Handy DE, Lubos E, Yang Y, Galbraith JD, Kelly N, Zhang YY, Leopold JA, Loscalzo J. Glutathione peroxidase-1 regulates mitochondrial function to modulate redox-dependent cellular responses.
J Biol Chem 2009;
284:11913-21. [PMID:
19254950 DOI:
10.1074/jbc.m900392200]
[Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Glutathione peroxidase-1 (GPx-1) is a selenocysteine-containing enzyme that plays a major role in the reductive detoxification of peroxides in cells. In permanently transfected cells with approximate 2-fold overexpression of GPx-1, we found that intracellular accumulation of oxidants in response to exogenous hydrogen peroxide was diminished, as was epidermal growth factor receptor (EGFR)-mediated Akt activation in response to hydrogen peroxide or EGF stimulation. Knockdown of GPx-1 augmented EGFR-mediated Akt activation, whereas overexpression of catalase decreased Akt activation, suggesting that EGFR signaling is regulated by redox mechanisms. To determine whether mitochondrial oxidants played a role in these processes, cells were pretreated with a mitochondrial uncoupler prior to EGF stimulation. Inhibition of mitochondrial function attenuated EGF-mediated activation of Akt in control cells but had no additional effect in GPx-1-overexpressing cells, suggesting that GPx-1 overexpression decreased EGFR signaling by decreasing mitochondrial oxidants. Consistent with this finding, GPx-1 overexpression decreased global protein disulfide bond formation, which is dependent on mitochondrially produced oxidants. GPx-1 overexpression, in permanently transfected or adenovirus-treated cells, also caused overall mitochondrial dysfunction with a decrease in mitochondrial potential and a decrease in ATP production. GPx-1 overexpression also decreased EGF- and serum-mediated [(3)H]thymidine incorporation, indicating that alterations in GPx-1 can attenuate cell proliferation. Taken together, these data suggest that GPx-1 can modulate redox-dependent cellular responses by regulating mitochondrial function.
Collapse