li X, Hou R, Yu W, Zhu X, Li H, Yang Y, Qian D, Fu X. Detailed Analysis and Radiomic Prediction of First Progression Sites of First-Line Targeted Therapy for EGFR-Mutant Lung Adenocarcinoma Patients With Systemic Metastasis. Front Oncol 2021; 11:757892. [PMID: 34676174 PMCID: PMC8524083 DOI: 10.3389/fonc.2021.757892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
Background We aimed to analyze the first progression sites of first-line tyrosine kinase inhibitor (TKI) treatment for EGFR-mutant lung adenocarcinoma patients with systemic metastasis to recognize the potential candidates who might benefit from radiotherapy and establish a radiomic-based model to predict the first progression sites. Materials and Methods We retrospectively collected the clinical information and pre-treatment chest CT images of patients in Shanghai Chest Hospital from 2013 to 2017. All patients were diagnosed with stage IV EGFR-mutant lung adenocarcinoma and received TKI as first-line treatment. The first progression sites and survival were analyzed. The pre-treatment chest non-contrast CT images were utilized to establish a radiomic-based model to predict the first progression sites. Results We totally collected 233 patients with systemic metastasis, among whom, there were 84 (36.1%) and 149 (63.9%) patients developing first progression in original lesions (OP) and new lesions (NP), respectively. The PFS and OS of patients with OP were longer than those with NP (PFS 11 months vs. 8 months, p = 0.03, OS 50 months vs. 35 months, p = 0.046). For 67.9% of the patients with OF, disease progressed within five sites (oligoprogression). The radiomic-based model could predict the progression sites with an AUC value of 0.736, a specificity of 0.60, and a sensitivity of 0.750 in the independent validation set. Conclusion Among patients with systemic metastasis, there were 36.1% of patients developing OP at first progression who had a better prognosis than those developing NP. Patients with OP may be potential candidates who might benefit from radiotherapy. Radiomics is a useful method to distinguish patients developing OP and could provide some indications for radiotherapy.
Collapse
Affiliation(s)
- Xiaoyang Li
- Department of Radiation Oncology, The First Affiliated Hospital of The University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Runping Hou
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wen Yu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xueru Zhu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hongwei Li
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical College and Tumor Hospital Affiliated to Bengbu Medical College, Bengbu, China
| | - Yidong Yang
- Department of Engineering and Applied Physics of University of Science and Technology of China, Hefei, China
| | - Dong Qian
- Department of Radiation Oncology, The First Affiliated Hospital of The University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaolong Fu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
87
|
Weng Q, Hui J, Wang H, Lan C, Huang J, Zhao C, Zheng L, Fang S, Chen M, Lu C, Bao Y, Pang P, Xu M, Mao W, Wang Z, Tu J, Huang Y, Ji J. Radiomic Feature-Based Nomogram: A Novel Technique to Predict EGFR-Activating Mutations for EGFR Tyrosin Kinase Inhibitor Therapy. Front Oncol 2021; 11:590937. [PMID: 34422624 PMCID: PMC8377542 DOI: 10.3389/fonc.2021.590937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 07/15/2021] [Indexed: 12/25/2022] Open
Abstract
Objectives To develop and validate a radiomic feature-based nomogram for preoperative discriminating the epidermal growth factor receptor (EGFR) activating mutation from wild-type EGFR in non-small cell lung cancer (NSCLC) patients. Material A group of 301 NSCLC patients were retrospectively reviewed. The EGFR mutation status was determined by ARMS PCR analysis. All patients underwent nonenhanced CT before surgery. Radiomic features were extracted (GE healthcare). The maximum relevance minimum redundancy (mRMR) and LASSO, were used to select features. We incorporated the independent clinical features into the radiomic feature model and formed a joint model (i.e., the radiomic feature-based nomogram). The performance of the joint model was compared with that of the other two models. Results In total, 396 radiomic features were extracted. A radiomic signature model comprising 9 selected features was established for discriminating patients with EGFR-activating mutations from wild-type EGFR. The radiomic score (Radscore) in the two groups was significantly different between patients with wild-type EGFR and EGFR-activating mutations (training cohort: P<0.0001; validation cohort: P=0.0061). Five clinical features were retained and contributed as the clinical feature model. Compared to the radiomic feature model alone, the nomogram incorporating the clinical features and Radscore exhibited improved sensitivity and discrimination for predicting EGFR-activating mutations (sensitivity: training cohort: 0.84, validation cohort: 0.76; AUC: training cohort: 0.81, validation cohort: 0.75). Decision curve analysis demonstrated that the nomogram was clinically useful and surpassed traditional clinical and radiomic features. Conclusions The joint model showed favorable performance in the individualized, noninvasive prediction of EGFR-activating mutations in NSCLC patients.
Collapse
Affiliation(s)
- Qiaoyou Weng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, China
| | - Junguo Hui
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, China
| | - Hailin Wang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, China
| | - Chuanqiang Lan
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, China
| | - Jiansheng Huang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, China
| | - Chun Zhao
- Department of Thoracic Surgery, Lishui Hospital of Zhejiang University, Lishui, China
| | - Liyun Zheng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, China
| | - Shiji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, China
| | - Chenying Lu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, China
| | - Yuyan Bao
- Department of Pharmacy, Sanmen People's Hospital of Zhejiang, Sanmen, China
| | - Peipei Pang
- Department of Pharmaceuticals Diagnosis, General Electric (GE) Healthcare, Hangzhou, China
| | - Min Xu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, China
| | - Weibo Mao
- Department of Pathology, Lishui Hospital of Zhejiang University, Lishui, China
| | - Zufei Wang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, China
| | - Jianfei Tu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, China
| | - Yuan Huang
- Department of Pathology, Lishui Hospital of Zhejiang University, Lishui, China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, China
| |
Collapse
|
88
|
Able H, Wolf-Ringwall A, Rendahl A, Ober CP, Seelig DM, Wilke CT, Lawrence J. Computed tomography radiomic features hold prognostic utility for canine lung tumors: An analytical study. PLoS One 2021; 16:e0256139. [PMID: 34403435 PMCID: PMC8370631 DOI: 10.1371/journal.pone.0256139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/29/2021] [Indexed: 12/02/2022] Open
Abstract
Quantitative analysis of computed tomography (CT) radiomic features is an indirect measure of tumor heterogeneity, which has been associated with prognosis in human lung carcinoma. Canine lung tumors share similar features to human lung tumors and serve as a model in which to investigate the utility of radiomic features in differentiating tumor type and prognostication. The purpose of this study was to correlate first-order radiomic features from canine pulmonary tumors to histopathologic characteristics and outcome. Disease-free survival, overall survival time and tumor-specific survival were calculated as days from the date of CT scan. Sixty-seven tumors from 65 dogs were evaluated. Fifty-six tumors were classified as primary pulmonary adenocarcinomas and 11 were non-adenocarcinomas. All dogs were treated with surgical resection; 14 dogs received adjuvant chemotherapy. Second opinion histopathology in 63 tumors confirmed the histologic diagnosis in all dogs and further characterized 53 adenocarcinomas. The median overall survival time was longer (p = 0.004) for adenocarcinomas (339d) compared to non-adenocarcinomas (55d). There was wide variation in first-order radiomic statistics across tumors. Mean Hounsfield units (HU) ratio (p = 0.042) and median mean HU ratio (p = 0.042) were higher in adenocarcinomas than in non-adenocarcinomas. For dogs with adenocarcinoma, completeness of excision was associated with overall survival (p<0.001) while higher mitotic index (p = 0.007) and histologic score (p = 0.037) were associated with shorter disease-free survival. CT-derived tumor variables prognostic for outcome included volume, maximum axial diameter, and four radiomic features: integral total, integral total mean ratio, total HU, and max mean HU ratio. Tumor volume was also significantly associated with tumor invasion (p = 0.044). Further study of radiomic features in canine lung tumors is warranted as a method to non-invasively interrogate CT images for potential predictive and prognostic utility.
Collapse
Affiliation(s)
- Hannah Able
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
- * E-mail: (HA); (JL)
| | - Amber Wolf-Ringwall
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Aaron Rendahl
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Christopher P. Ober
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Davis M. Seelig
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Chris T. Wilke
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Radiation Oncology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jessica Lawrence
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail: (HA); (JL)
| |
Collapse
|
89
|
Bracci S, Dolciami M, Trobiani C, Izzo A, Pernazza A, D'Amati G, Manganaro L, Ricci P. Quantitative CT texture analysis in predicting PD-L1 expression in locally advanced or metastatic NSCLC patients. Radiol Med 2021; 126:1425-1433. [PMID: 34373989 PMCID: PMC8558266 DOI: 10.1007/s11547-021-01399-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 07/06/2021] [Indexed: 12/18/2022]
Abstract
Purpose The assessment of Programmed death-ligand 1 (PD-L1) expression has become a game changer in the treatment of patients with advanced non-small cell lung cancer (NSCLC). We aimed to investigate the ability of Radiomics applied to computed tomography (CT) in predicting PD-L1 expression in patients with advanced NSCLC. Methods By applying texture analysis, we retrospectively analyzed 72 patients with advanced NSCLC. The datasets were randomly split into a training cohort (2/3) and a validation cohort (1/3). Forty radiomic features were extracted by manually drawing tumor volumes of interest (VOIs) on baseline contrast-enhanced CT. After selecting features on the training cohort, two predictive models were created using binary logistic regression, one for PD-L1 values ≥ 50% and the other for values between 1 and 49%. The two models were analyzed with ROC curves and tested in the validation cohort. Results The Radiomic Score (Rad-Score) for PD-L1 values ≥ 50%, which consisted of Skewness and Low Gray-Level Zone Emphasis (GLZLM_LGZE), presented a cut-off value of − 0.745 with an area under the curve (AUC) of 0.811 and 0.789 in the training and validation cohort, respectively. The Rad-Score for PD-L1 values between 1 and 49% consisted of Sphericity, Skewness, Conv_Q3 and Gray Level Non-Uniformity (GLZLM_GLNU), showing a cut-off value of 0.111 with AUC of 0.763 and 0.806 in the two population, respectively. Conclusion Rad-Scores obtained from CT texture analysis could be useful for predicting PD-L1 expression and guiding the therapeutic choice in patients with advanced NSCLC.
Collapse
Affiliation(s)
- Stefano Bracci
- Department of Radiological, Oncological, and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Miriam Dolciami
- Department of Radiological, Oncological, and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Claudio Trobiani
- Department of Radiological, Oncological, and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Antonella Izzo
- Department of Radiological, Oncological, and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Angelina Pernazza
- Department of Radiological, Oncological, and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Giulia D'Amati
- Department of Radiological, Oncological, and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Lucia Manganaro
- Department of Radiological, Oncological, and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Paolo Ricci
- Department of Radiological, Oncological, and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
90
|
Tunali I, Gillies RJ, Schabath MB. Application of Radiomics and Artificial Intelligence for Lung Cancer Precision Medicine. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a039537. [PMID: 33431509 PMCID: PMC8288444 DOI: 10.1101/cshperspect.a039537] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Medical imaging is the standard-of-care for early detection, diagnosis, treatment planning, monitoring, and image-guided interventions of lung cancer patients. Most medical images are stored digitally in a standardized Digital Imaging and Communications in Medicine format that can be readily accessed and used for qualitative and quantitative analysis. Over the several last decades, medical images have been shown to contain complementary and interchangeable data orthogonal to other sources such as pathology, hematology, genomics, and/or proteomics. As such, "radiomics" has emerged as a field of research that involves the process of converting standard-of-care images into quantitative image-based data that can be merged with other data sources and subsequently analyzed using conventional biostatistics or artificial intelligence (AI) methods. As radiomic features capture biological and pathophysiological information, these quantitative radiomic features have shown to provide rapid and accurate noninvasive biomarkers for lung cancer risk prediction, diagnostics, prognosis, treatment response monitoring, and tumor biology. In this review, radiomics and emerging AI methods in lung cancer research are highlighted and discussed including advantages, challenges, and pitfalls.
Collapse
Affiliation(s)
- Ilke Tunali
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Robert J Gillies
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| |
Collapse
|
91
|
A neural pathomics framework for classifying colorectal cancer histopathology images based on wavelet multi-scale texture analysis. Sci Rep 2021; 11:15546. [PMID: 34330946 PMCID: PMC8324876 DOI: 10.1038/s41598-021-94781-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) constitutes the third most commonly diagnosed cancer in males and the second in females. Precise histopathological classification of CRC tissue pathology is the cornerstone not only for diagnosis but also for patients' management decision making. An automated system able to accurately classify different CRC tissue regions may increase diagnostic precision and alleviate clinical workload. However, tissue classification is a challenging task due to the variability in morphological and textural characteristics present in histopathology images. In this study, an artificial neural network was trained to classify between eight classes of CRC tissue image patches derived from a public dataset with 5000 CRC histopathology image tiles. A total of 532 multi-level pathomics features examined at different scales were extracted by visual descriptors such as local binary patterns, wavelet transforms and Gabor filters. An exhaustive evaluation involving a variety of wavelet families and parameters was performed in order to shed light on the impact of scale on pathomics based CRC tissue differentiation. Our model achieved a performance accuracy of 95.3% with tenfold cross validation demonstrating superior performance compared to 87.4% reported in recent studies. Furthermore, we experimentally showed that the first and the second levels of the wavelet approximations can be used without compromising classification performance.
Collapse
|
92
|
Jiang Z, Dong Y, Yang L, Lv Y, Dong S, Yuan S, Li D, Liu L. CT-Based Hand-crafted Radiomic Signatures Can Predict PD-L1 Expression Levels in Non-small Cell Lung Cancer: a Two-Center Study. J Digit Imaging 2021; 34:1073-1085. [PMID: 34327623 DOI: 10.1007/s10278-021-00484-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/27/2021] [Accepted: 06/21/2021] [Indexed: 12/01/2022] Open
Abstract
Here, we used pre-treatment CT images to develop and evaluate a radiomic signature that can predict the expression of programmed death ligand 1 (PD-L1) in non-small cell lung cancer (NSCLC). We then verified its predictive performance by cross-referencing its results with clinical characteristics. This two-center retrospective analysis included 125 patients with histologically confirmed NSCLC. A total of 1287 hand-crafted radiomic features were observed from manually determined tumor regions. Valuable features were then selected with a ridge regression-based recursive feature elimination approach. Machine learning-based prediction models were then built from this and compared each other. The final radiomic signature was built using logistic regression in the primary cohort, and then tested in a validation cohort. Finally, we compared the efficacy of the radiomic signature to the clinical model and the radiomic-clinical nomogram. Among the 125 patients, 89 were classified as having PD-L1 positive expression. However, there was no significant difference in PD-L1 expression levels determined by clinical characteristics (P = 0.109-0.955). Upon selecting 9 radiomic features, we found that the logistic regression-based prediction model performed the best (AUC = 0.96, P < 0.001). In the external cohort, our radiomic signature showed an AUC of 0.85, which outperformed both the clinical model (AUC = 0.38, P < 0.001) and the radiomics-nomogram model (AUC = 0.61, P < 0.001). Our CT-based hand-crafted radiomic signature model can effectively predict PD-L1 expression levels, providing a noninvasive means of better understanding PD-L1 expression in patients with NSCLC.
Collapse
Affiliation(s)
- Zekun Jiang
- Shandong Key Laboratory of Medical Physics and Image Processing, Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, School of Physics and Electronics, Shandong Normal University, Jinan, 250358, Shandong, China
| | - Yinjun Dong
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.,Liaocheng People's Hospital, Liaocheng, 252002, Shandong, China.,Shandong University, Jinan, 250117, Shandong, China
| | - Linke Yang
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Yunhong Lv
- Department of Mathematics and Information Technology, Xingtai University, Xingtai, 054001, Hebei, China.,Department of Mathematics and Statistics, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Shuai Dong
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Shuanghu Yuan
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
| | - Dengwang Li
- Shandong Key Laboratory of Medical Physics and Image Processing, Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, School of Physics and Electronics, Shandong Normal University, Jinan, 250358, Shandong, China.
| | - Liheng Liu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
93
|
Ren M, Yang H, Lai Q, Shi D, Liu G, Shuang X, Su J, Xie L, Dong Y, Jiang X. MRI-based radiomics analysis for predicting the EGFR mutation based on thoracic spinal metastases in lung adenocarcinoma patients. Med Phys 2021; 48:5142-5151. [PMID: 34318502 DOI: 10.1002/mp.15137] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/08/2021] [Accepted: 07/21/2021] [Indexed: 11/11/2022] Open
Abstract
PURPOSE This study aims to develop and evaluate multi-parametric MRI-based radiomics for preoperative identification of epidermal growth factor receptor (EGFR) mutation, which is important in treatment planning for patients with thoracic spinal metastases from primary lung adenocarcinoma. METHODS A total of 110 patients were enrolled between January 2016 and March 2019 as a primary cohort. A time-independent validation cohort was conducted containing 52 patients consecutively enrolled from July 2019 to April 2021. The patients were pathologically diagnosed with thoracic spinal metastases from primary lung adenocarcinoma; all underwent T1-weighted (T1W), T2-weighted (T2W), and T2-weighted fat-suppressed (T2FS) MRI scans of the thoracic spinal. Handcrafted and deep learning-based features were extracted and selected from each MRI modality, and used to build the radiomics signature. Various machine learning classifiers were developed and compared. A clinical-radiomics nomogram integrating the combined rad signature and the most important clinical factor was constructed with receiver operating characteristic (ROC), calibration, and decision curves analysis (DCA) to evaluate the prediction performance. RESULTS The combined radiomics signature derived from the joint of three modalities can effectively classify EGFR mutation and EGFR wild-type patients, with an area under the ROC curve (AUC) of 0.886 (95% confidence interval [CI]: 0.826-0.947, SEN =0.935, SPE =0.688) in the training group and 0.803 (95% CI: 0.682-0.924, SEN = 0.700, SPE = 0.818) in the time-independent validation group. The nomogram incorporating the combined radiomics signature and smoking status achieved the best prediction performance in the training (AUC = 0.888, 95% CI: 0.849-0.958, SEN = 0.839, SPE = 0.792) and time-independent validation (AUC = 0.821, 95% CI: 0.692-0.929, SEN = 0.667, SPE = 0.909) cohorts. The DCA confirmed potential clinical usefulness of our nomogram. CONCLUSION Our study demonstrated the potential of multi-parametric MRI-based radiomics on preoperatively predicting the EGFR mutation. The proposed nomogram model can be considered as a new biomarker to guide the selection of individual treatment strategies for patients with thoracic spinal metastases from primary lung adenocarcinoma.
Collapse
Affiliation(s)
- Meihong Ren
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, P.R. China
| | - Huazhe Yang
- Department of Biophysics, School of Fundamental Sciences, China Medical University, Shenyang, P.R. China
| | - Qingyuan Lai
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, P.R. China
| | - Dabao Shi
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, P.R. China
| | - Guanyu Liu
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, P.R. China
| | - Xue Shuang
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, P.R. China
| | - Juan Su
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, P.R. China
| | - Liping Xie
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, P.R. China
| | - Yue Dong
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, P.R. China
| | - Xiran Jiang
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, P.R. China
| |
Collapse
|
94
|
Shiri I, Maleki H, Hajianfar G, Abdollahi H, Ashrafinia S, Hatt M, Zaidi H, Oveisi M, Rahmim A. Next-Generation Radiogenomics Sequencing for Prediction of EGFR and KRAS Mutation Status in NSCLC Patients Using Multimodal Imaging and Machine Learning Algorithms. Mol Imaging Biol 2021; 22:1132-1148. [PMID: 32185618 DOI: 10.1007/s11307-020-01487-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Considerable progress has been made in the assessment and management of non-small cell lung cancer (NSCLC) patients based on mutation status in the epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma viral oncogene (KRAS). At the same time, NSCLC management through KRAS and EGFR mutation profiling faces challenges. In the present work, we aimed to evaluate a comprehensive radiomics framework that enabled prediction of EGFR and KRAS mutation status in NSCLC patients based on radiomic features from low-dose computed tomography (CT), contrast-enhanced diagnostic quality CT (CTD), and positron emission tomography (PET) imaging modalities and use of machine learning algorithms. METHODS Our study involved NSCLC patients including 150 PET, low-dose CT, and CTD images. Radiomic features from original and preprocessed (including 64 bin discretizing, Laplacian-of-Gaussian (LOG), and Wavelet) images were extracted. Conventional clinically used standard uptake value (SUV) parameters and metabolic tumor volume (MTV) were also obtained from PET images. Highly correlated features were pre-eliminated, and false discovery rate (FDR) correction was performed with the resulting q-values reported for univariate analysis. Six feature selection methods and 12 classifiers were then used for multivariate prediction of gene mutation status (provided by polymerase chain reaction (PCR)) in patients. We performed 10-fold cross-validation for model tuning to improve robustness, and our developed models were assessed on an independent validation set with 68 patients (common in all three imaging modalities). The average area under the receiver operator characteristic curve (AUC) was utilized for performance evaluation. RESULTS The best predictive power for conventional PET parameters was achieved by SUVpeak (AUC 0.69, p value = 0.0002) and MTV (AUC 0.55, p value = 0.0011) for EGFR and KRAS, respectively. Univariate analysis of extracted radiomics features improved AUC performance to 0.75 (q-value 0.003, Short-Run Emphasis feature of GLRLM from LOG preprocessed image of PET with sigma value 1.5) and 0.71 (q-value 0.00005, Large Dependence Low Gray-Level Emphasis feature of GLDM in LOG preprocessed image of CTD with sigma value 5) for EGFR and KRAS, respectively. Furthermore, multivariate machine learning-based AUC performances were significantly improved to 0.82 for EGFR (LOG preprocessed image of PET with sigma 3 with variance threshold (VT) feature selector and stochastic gradient descent (SGD) classifier (q-value = 4.86E-05) and 0.83 for KRAS (LOG preprocessed image of CT with sigma 3.5 with select model (SM) feature selector and SGD classifier (q-value = 2.81E-09). CONCLUSION Our work demonstrated that non-invasive and reliable radiomics analysis can be successfully used to predict EGFR and KRAS mutation status in NSCLC patients. We demonstrated that radiomic features extracted from different image-feature sets could be used for EGFR and KRAS mutation status prediction in NSCLC patients and showed improved predictive power relative to conventional image-derived metrics.
Collapse
Affiliation(s)
- Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva 4, Switzerland
| | - Hasan Maleki
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran.,Department of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran
| | - Ghasem Hajianfar
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva 4, Switzerland
| | - Hamid Abdollahi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva 4, Switzerland.,Department of Radiologic Sciences and Medical Physics, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Ashrafinia
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA.,Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Mathieu Hatt
- LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva 4, Switzerland.,Geneva University Neurocenter, Geneva University, Geneva, Switzerland.,Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark
| | - Mehrdad Oveisi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran.,Department of Computer Science, University of British Columbia, Vancouver, BC, Canada
| | - Arman Rahmim
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA. .,Departments of Radiology and Physics, University of British Columbia, Vancouver, BC, Canada. .,Department of Integrative Oncology, BC Cancer Research Centre, 675 West 10th Ave, Vancouver, BC, V5Z 1L3, Canada.
| |
Collapse
|
95
|
Radiomics in Lung Diseases Imaging: State-of-the-Art for Clinicians. J Pers Med 2021; 11:jpm11070602. [PMID: 34202096 PMCID: PMC8306026 DOI: 10.3390/jpm11070602] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
Artificial intelligence (AI) has increasingly been serving the field of radiology over the last 50 years. As modern medicine is evolving towards precision medicine, offering personalized patient care and treatment, the requirement for robust imaging biomarkers has gradually increased. Radiomics, a specific method generating high-throughput extraction of a tremendous amount of quantitative imaging data using data-characterization algorithms, has shown great potential in individuating imaging biomarkers. Radiomic analysis can be implemented through the following two methods: hand-crafted radiomic features extraction or deep learning algorithm. Its application in lung diseases can be used in clinical decision support systems, regarding its ability to develop descriptive and predictive models in many respiratory pathologies. The aim of this article is to review the recent literature on the topic, and briefly summarize the interest of radiomics in chest Computed Tomography (CT) and its pertinence in the field of pulmonary diseases, from a clinician's perspective.
Collapse
|
96
|
La Greca Saint-Esteven A, Vuong D, Tschanz F, van Timmeren JE, Dal Bello R, Waller V, Pruschy M, Guckenberger M, Tanadini-Lang S. Systematic Review on the Association of Radiomics with Tumor Biological Endpoints. Cancers (Basel) 2021; 13:cancers13123015. [PMID: 34208595 PMCID: PMC8234501 DOI: 10.3390/cancers13123015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/23/2022] Open
Abstract
Radiomics supposes an alternative non-invasive tumor characterization tool, which has experienced increased interest with the advent of more powerful computers and more sophisticated machine learning algorithms. Nonetheless, the incorporation of radiomics in cancer clinical-decision support systems still necessitates a thorough analysis of its relationship with tumor biology. Herein, we present a systematic review focusing on the clinical evidence of radiomics as a surrogate method for tumor molecular profile characterization. An extensive literature review was conducted in PubMed, including papers on radiomics and a selected set of clinically relevant and commonly used tumor molecular markers. We summarized our findings based on different cancer entities, additionally evaluating the effect of different modalities for the prediction of biomarkers at each tumor site. Results suggest the existence of an association between the studied biomarkers and radiomics from different modalities and different tumor sites, even though a larger number of multi-center studies are required to further validate the reported outcomes.
Collapse
Affiliation(s)
- Agustina La Greca Saint-Esteven
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
- Correspondence:
| | - Diem Vuong
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
| | - Fabienne Tschanz
- Laboratory of Applied Radiobiology, Department of Radiation Oncology, University of Zurich, 8091 Zurich, Switzerland; (F.T.); (V.W.); (M.P.)
| | - Janita E. van Timmeren
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
| | - Riccardo Dal Bello
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
| | - Verena Waller
- Laboratory of Applied Radiobiology, Department of Radiation Oncology, University of Zurich, 8091 Zurich, Switzerland; (F.T.); (V.W.); (M.P.)
| | - Martin Pruschy
- Laboratory of Applied Radiobiology, Department of Radiation Oncology, University of Zurich, 8091 Zurich, Switzerland; (F.T.); (V.W.); (M.P.)
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
| |
Collapse
|
97
|
Dong Y, Hou L, Yang W, Han J, Wang J, Qiang Y, Zhao J, Hou J, Song K, Ma Y, Kazihise NGF, Cui Y, Yang X. Multi-channel multi-task deep learning for predicting EGFR and KRAS mutations of non-small cell lung cancer on CT images. Quant Imaging Med Surg 2021; 11:2354-2375. [PMID: 34079707 PMCID: PMC8107307 DOI: 10.21037/qims-20-600] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 01/27/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Predicting the mutation statuses of 2 essential pathogenic genes [epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma (KRAS)] in non-small cell lung cancer (NSCLC) based on CT is valuable for targeted therapy because it is a non-invasive and less costly method. Although deep learning technology has realized substantial computer vision achievements, CT imaging being used to predict gene mutations remains challenging due to small dataset limitations. METHODS We propose a multi-channel and multi-task deep learning (MMDL) model for the simultaneous prediction of EGFR and KRAS mutation statuses based on CT images. First, we decomposed each 3D lung nodule into 9 views. Then, we used the pre-trained inception-attention-resnet model for each view to learn the features of the nodules. By combining 9 inception-attention-resnet models to predict the types of gene mutations in lung nodules, the models were adaptively weighted, and the proposed MMDL model could be trained end-to-end. The MMDL model utilized multiple channels to characterize the nodule more comprehensively and integrate patient personal information into our learning process. RESULTS We trained the proposed MMDL model using a dataset of 363 patients collected by our partner hospital and conducted a multi-center validation on 162 patients in The Cancer Imaging Archive (TCIA) public dataset. The accuracies for the prediction of EGFR and KRAS mutations were, respectively, 79.43% and 72.25% in the training dataset and 75.06% and 69.64% in the validation dataset. CONCLUSIONS The experimental results demonstrated that the proposed MMDL model outperformed the latest methods in predicting EGFR and KRAS mutations in NSCLC.
Collapse
Affiliation(s)
- Yunyun Dong
- School of Software, Taiyuan University of Technology, Taiyuan, China
- School of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Lina Hou
- Department of Radiology, Shanxi Province Cancer Hospital, Taiyuan, China
| | - Wenkai Yang
- School of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Jiahao Han
- School of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Jiawen Wang
- School of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Yan Qiang
- School of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Juanjuan Zhao
- School of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Jiaxin Hou
- School of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Kai Song
- School of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Yulan Ma
- School of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | | | - Yanfen Cui
- Department of Radiology, Shanxi Province Cancer Hospital, Taiyuan, China
| | - Xiaotang Yang
- Department of Radiology, Shanxi Province Cancer Hospital, Taiyuan, China
| |
Collapse
|
98
|
Gao J, Chen X, Li X, Miao F, Fang W, Li B, Qian X, Lin X. Differentiating TP53 Mutation Status in Pancreatic Ductal Adenocarcinoma Using Multiparametric MRI-Derived Radiomics. Front Oncol 2021; 11:632130. [PMID: 34079753 PMCID: PMC8165316 DOI: 10.3389/fonc.2021.632130] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 04/27/2021] [Indexed: 12/18/2022] Open
Abstract
Objectives This study assessed the preoperative prediction of TP53 status based on multiparametric magnetic resonance imaging (mpMRI) radiomics extracted from two-dimensional (2D) and 3D images. Methods 57 patients with pancreatic cancer who underwent preoperative MRI were included. The diagnosis and TP53 gene test were based on resections. Of the 57 patients included 37 mutated TP53 genes and the remaining 20 had wild-type TP53 genes. Two radiologists performed manual tumour segmentation on seven different MRI image acquisition sequences per patient, including multi-phase [pre-contrast, late arterial phase (ap), portal venous phase, and delayed phase] dynamic contrast enhanced (DCE) T1-weighted imaging, T2-weighted imaging (T2WI), Diffusion-weighted imaging (DWI), and apparent diffusion coefficient (ADC). PyRadiomics-package was used to generate 558 two-dimensional (2D) and 994 three-dimensional (3D) image features. Models were constructed by support vector machine (SVM) for differentiating TP53 status and DX score method were used for feature selection. The evaluation of the model performance included area under the curve (AUC), accuracy, calibration curves, and decision curve analysis. Results The 3D ADC-ap-DWI-T2WI model with 11 selected features yielded the best performance for differentiating TP53 status, with accuracy = 0.91 and AUC = 0.96. The model showed the good calibration. The decision curve analysis indicated that the radiomics model had clinical utility. Conclusions A non-invasive and quantitative mpMRI-based radiomics model can accurately predict TP53 mutation status in pancreatic cancer patients and contribute to the precision treatment.
Collapse
Affiliation(s)
- Jing Gao
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiahan Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xudong Li
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Nuclear Medicine, Qingdao Municipal Hospital, Qingdao, China
| | - Fei Miao
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weihuan Fang
- Department of Radiology, Ruijin Hospital North, Shanghai, China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohua Qian
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaozhu Lin
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
99
|
Cucchiara F, Petrini I, Romei C, Crucitta S, Lucchesi M, Valleggi S, Scavone C, Capuano A, De Liperi A, Chella A, Danesi R, Del Re M. Combining liquid biopsy and radiomics for personalized treatment of lung cancer patients. State of the art and new perspectives. Pharmacol Res 2021; 169:105643. [PMID: 33940185 DOI: 10.1016/j.phrs.2021.105643] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022]
Abstract
Lung cancer has become a paradigm for precision medicine in oncology, and liquid biopsy (LB) together with radiomics may have a great potential in this scenario. They are both minimally invasive, easy to perform, and can be repeated during patient's follow-up. Also, increasing evidence suggest that LB and radiomics may provide an efficient way to screen and diagnose tumors at an early stage, including the monitoring of any change in the tumor molecular profile. This could allow treatment optimization, improvement of patients' quality of life, and healthcare-related costs reduction. Latest reports on lung cancer patients suggest a combination of these two strategies, along with cutting-edge data analysis, to decode valuable information regarding tumor type, aggressiveness, progression, and response to treatment. The approach seems more compatible with clinical practice than the current standard, and provides new diagnostic companions being able to suggest the best treatment strategy compared to conventional methods. To implement radiomics and liquid biopsy directly into clinical practice, an artificial intelligence (AI)-based system could help to link patients' clinical data together with tumor molecular profiles and imaging characteristics. AI could also solve problems and limitations related to LB and radiomics methodologies. Further work is needed, including new health policies and the access to large amounts of high-quality and well-organized data, allowing a complementary and synergistic combination of LB and imaging, to provide an attractive choice e in the personalized treatment of lung cancer.
Collapse
Affiliation(s)
- Federico Cucchiara
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Iacopo Petrini
- Unit of Pneumology, Department of Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Chiara Romei
- Unit II of Radio-diagnostics, Department of Diagnostic and Imaging, University Hospital of Pisa, Pisa, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Maurizio Lucchesi
- Unit of Pneumology, Department of Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Simona Valleggi
- Unit of Pneumology, Department of Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Cristina Scavone
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Annalisa Capuano
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Annalisa De Liperi
- Unit II of Radio-diagnostics, Department of Diagnostic and Imaging, University Hospital of Pisa, Pisa, Italy
| | - Antonio Chella
- Unit of Pneumology, Department of Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy.
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
100
|
Moreno S, Bonfante M, Zurek E, Cherezov D, Goldgof D, Hall L, Schabath M. A Radiogenomics Ensemble to Predict EGFR and KRAS Mutations in NSCLC. ACTA ACUST UNITED AC 2021; 7:154-168. [PMID: 33946756 PMCID: PMC8162978 DOI: 10.3390/tomography7020014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/21/2022]
Abstract
Lung cancer causes more deaths globally than any other type of cancer. To determine the best treatment, detecting EGFR and KRAS mutations is of interest. However, non-invasive ways to obtain this information are not available. Furthermore, many times there is a lack of big enough relevant public datasets, so the performance of single classifiers is not outstanding. In this paper, an ensemble approach is applied to increase the performance of EGFR and KRAS mutation prediction using a small dataset. A new voting scheme, Selective Class Average Voting (SCAV), is proposed and its performance is assessed both for machine learning models and CNNs. For the EGFR mutation, in the machine learning approach, there was an increase in the sensitivity from 0.66 to 0.75, and an increase in AUC from 0.68 to 0.70. With the deep learning approach, an AUC of 0.846 was obtained, and with SCAV, the accuracy of the model was increased from 0.80 to 0.857. For the KRAS mutation, both in the machine learning models (0.65 to 0.71 AUC) and the deep learning models (0.739 to 0.778 AUC), a significant increase in performance was found. The results obtained in this work show how to effectively learn from small image datasets to predict EGFR and KRAS mutations, and that using ensembles with SCAV increases the performance of machine learning classifiers and CNNs. The results provide confidence that as large datasets become available, tools to augment clinical capabilities can be fielded.
Collapse
Affiliation(s)
- Silvia Moreno
- Systems Engineering, Universidad Simon Bolivar, Barranquilla 080001, Colombia;
- Systems Engineering, Universidad del Norte, Atlántico 080001, Colombia;
- Correspondence: ; Tel.: +57-300-555-5132
| | - Mario Bonfante
- Systems Engineering, Universidad Simon Bolivar, Barranquilla 080001, Colombia;
| | - Eduardo Zurek
- Systems Engineering, Universidad del Norte, Atlántico 080001, Colombia;
| | - Dmitry Cherezov
- Computer Science and Engineering, University of South Florida, Tampa, FL 33620, USA; (D.C.); (D.G.); (L.H.)
| | - Dmitry Goldgof
- Computer Science and Engineering, University of South Florida, Tampa, FL 33620, USA; (D.C.); (D.G.); (L.H.)
| | - Lawrence Hall
- Computer Science and Engineering, University of South Florida, Tampa, FL 33620, USA; (D.C.); (D.G.); (L.H.)
| | - Matthew Schabath
- Cancer Epidemiology, Moffit Cancer Center, Tampa, FL 33617, USA;
| |
Collapse
|