51
|
Further Insight into the Mechanism of Human PMN Lysis following Phagocytosis of Staphylococcus aureus. Microbiol Spectr 2021; 9:e0088821. [PMID: 34704790 PMCID: PMC8549732 DOI: 10.1128/spectrum.00888-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Staphylococcus aureus is an important human pathogen that can cause a variety of diseases ranging from mild superficial skin infections to life-threatening conditions like necrotizing pneumonia, endocarditis, and septicemia. Polymorphonuclear leukocytes (PMNs; neutrophils in particular herein) are essential for host defense against S. aureus infections, and the microbe is phagocytosed readily. Most ingested bacteria are killed, but some S. aureus strains—such as the epidemic USA300 strain—have an enhanced ability to cause PMN lysis after phagocytosis. Although progress has been made, the mechanism for lysis after phagocytosis of S. aureus remains incompletely determined. Here, we tested the hypothesis that disruption of phagosome integrity and escape of S. aureus from the PMN phagosome into the cytoplasm precedes PMN lysis. We used USA300 wild-type and isogenic deletion strains to evaluate and/or verify the role of selected S. aureus molecules in this cytolytic process. Compared to the wild-type USA300 strain, Δagr, Δhla, ΔlukGH, and Δpsm strains each caused significantly less lysis of human PMNs 3 h and/or 6 h after phagocytosis, consistent with previous studies. Most notably, confocal microscopy coupled with selective permeabilization assays demonstrated that phagosome membrane integrity is largely maintained prior to PMN lysis after S. aureus phagocytosis. We conclude that PMN lysis does not require escape of S. aureus from the phagosome to the cytoplasm and that these are independent phenomena. The findings are consistent with the ability of S. aureus (via selected molecules) to trigger lysis of human PMNs by an undetermined signaling mechanism. IMPORTANCES. aureus strain USA300 has the ability to cause rapid lysis of human neutrophils after phagocytosis. Although this phenomenon likely contributes to the success of USA300 as a human pathogen, our knowledge of the mechanism remains incomplete. Here, we used a selective permeabilization assay coupled with confocal microscopy to demonstrate that USA300 is contained within human neutrophil phagosomes until the point of host cell lysis. Thus, consistent with a process in macrophages, S. aureus fails to escape into the neutrophil cytoplasm prior to cytolysis.
Collapse
|
52
|
Niemann S, Nguyen MT, Eble JA, Chasan AI, Mrakovcic M, Böttcher RT, Preissner KT, Roßlenbroich S, Peters G, Herrmann M. More Is Not Always Better-the Double-Headed Role of Fibronectin in Staphylococcus aureus Host Cell Invasion. mBio 2021; 12:e0106221. [PMID: 34663090 PMCID: PMC8524341 DOI: 10.1128/mbio.01062-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/17/2021] [Indexed: 12/30/2022] Open
Abstract
While Staphylococcus aureus has classically been considered an extracellular pathogen, these bacteria are also capable of being taken up by host cells, including nonprofessional phagocytes such as endothelial cells, epithelial cells, or osteoblasts. The intracellular S. aureus lifestyle contributes to infection development. The predominant recognition and internalization pathway appears to be the binding of the bacteria via a fibronectin bridge to the α5β1-integrin on the host cell membrane, followed by phagocytosis. Although osteoblasts showed high expression of α5β1-integrin and fibronectin, and bacteria adhered to osteoblasts to a high proportion, here we demonstrate by internalization assays and immunofluorescence microscopy that S. aureus was less engulfed in osteoblasts than in epithelial cells. The addition of exogenous fibronectin during the infection of cells with S. aureus resulted in an increased uptake by epithelial cells but not by osteoblasts. This contrasts with the previous conception of the uptake mechanism, where high expression of integrin and fibronectin would promote the bacterial uptake into host cells. Extracellular fibronectin surrounding osteoblasts, but not epithelial cells, is organized in a fibrillary network. The inhibition of fibril formation, the short interfering RNA-mediated reduction of fibronectin expression, and the disruption of the fibronectin-fibril meshwork all resulted in a significant increase in S. aureus uptake by osteoblasts. Thus, the network of fibronectin fibrils appears to strongly reduce the uptake of S. aureus into a given host cell, indicating that the supramolecular structure of fibronectin determines the capacity of particular host cells to internalize the pathogen. IMPORTANCE Traditionally, Staphylococcus aureus has been considered an extracellular pathogen. However, among other factors, the frequent failure of antimicrobial therapy and the ability of the pathogen to cause recurrent disease have established the concept of eukaryotic invasion of the pathogen, thereby evading the host's immune system. In the current model of host cell invasion, bacteria initially bind to α5β1 integrin on the host cell side via a fibronectin bridge, which eventually leads to phagocytosis of S. aureus by host cells. However, in this study, we demonstrate that not the crude amount but the supramolecular structure of fibronectin molecules deposited on the eukaryotic cell surface plays an essential role in bacterial uptake by host cells. Our findings explain the large differences of S. aureus uptake efficacy in different host cell types as well as in vivo differences between courses of bacterial infections and the localization of bacteria in different clinical settings.
Collapse
Affiliation(s)
- Silke Niemann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Minh-Thu Nguyen
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Johannes A. Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Achmet I. Chasan
- Institute of Immunology, University of Münster, Münster, Germany
| | - Maria Mrakovcic
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
- Institute of Infectiology, University of Münster, Münster, Germany
| | - Ralph T. Böttcher
- Department of Molecular Medicine, Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Klaus T. Preissner
- Kerckhoff-Herzforschungsinstitut, Department of Cardiology, Medical School, Justus-Liebig-University, Giessen, Germany
| | - Steffen Roßlenbroich
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Münster, Münster, Germany
| | - Georg Peters
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Mathias Herrmann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| |
Collapse
|
53
|
Jordan PM, Gerstmeier J, Pace S, Bilancia R, Rao Z, Börner F, Miek L, Gutiérrez-Gutiérrez Ó, Arakandy V, Rossi A, Ialenti A, González-Estévez C, Löffler B, Tuchscherr L, Serhan CN, Werz O. Staphylococcus aureus-Derived α-Hemolysin Evokes Generation of Specialized Pro-resolving Mediators Promoting Inflammation Resolution. Cell Rep 2021; 33:108247. [PMID: 33053344 PMCID: PMC7729929 DOI: 10.1016/j.celrep.2020.108247] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/02/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
Underlying mechanisms of how infectious inflammation is resolved by the host are incompletely understood. One hallmark of inflammation resolution is the activation of specialized pro-resolving mediators (SPMs) that enhance bacterial clearance and promote tissue repair. Here, we reveal α-hemolysin (Hla) from Staphylococcus aureus as a potent elicitor of SPM biosynthesis in human M2-like macrophages and in the mouse peritoneum through selective activation of host 15-lipoxygenase-1 (15-LOX-1). S. aureus-induced SPM formation in M2 is abolished upon Hla depletion or 15-LOX-1 knockdown. Isolated Hla elicits SPM formation in M2 that is reverted by inhibition of the Hla receptor ADAM10. Lipid mediators derived from Hla-treated M2 accelerate planarian tissue regeneration. Hla but not zymosan provokes substantial SPM formation in the mouse peritoneum, devoid of leukocyte infiltration and pro-inflammatory cytokine secretion. Besides harming the host, Hla may also exert beneficial functions by stimulating SPM production to promote the resolution of infectious inflammation. Jordan et al. reveal that α-hemolysin from Staphylococcus aureus stimulates specialized pro-resolving mediator (SPM) formation through activation of 15-lipoxygenase-1 in human macrophages involving ADAM10. The host may exploit α-hemolysin as an SPM inducer to better cope with S. aureus infections and to promote inflammation resolution and tissue regeneration.
Collapse
Affiliation(s)
- Paul M Jordan
- Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Jana Gerstmeier
- Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany.
| | - Simona Pace
- Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Rossella Bilancia
- Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany; Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Zhigang Rao
- Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Friedemann Börner
- Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Laura Miek
- Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany
| | | | - Vandana Arakandy
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Antonietta Rossi
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Armando Ialenti
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | | | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Lorena Tuchscherr
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Oliver Werz
- Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany.
| |
Collapse
|
54
|
Schwarz C, Töre Y, Hoesker V, Ameling S, Grün K, Völker U, Schulze PC, Franz M, Faber C, Schaumburg F, Niemann S, Hoerr V. Host-pathogen interactions of clinical S. aureus isolates to induce infective endocarditis. Virulence 2021; 12:2073-2087. [PMID: 34490828 PMCID: PMC8425731 DOI: 10.1080/21505594.2021.1960107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To evaluate potential pathomechanisms in the induction of infective endocarditis (IE), 34 Staphylococcus aureus (S. aureus) isolates, collected from patients with S. aureus endocarditis and from healthy individuals were investigated both in vitro and in vivo. S. aureus isolates were tested in vitro for their cytotoxicity, invasion and the association with platelets. Virulence factor expression profiles and cellular response were additionally investigated and tested for correlation with the ability of S. aureus to induce vegetations on the aortic valves in vivo. In an animal model of IE valvular conspicuity was assessed by in vivo magnetic resonance imaging at 9.4 T, histology and enrichment gene expression analysis. All S. aureus isolates tested in vivo caused a reliable infection and inflammation of the aortic valves, but could not be differentiated and categorized according to the measured in vitro virulence profiles and cytotoxicity. Results from in vitro assays did not correlate with the severity of IE. However, the isolates differed substantially in the activation and inhibition of pathways connected to the extracellular matrix and inflammatory response. Thus, comprehensive approaches of host-pathogen interactions and corresponding immune pathways are needed for the evaluation of the pathogenic capacity of bacteria. An improved understanding of the interaction between virulence factors and immune response in S. aureus infective endocarditis would offer novel possibilities for the development of therapeutic strategies and specific diagnostic imaging markers.
Collapse
Affiliation(s)
- Christian Schwarz
- Translational Research Imaging Center, Clinic for Radiology, University Hospital Muenster, Muenster, Germany
| | - Yasemin Töre
- Translational Research Imaging Center, Clinic for Radiology, University Hospital Muenster, Muenster, Germany
| | - Vanessa Hoesker
- Translational Research Imaging Center, Clinic for Radiology, University Hospital Muenster, Muenster, Germany
| | - Sabine Ameling
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Katja Grün
- Department of Internal Medicine I, Jena University Hospital, Jena, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | | | - Marcus Franz
- Department of Internal Medicine I, Jena University Hospital, Jena, Germany
| | - Cornelius Faber
- Translational Research Imaging Center, Clinic for Radiology, University Hospital Muenster, Muenster, Germany
| | - Frieder Schaumburg
- Institute of Medical Microbiology, University Hospital Muenster, Muenster, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital Muenster, Muenster, Germany
| | - Verena Hoerr
- Translational Research Imaging Center, Clinic for Radiology, University Hospital Muenster, Muenster, Germany.,Institute of Medical Microbiology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany.,Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
55
|
Intracellular Staphylococcus aureus employs the cysteine protease staphopain A to induce host cell death in epithelial cells. PLoS Pathog 2021; 17:e1009874. [PMID: 34473800 PMCID: PMC8443034 DOI: 10.1371/journal.ppat.1009874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/15/2021] [Accepted: 08/07/2021] [Indexed: 11/19/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen, which can invade and survive in non-professional and professional phagocytes. Uptake by host cells is thought to contribute to pathogenicity and persistence of the bacterium. Upon internalization by epithelial cells, cytotoxic S. aureus strains can escape from the phagosome, replicate in the cytosol and induce host cell death. Here, we identified a staphylococcal cysteine protease to induce cell death after translocation of intracellular S. aureus into the host cell cytoplasm. We demonstrated that loss of staphopain A function leads to delayed onset of host cell death and prolonged intracellular replication of S. aureus in epithelial cells. Overexpression of staphopain A in a non-cytotoxic strain facilitated intracellular killing of the host cell even in the absence of detectable intracellular replication. Moreover, staphopain A contributed to efficient colonization of the lung in a mouse pneumonia model. In phagocytic cells, where intracellular S. aureus is exclusively localized in the phagosome, staphopain A did not contribute to cytotoxicity. Our study suggests that staphopain A is utilized by S. aureus to exit the epithelial host cell and thus contributes to tissue destruction and dissemination of infection. Staphylococcus aureus is an antibiotic-resistant pathogen that emerges in hospital and community settings and can cause a variety of diseases ranging from skin abscesses to lung inflammation and blood poisoning. The bacterium can asymptomatically colonize the upper respiratory tract and skin of humans and take advantage of opportune conditions, like immunodeficiency or breached barriers, to cause infection. Although S. aureus was not regarded as intracellular bacterium, it can be internalized by human cells and subsequently exit the host cells by induction of cell death, which is considered to cause tissue destruction and spread of infection. The bacterial virulence factors and underlying molecular mechanisms involved in the intracellular lifestyle of S. aureus remain largely unknown. We identified a bacterial cysteine protease to contribute to host cell death of epithelial cells mediated by intracellular S. aureus. Staphopain A induced killing of the host cell after translocation of the pathogen into the cell cytosol, while bacterial proliferation was not required. Further, the protease enhanced survival of the pathogen during lung infection. These findings reveal a novel, intracellular role for the bacterial protease staphopain A.
Collapse
|
56
|
Shittu AO, Taiwo FF, Froböse NJ, Schwartbeck B, Niemann S, Mellmann A, Schaumburg F. Genomic analysis of Staphylococcus aureus from the West African Dwarf (WAD) goat in Nigeria. Antimicrob Resist Infect Control 2021; 10:122. [PMID: 34412702 PMCID: PMC8375196 DOI: 10.1186/s13756-021-00987-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/26/2021] [Indexed: 12/03/2022] Open
Abstract
Background Staphylococcus aureus can colonize various host species, and human-animal interaction is a significant factor for cross-species transmission. However, data on S. aureus colonization in animals, particularly on ruminants in close contact with humans, is limited. The West African Dwarf (WAD) goat is among the earliest domesticated ruminant associated with rural dwellers and small-holder farmers in sub-Saharan Africa. This study aimed to investigate the population structure, antibiotic resistance, and virulence gene determinants of S. aureus from the WAD goat in Nigeria. Methods Nasal samples were obtained from the WAD goat in five markets in Osun State, South-West Nigeria. S. aureus was characterized by antibiotic susceptibility testing, detection of virulence determinants, spa typing, and multilocus sequence typing (MLST). Representative isolates were selected for whole-genome sequencing, biofilm, and cytotoxicity assay. Results Of the 726 nasal samples obtained from the WAD goat, 90 S. aureus (12.4%) were recovered. Overall, 86 isolates were methicillin-susceptible, and four were mecA-positive (i.e., methicillin-resistant S. aureus [MRSA]). A diverse S. aureus clonal population was observed (20 sequence types [STs] and 37 spa types), while 35% (13/37) and 40% (8/20) were new spa types and STs, respectively. Eleven MLST clonal complexes (CC) were identified (CC1, CC5, CC8, CC15, CC30, CC45, CC97, CC121, CC133, CC152, CC522). The MRSA isolates were designated as t127-ST852-CC1-SCCmec type VII, t4690-ST152-CC152-SCCmec type Vc, and t8821-ST152-CC152-SCCmec type Vc. Phylogenetic analysis revealed that 60% (54/90) of all isolates were associated with ruminant lineages (i.e., CC133, CC522). Panton-Valentine Leukocidin (PVL)-positive S. aureus was identified in CC1, CC30, CC121, and CC152. For the CC522 isolates, we illustrate their pathogenic potential by the detection of the toxic shock syndrome gene and hemolysins, as well as their strong cytotoxicity and ability to form biofilms. Conclusions This is the first detailed investigation on the genomic content of S. aureus from the WAD goat in Nigeria. The S. aureus population of the WAD goat consists mainly of ruminant-associated lineages (e.g., CC133, CC522), interspersed with human-associated clones, including PVL-positive MRSA CC1 and CC152. Supplementary Information The online version contains supplementary material available at 10.1186/s13756-021-00987-8.
Collapse
Affiliation(s)
- Adebayo Osagie Shittu
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria. .,Institute of Medical Microbiology, University Hospital Münster, Domagkstraße 10, 48149, Münster, Germany.
| | | | - Neele Judith Froböse
- Institute of Medical Microbiology, University Hospital Münster, Domagkstraße 10, 48149, Münster, Germany
| | - Bianca Schwartbeck
- Institute of Medical Microbiology, University Hospital Münster, Domagkstraße 10, 48149, Münster, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital Münster, Domagkstraße 10, 48149, Münster, Germany
| | - Alexander Mellmann
- Institute of Medical Microbiology, University Hospital Münster, Domagkstraße 10, 48149, Münster, Germany.,Institute for Hygiene, University Hospital Münster, Robert-Koch-Straße 41, 48149, Münster, Germany
| | - Frieder Schaumburg
- Institute of Medical Microbiology, University Hospital Münster, Domagkstraße 10, 48149, Münster, Germany
| |
Collapse
|
57
|
Bogut A, Magryś A. The road to success of coagulase-negative staphylococci: clinical significance of small colony variants and their pathogenic role in persistent infections. Eur J Clin Microbiol Infect Dis 2021; 40:2249-2270. [PMID: 34296355 PMCID: PMC8520507 DOI: 10.1007/s10096-021-04315-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/09/2021] [Indexed: 01/14/2023]
Abstract
Bacterial small colony variants represent an important aspect of bacterial variability. They are naturally occurring microbial subpopulations with distinctive phenotypic and pathogenic traits, reported for many clinically important bacteria. In clinical terms, SCVs tend to be associated with persistence in host cells and tissues and are less susceptible to antibiotics than their wild-type (WT) counterparts. The increased tendency of SCVs to reside intracellularly where they are protected against the host immune responses and antimicrobial drugs is one of the crucial aspects linking SCVs to recurrent or chronic infections, which are difficult to treat. An important aspect of the SCV ability to persist in the host is the quiescent metabolic state, reduced immune response and expression a changed pattern of virulence factors, including a reduced expression of exotoxins and an increased expression of adhesins facilitating host cell uptake. The purpose of this review is to describe in greater detail the currently available data regarding CoNS SCV and, in particular, their clinical significance and possible mechanisms by which SCVs contribute to the pathogenesis of the chronic infections. It should be emphasized that in spite of an increasing clinical significance of this group of staphylococci, the number of studies unraveling the mechanisms of CoNS SCVs formation and their impact on the course of the infectious process is still scarce, lagging behind the studies on S. aureus SCVs.
Collapse
Affiliation(s)
- Agnieszka Bogut
- Chair and Department of Medical Microbiology, Medical University of Lublin, ul. Chodźki 1, 20-093, Lublin, Poland
| | - Agnieszka Magryś
- Chair and Department of Medical Microbiology, Medical University of Lublin, ul. Chodźki 1, 20-093, Lublin, Poland.
| |
Collapse
|
58
|
Eltwisy HO, Abdel-Fattah M, Elsisi AM, Omar MM, Abdelmoteleb AA, El-Mokhtar MA. Pathogenesis of Staphylococcus haemolyticus on primary human skin fibroblast cells. Virulence 2021; 11:1142-1157. [PMID: 32799619 PMCID: PMC7549902 DOI: 10.1080/21505594.2020.1809962] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
STAPHYLOCOCCUS HAEMOLYTICUS (S. haemolyticus) is one of the Coagulase-negative staphylococci (CoNS) that inhabits the skin as a commensal. It is increasingly implicated in opportunistic infections, including diabetic foot ulcer (DFU) infections. In contrast to the abundance of information available for S. aureus and S. epidermidis, little is known about the pathogenicity of S. haemolyticus, despite the increased prevalence of this pathogen in hospitalized patients. We described, for the first time, the pathogenesis of different clinical isolates of S. haemolyticus isolated from DFU on primary human skin fibroblast (PHSF) cells. Virulence-related genes were investigated, adhesion and invasion assays were carried out using Giemsa stain, transmission electron microscopy (TEM), MTT and flowcytometry assays. Our results showed that most S. haemolyticus carried different sets of virulence-related genes. S. haemolyticus adhered to the PHSF cells to variable degrees. TEM showed that the bacteria were engulfed in a zipper-like mechanism into a vacuole inside the cell. Bacterial internalization was confirmed using flowcytometry and achieved high intracellular levels. PHSF cells infected with S.haemolyticus suffered from amarked decrease in viability and increased apoptosis when treated with whole bacterial suspensions or cell-free supernatants but not with heat-treated cells. After co-culture with PBMCs, S. haemolyticus induced high levels of pro-inflammatory cytokines. This study highlights the significant development of S. haemolyticus, which was previously considered a contaminant when detected in cultures of clinical samples. Their high ability to adhere, invade and kill the PHSF cells illustrate the severe damage associated with DFU infections. ABBREVIATIONS CoNS, coagulase-negative staphylococci; DFU, diabetic foot ulcer; DM, diabetes mellitus; DMEM, Dulbecco's Modified Eagle Medium; MTT, 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide; PBMCs,peripheral blood mononuclear cells; PHSF, primary human skin fibroblast; CFU, colony-forming unit.
Collapse
Affiliation(s)
- Hala O Eltwisy
- Department of Microbiology, Faculty of Science, Beni-Suef University , Beni-Suef, Egypt
| | - Medhat Abdel-Fattah
- Department of Microbiology and Botany, Faculty of Science, Beni-Suef University , Beni-Suef, Egypt
| | - Amani M Elsisi
- Department of Pharmaceutics and Industrial Pharmacy, Beni-Suef University , Beni-Suef, Egypt
| | - Mahmoud M Omar
- Department of Pharmaceutics and Industrial Pharmacy, Deraya University , El-Minia, Egypt
| | | | - Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University , Assiut, Egypt
| |
Collapse
|
59
|
Yokota M, Häffner N, Kassier M, Brunner M, Shambat SM, Brennecke F, Schniering J, Marques Maggio E, Distler O, Zinkernagel AS, Maurer B. Staphylococcus aureus impairs dermal fibroblast functions with deleterious effects on wound healing. FASEB J 2021; 35:e21695. [PMID: 34160101 DOI: 10.1096/fj.201902836r] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/16/2021] [Accepted: 05/10/2021] [Indexed: 12/28/2022]
Abstract
Chronic wounds are a major disease burden worldwide. The breach of the epithelial barrier facilitates transition of skin commensals to invasive facultative pathogens. Therefore, we investigated the potential effects of Staphylococcus aureus (SA) on dermal fibroblasts as key cells for tissue repair. In co-culture systems combining live or heat-killed SA with dermal fibroblasts derived from the BJ-5ta cell line, healthy individuals, and patients with systemic sclerosis, we assessed tissue repair including pro-inflammatory cytokines, matrix metalloproteases (MMPs), myofibroblast functions, and host defense responses. Only live SA induced the upregulation of IL-1β/-6/-8 and MMP1/3 as co-factors of tissue degradation. Additionally, the increased cell death reduced collagen production, proliferation, migration, and contractility, prerequisite mechanisms for wound closure. Intracellular SA triggered inflammatory and type I IFN responses via intracellular dsDNA sensor molecules and MyD88 and STING signaling pathways. In conclusion, live SA affected various key tissue repair functions of dermal fibroblasts from different sources to a similar extent. Thus, SA infection of dermal fibroblasts should be taken into account for future wound management strategies.
Collapse
Affiliation(s)
- Masaya Yokota
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland.,Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Nicola Häffner
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Matthew Kassier
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Matthias Brunner
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Srikanth Mairpady Shambat
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Fabian Brennecke
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Janine Schniering
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Ewerton Marques Maggio
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Oliver Distler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Annelies Sophie Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Britta Maurer
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland.,Department of Rheumatology and Immunology, University Hospital Bern, University Bern, Bern, Switzerland
| |
Collapse
|
60
|
Abstract
Staphylococcus aureus is both a commensal and a pathogenic bacterium for humans. Its ability to induce severe infections is based on a wide range of virulence factors. S. aureus community-acquired pneumonia (SA-CAP) is rare and severe, and the contribution of certain virulence factors in this disease has been recognized over the past 2 decades. First, the factors involved in metabolism adaptation are crucial for S. aureus survival in the lower respiratory tract, and toxins and enzymes are required for it to cross the pulmonary epithelial barrier. S. aureus subsequently faces host defense mechanisms, including the epithelial barrier, but most importantly the immune system. Here, again, S. aureus uses myriad virulence factors to successfully escape from the host's defenses and takes advantage of them. The impact of S. aureus virulence, combined with the collateral damage caused by an overwhelming immune response, leads to severe tissue damage and adverse clinical outcomes. In this review, we summarize step by step all of the S. aureus factors implicated in CAP and described to date, and we provide an outlook for future research.
Collapse
Affiliation(s)
- Mariane Pivard
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Karen Moreau
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - François Vandenesch
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Centre National de Référence des Staphylocoques, Institut des agents infectieux, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
61
|
Lysosomal alkalization to potentiate eradication of intra-osteoblastic Staphylococcus aureus in the bone and joint infection setting. Clin Microbiol Infect 2021; 28:135.e1-135.e7. [PMID: 33962064 DOI: 10.1016/j.cmi.2021.04.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/13/2021] [Accepted: 04/27/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Beyond intracellular penetration, acidic lysosomal pH might affect the intracellular activity of some antimicrobials. This study evaluated the ability of lysosomotropic alkalizing agents to potentiate the antimicrobial eradication of an intra-osteoblastic Staphylococcus aureus reservoir in the setting of bone and joint infection (BJI). METHODS MICs of 16 anti-staphylococcal molecules active against methicillin-sensitive S. aureus (MSSA) were evaluated at pH 5 and pH 7. Additionally, the lysosomal alkalizing potential (spectrofluorometry) and cytotoxicity (MTT assay) of hydroxychloroquine, amantadine and ammonium chloride were assessed. The results led to further investigation of clindamycin, cotrimoxazole, daptomycin and levofloxacin-alone or in combination with hydroxychloroquine-in an in vitro model of osteoblast infection. The impact of hydroxychloroquine on autophagy was finally investigated using Western blot detection of two autophagic flux indicators, the LC3 membrane protein and the SQSTM1 cargo protein. RESULTS Daptomycin, cotrimoxazole, clindamycin and levofloxacin alone significantly decreased the intracellular staphylococcal reservoir (5.12 log10 CFU/100 000 cells) by 0.14 (95%CI 0.01-0.34), 0.25 (95%CI 0.12-0.43), 0.16 (95%CI 0.004-0.39) and 1.18 (95%CI 1.04-1.38) log10 CFU/100 000 cells, respectively (p < 10-3). Adding hydroxychloroquine (20 mg/L) increased intralysosomal pH from 4.8 to 7, and concomitantly the inoculum of each antimicrobial was reduced by 0.50 (95%CI 0.30-0.84), 0.73 (95%CI 0.59-0.96), 0.59 (95%CI 0.46-0.78) and 1.8 (95%CI 1.66-2.1) log10 CFU/100 000 cells, respectively (p < 10-4). Cellular levels of LC3II and SQSTM1 showed that hydroxychloroquine has direct activity on the autophagic flux, fostering the eradication of intracellular S. aureus by antimicrobials. CONCLUSION At high concentrations, hydroxychloroquine used as an adjuvant to antimicrobials improves eradication of an S. aureus intra-osteoblastic reservoir in our in vitro cell infection model. These findings advocate further in vivo evaluation of alkalization efficacy and tolerance in S. aureus BJI.
Collapse
|
62
|
Siegmund A, Afzal MA, Tetzlaff F, Keinhörster D, Gratani F, Paprotka K, Westermann M, Nietzsche S, Wolz C, Fraunholz M, Hübner CA, Löffler B, Tuchscherr L. Intracellular persistence of Staphylococcus aureus in endothelial cells is promoted by the absence of phenol-soluble modulins. Virulence 2021; 12:1186-1198. [PMID: 33843450 PMCID: PMC8043190 DOI: 10.1080/21505594.2021.1910455] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A large proportion of clinical S. aureus isolates that carry an inactive Agr system are associated with persistent infection that is difficult to treat. Once S. aureus is inside the bloodstream, it can cross the endothelial barrier and invade almost every organ in the human body. Endothelial cells can either be lysed by this pathogen or they serve as a niche for its intracellular long-term survival. Following phagocytosis, several vesicles such as phagosomes and autophagosomes, target intracellular S. aureus for elimination. S. aureus can escape from these vesicles into the host cytoplasm through the activation of phenol-soluble modulins (PSMs) αβ. Thereafter, it replicates and lyses the host cell to disseminate to adjacent tissues. Herein we demonstrate that staphylococcal strains which lack the expression of PSMs employ an alternative pathway to better persist within endothelial cells. The intracellular survival of S. aureus is associated with the co-localization of the autophagy marker LC3. In cell culture infection models, we found that the absence of psmαβ decreased the host cell lysis and increased staphylococcal long-term survival. This study explains the positive selection of agr-negative strains that lack the expression of psmαβ in chronic infection due to their advantage in surviving and evading the clearance system of the host.
Collapse
Affiliation(s)
- Anke Siegmund
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Muhammad Awais Afzal
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller Universität, Jena, Germany
| | - Felix Tetzlaff
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller Universität, Jena, Germany
| | - Daniela Keinhörster
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, Tübingen, Germany
| | - Fabio Gratani
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, Tübingen, Germany
| | - Kerstin Paprotka
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | - Martin Westermann
- Center for Electron Microscopy, Jena University Hospital, Jena, Germany
| | - Sandor Nietzsche
- Center for Electron Microscopy, Jena University Hospital, Jena, Germany
| | - Christiane Wolz
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, Tübingen, Germany
| | - Martin Fraunholz
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller Universität, Jena, Germany
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Lorena Tuchscherr
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| |
Collapse
|
63
|
Augustyniak D, Kramarska E, Mackiewicz P, Orczyk-Pawiłowicz M, Lundy FT. Mammalian Neuropeptides as Modulators of Microbial Infections: Their Dual Role in Defense versus Virulence and Pathogenesis. Int J Mol Sci 2021; 22:ijms22073658. [PMID: 33915818 PMCID: PMC8036953 DOI: 10.3390/ijms22073658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
The regulation of infection and inflammation by a variety of host peptides may represent an evolutionary failsafe in terms of functional degeneracy and it emphasizes the significance of host defense in survival. Neuropeptides have been demonstrated to have similar antimicrobial activities to conventional antimicrobial peptides with broad-spectrum action against a variety of microorganisms. Neuropeptides display indirect anti-infective capacity via enhancement of the host’s innate and adaptive immune defense mechanisms. However, more recently concerns have been raised that some neuropeptides may have the potential to augment microbial virulence. In this review we discuss the dual role of neuropeptides, perceived as a double-edged sword, with antimicrobial activity against bacteria, fungi, and protozoa but also capable of enhancing virulence and pathogenicity. We review the different ways by which neuropeptides modulate crucial stages of microbial pathogenesis such as adhesion, biofilm formation, invasion, intracellular lifestyle, dissemination, etc., including their anti-infective properties but also detrimental effects. Finally, we provide an overview of the efficacy and therapeutic potential of neuropeptides in murine models of infectious diseases and outline the intrinsic host factors as well as factors related to pathogen adaptation that may influence efficacy.
Collapse
Affiliation(s)
- Daria Augustyniak
- Department of Pathogen Biology and Immunology, Faculty of Biology, University of Wroclaw, 51-148 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-71-375-6296
| | - Eliza Kramarska
- Department of Pathogen Biology and Immunology, Faculty of Biology, University of Wroclaw, 51-148 Wroclaw, Poland;
- Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche, 80134 Napoli, Italy
| | - Paweł Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland;
| | | | - Fionnuala T. Lundy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK;
| |
Collapse
|
64
|
Jasińska E, Bogut A, Magryś A, Olender A. Evaluation of the role of staphylococci in the pathomechanism of conjunctivitis. Int Ophthalmol 2021; 41:2585-2600. [PMID: 33778922 PMCID: PMC8238708 DOI: 10.1007/s10792-021-01818-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/16/2021] [Indexed: 11/27/2022]
Abstract
Purpose Determination of the association between ica genes and phenotypic biofilm formation in staphylococcal isolates involved in conjunctivitis, their antibiotic resistance as well as detection of selected virulence characteristics: adhesion to epithelial cells and in vitro cytotoxicity. Methods The study included 26 Staphylococcus aureus (SA) and 26 Staphylococcus epidermidis (SE) isolates. The presence of icaAD genes and ica operon was determined by the PCR assay. Phenotypic biofilm formation was verified using the microtitre plate assay. Antibiotic resistance was performed using the disc diffusion method. Staphylococcal ability to attach to host cells was assessed by flow cytometry. Cytotoxicity on epithelial cells was evaluated by LDH assay. Results The ica genes were detected in 26.9% of SE and in 42.3% of SA isolates. Only 15.3% of isolates (SE) were positive for both the icaAD and the ica operon. Phenotypically, 19.2% of SE isolates were strong biofilm producers, among which three were both icaAD- and ica operon-positive. About 26.9% of SA isolates were strong biofilm producers. Methicillin resistance (MR) was detected in 34.6% of SE and 26.9% of SA isolates. About 75% of MR isolates were multidrug resistant. SA isolates adhered to host cells more extensively than SE. SA isolates released higher level of LDH than SE. Conclusions Adherence abilities were commonly observed in staphylococci associated with conjunctivitis. However, low prevalence of isolates positive for a complete and functional ica locus and low prevalence of strong biofilm producers was detected. SA adhered to a greater extent to eukaryotic cells than SE and were more cytotoxic.
Collapse
Affiliation(s)
- Ewa Jasińska
- Department of General Ophthalmology, Medical University of Lublin, Lublin, Poland
| | - Agnieszka Bogut
- Chair and Department of Medical Microbiology, Medical University of Lublin, Lublin, Poland.
| | - Agnieszka Magryś
- Chair and Department of Medical Microbiology, Medical University of Lublin, Lublin, Poland
| | - Alina Olender
- Chair and Department of Medical Microbiology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
65
|
Staphylococcus aureus Responds to Physiologically Relevant Temperature Changes by Altering Its Global Transcript and Protein Profile. mSphere 2021; 6:6/2/e01303-20. [PMID: 33731473 PMCID: PMC8546721 DOI: 10.1128/msphere.01303-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen that colonizes the anterior nares of 30 to 50% of the population. Colonization is most often asymptomatic; however, self-inoculation can give rise to potentially fatal infections of the deeper tissues and blood. Like all bacteria, S. aureus can sense and respond to environmental cues and modify gene expression to adapt to specific environmental conditions. The transition of S. aureus from the nares to the deeper tissues and blood is accompanied by changes in environmental conditions, such as nutrient availability, pH, and temperature. In this study, we perform transcriptomics and proteomics on S. aureus cultures growing at three physiologically relevant temperatures, 34°C (nares), 37°C (body), and 40°C (pyrexia), to determine if small scale, biologically meaningful alterations in temperature impact S. aureus gene expression. Results show that small but definite temperature changes elicit a large-scale restructuring of the S. aureus transcriptome and proteome in a manner that, most often, inversely correlates with increasing temperature. We also provide evidence that a large majority of these changes are modulated at the posttranscriptional level, possibly by sRNA regulatory elements. Phenotypic analyses were also performed to demonstrate that these changes have physiological relevance. Finally, we investigate the impact of temperature-dependent alterations in gene expression on S. aureus pathogenesis and demonstrate decreased intracellular invasion of S. aureus grown at 34°C. Collectively, our results demonstrate that small but biologically meaningful alterations in temperature influence S. aureus gene expression, a process that is likely a major contributor to the transition from a commensal to pathogen. IMPORTANCE Enteric bacterial pathogens, like Escherichia coli, are known to experience large temperature differences as they are transmitted through the fecal oral route. This change in temperature has been demonstrated to influence bacterial gene expression and facilitate infection. Staphylococcus aureus is a human-associated pathogen that can live as a commensal on the skin and nares or cause invasive infections of the deeper tissues and blood. Factors influencing S. aureus nasal colonization are not fully understood; however, individuals colonized with S. aureus are at increased risk of invasive infections through self-inoculation. The transition of S. aureus from the nose (colonization) to the body (infection) is accompanied by a modest but definite temperature increase, from 34°C to 37°C. In this study, we investigate whether these host-associated small temperature changes can influence S. aureus gene expression. Results show widespread changes in the bacterial transcriptome and proteome at three physiologically relevant temperatures (34°C, 37°C, and 40°C).
Collapse
|
66
|
Kimmig A, Hagel S, Weis S, Bahrs C, Löffler B, Pletz MW. Management of Staphylococcus aureus Bloodstream Infections. Front Med (Lausanne) 2021; 7:616524. [PMID: 33748151 PMCID: PMC7973019 DOI: 10.3389/fmed.2020.616524] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/31/2020] [Indexed: 11/24/2022] Open
Abstract
Staphylococcus aureus bloodstream infections are associated with a high morbidity and mortality. Nevertheless, significance of a positive blood culture with this pathogen is often underestimated or findings are misinterpreted as contamination, which can result in inadequate diagnostic and therapeutic consequences. We here review and discuss current diagnostic and therapeutic key elements and open questions for the management of Staphylococcus aureus bloodstream infections.
Collapse
Affiliation(s)
- Aurelia Kimmig
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Stefan Hagel
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Sebastian Weis
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany.,Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Christina Bahrs
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany.,Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Mathias W Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
67
|
Dahou S, Smahi MCE, Nouari W, Dahmani Z, Benmansour S, Ysmail-Dahlouk L, Miliani M, Yebdri F, Fakir N, Laoufi MY, Chaib-Draa M, Tourabi A, Aribi M. L-Threoascorbic acid treatment promotes S. aureus-infected primary human endothelial cells survival and function, as well as intracellular bacterial killing, and immunomodulates the release of IL-1β and soluble ICAM-1. Int Immunopharmacol 2021; 95:107476. [PMID: 33676147 DOI: 10.1016/j.intimp.2021.107476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Vitamin C (ascorbic acid, AscH2) has been shown to enhance immunity. Here, we studied its immunomodulatory effect on human endothelial cells (ECs) during S. aureus infection. MATERIALS AND METHODS The ex vivo effects of AscH2 were performed on primary human umbilical vein endothelial cells (HUVECs) infected or not with S. aureus. RESULTS AscH2 treatment induced a marked downregulation of nitric oxide (NO) production and a moderate upregulation of arginase activity in S. aureus-infected HUVECs (respectively, p < 0.05 and p > 0.05). Although the upregulated release levels of soluble intercellular adhesion molecular 1 (sICAM-1/sCD54) and sE-selectin (sCD62E) molecules were not significantly different between treated and untreated S. aureus-infected HUVECs, AscH2 treatment induced reversing effect on sICAM-1 release when comparing to uninfected control HUVECs. Moreover, AscH2 treatment appears to have a significant effect on preventing HUVEC necrosis induced by S. aureus infection (p < 0.05). Furthermore, AscH2 treatment induced a significant upregulation of cell protective redox biomarker in S. aureus-infected, as shown by superoxide dismutase (SOD) activity (p < 0.05), but not by catalase activity (p > 0.05). Additionally, S. aureus infection markedly downregulated total bound calcium ions (bCa2+) levels as compared to control HUVECs, whereas, AscH2 treatment induced a slight upregulation of bCa2+ levels in infected HUVECs as compared to infected and untreated HUVECs (p > 0.05). On the other hand, AscH2 treatment downregulated increased total cellular cholesterol content (tccCHOL) levels in HUVECs induced by S. aureus infection (p < 0.05). In addition, AscH2 treatment markedly reversed S. aureus effect on upregulation of intracellular glucose (iGLU) levels within infected HUVECs (p < 0.05). Moreover, AscH2 treatment significantly downregulated S. aureus growth (p < 0.05), and significantly upregulated bacterial internalization and intracellular killing by HUVECs (p < 0.05), as well as their cell cycle activation (p < 0.01). Finally, AscH2 treatment has a slight effect on the production of interleukin 6 (IL-6), but induced a marked downregulation of that of IL-1β in S. aureus-infected HUVECs (respectively, p > 0.05, and p < 0.05). CONCLUSIONS Our outcomes demonstrated that, during S. aureus infection, AscH2 treatment promotes human ECs survival and function, as well as prevents inflammatory response exacerbation, while inducing bactericidal activity.
Collapse
Affiliation(s)
- Sara Dahou
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Mohammed Chems-Eddine Smahi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria; Neonatal Department of Specialized Maternal and Child Hospital of Tlemcen, 13000, Tlemcen, Algeria
| | - Wafa Nouari
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Zoheir Dahmani
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Souheila Benmansour
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria; Neonatal Department of Specialized Maternal and Child Hospital of Tlemcen, 13000, Tlemcen, Algeria
| | - Lamia Ysmail-Dahlouk
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Maroua Miliani
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Fadela Yebdri
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Nassima Fakir
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Mohammed Yassine Laoufi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria; Neonatal Department of Specialized Maternal and Child Hospital of Tlemcen, 13000, Tlemcen, Algeria
| | - Mouad Chaib-Draa
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Amina Tourabi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria.
| |
Collapse
|
68
|
Soe YM, Bedoui S, Stinear TP, Hachani A. Intracellular Staphylococcus aureus and host cell death pathways. Cell Microbiol 2021; 23:e13317. [PMID: 33550697 DOI: 10.1111/cmi.13317] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022]
Abstract
Staphylococcus aureus is a major opportunistic human pathogen that is globally prevalent. Although S. aureus and humans may have co-evolved to the point of commensalism, the bacterium is equipped with virulence factors causing devastating infections. The adoption of an intracellular lifestyle by S. aureus is an important facet of its pathogenesis. Occupying a privileged intracellular compartment permits evasion from the bactericidal actions of host immunity and antibiotics. However, this localization exposes S. aureus to cell-intrinsic processes comprising autophagy, metabolic challenges and clearance mechanisms orchestrated by host programmed cell death pathways (PCDs), including apoptosis, pyroptosis and necroptosis. Mounting evidence suggests that S. aureus deploys pathoadaptive mechanisms that modulate the expression of its virulence factors to prevent elimination through PCD pathways. In this review, we critically analyse the current literature on the interplay between S. aureus virulence factors with the key, intertwined nodes of PCD. We discuss how S. aureus adaptation to the human host plays an essential role in the evasion of PCD, and we consider future directions to study S. aureus-PCD interactions.
Collapse
Affiliation(s)
- Ye Mon Soe
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sammy Bedoui
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Abderrahman Hachani
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
69
|
Cao J, Zheng Y. iTRAQ-based quantitative proteomic analysis of the antimicrobial mechanism of lactobionic acid against Staphylococcus aureus. Food Funct 2021; 12:1349-1360. [PMID: 33448275 DOI: 10.1039/d0fo02491k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Staphylococcus aureus is a common pathogenic microorganism that causes foodborne diseases. Lactobionic acid (LBA) is a natural polyhydroxy acid widely used in the food industry. To understand the antibacterial action of LBA against S. aureus better and identify 274 differentially expressed proteins upon LBA treatment, an isobaric tag was used for relative and absolute quantification-based quantitative proteomics. Combined with ultrastructural observations, results suggested that LBA inhibited S. aureus by disrupting cell wall and membrane integrity, regulating adenosine triphosphate binding cassette transporter expression, affecting cellular energy metabolism, attenuating S. aureus virulence and reducing infection, and decreasing the levels of proteins involved in stress and starvation responses. Quantitative real-time polymerase chain reaction analysis was used to validate the proteomic data. The results provide new insights into the inhibitory effects of LBA on S. aureus and suggest that LBA application may be a promising method to ensure food and pharmaceutical product safety.
Collapse
Affiliation(s)
- Jiarong Cao
- College of Food Science, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang, Liaoning 110161, P.R. China.
| | - Yan Zheng
- College of Food Science, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang, Liaoning 110161, P.R. China.
| |
Collapse
|
70
|
Gimza BD, Cassat JE. Mechanisms of Antibiotic Failure During Staphylococcus aureus Osteomyelitis. Front Immunol 2021; 12:638085. [PMID: 33643322 PMCID: PMC7907425 DOI: 10.3389/fimmu.2021.638085] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Staphylococcus aureus is a highly successful Gram-positive pathogen capable of causing both superficial and invasive, life-threatening diseases. Of the invasive disease manifestations, osteomyelitis or infection of bone, is one of the most prevalent, with S. aureus serving as the most common etiologic agent. Treatment of osteomyelitis is arduous, and is made more difficult by the widespread emergence of antimicrobial resistant strains, the capacity of staphylococci to exhibit tolerance to antibiotics despite originating from a genetically susceptible background, and the significant bone remodeling and destruction that accompanies infection. As a result, there is a need for a better understanding of the factors that lead to antibiotic failure in invasive staphylococcal infections such as osteomyelitis. In this review article, we discuss the different non-resistance mechanisms of antibiotic failure in S. aureus. We focus on how bacterial niche and destructive tissue remodeling impact antibiotic efficacy, the significance of biofilm formation in promoting antibiotic tolerance and persister cell formation, metabolically quiescent small colony variants (SCVs), and potential antibiotic-protected reservoirs within the substructure of bone.
Collapse
Affiliation(s)
- Brittney D Gimza
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - James E Cassat
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States.,Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
71
|
Grossmann A, Froböse NJ, Mellmann A, Alabi AS, Schaumburg F, Niemann S. An in vitro study on Staphylococcus schweitzeri virulence. Sci Rep 2021; 11:1157. [PMID: 33442048 PMCID: PMC7806826 DOI: 10.1038/s41598-021-80961-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/24/2020] [Indexed: 02/05/2023] Open
Abstract
Staphylococcus schweitzeri belongs to the Staphylococcus aureus-related complex and is mainly found in African wildlife; no infections in humans are reported yet. Hence, its medical importance is controversial. The aim of this work was to assess the virulence of S. schweitzeri in vitro. The capacity of African S. schweitzeri (n = 58) for invasion, intra- and extracellular cytotoxicity, phagolysosomal escape, coagulase activity, biofilm formation and host cell activation was compared with S. aureus representing the most common clonal complexes in Africa (CC15, CC121, CC152). Whole genome sequencing revealed that the S. schweitzeri isolates belonged to five geographical clusters. Isolates from humans were found in two different clades. S. schweitzeri and S. aureus showed a similar host cell invasion (0.9 vs. 1.2 CFU/Vero cell), host cell activation (i.e. expression of pro-inflammatory cytokines, 4.1 vs. 1.7 normalized fold change in gene expression of CCL5; 7.3 vs. 9.9 normalized fold change in gene expression of IL8, A549 cells) and intracellular cytotoxicity (31.5% vs. 25% cell death, A549 cells). The extracellular cytotoxicity (52.9% vs. 28.8% cell death, A549 cells) was higher for S. schweitzeri than for S. aureus. Nearly all tested S. schweitzeri (n = 18/20) were able to escape from phagolysosomes. In conclusion, some S. schweitzeri isolates display virulence phenotypes comparable to African S. aureus. S. schweitzeri might become an emerging zoonotic pathogen within the genus Staphylococcus.
Collapse
Affiliation(s)
- Almut Grossmann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Neele J Froböse
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Alexander Mellmann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany.,Institute for Hygiene, University Hospital Münster, Münster, Germany
| | - Abraham S Alabi
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Frieder Schaumburg
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany.
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany.,Section of Medical and Geographical Infectiology, University Hospital Münster, Münster, Germany
| |
Collapse
|
72
|
Abstract
Despite being regarded as an extracellular bacterium, the pathogen Staphylococcus aureus can invade and survive within human cells. The intracellular niche is considered a hideout from the host immune system and antibiotic treatment and allows bacterial proliferation. The opportunistic human pathogen Staphylococcus aureus causes serious infectious diseases that range from superficial skin and soft tissue infections to necrotizing pneumonia and sepsis. While classically regarded as an extracellular pathogen, S. aureus is able to invade and survive within human cells. Host cell exit is associated with cell death, tissue destruction, and the spread of infection. The exact molecular mechanism employed by S. aureus to escape the host cell is still unclear. In this study, we performed a genome-wide small hairpin RNA (shRNA) screen and identified the calcium signaling pathway as being involved in intracellular infection. S. aureus induced a massive cytosolic Ca2+ increase in epithelial host cells after invasion and intracellular replication of the pathogen. This was paralleled by a decrease in endoplasmic reticulum Ca2+ concentration. Additionally, calcium ions from the extracellular space contributed to the cytosolic Ca2+ increase. As a consequence, we observed that the cytoplasmic Ca2+ rise led to an increase in mitochondrial Ca2+ concentration, the activation of calpains and caspases, and eventually to cell lysis of S. aureus-infected cells. Our study therefore suggests that intracellular S. aureus disturbs the host cell Ca2+ homeostasis and induces cytoplasmic Ca2+ overload, which results in both apoptotic and necrotic cell death in parallel or succession.
Collapse
|
73
|
Petrie LE, Leonard AC, Murphy J, Cox G. Development and validation of a high-throughput whole cell assay to investigate Staphylococcus aureus adhesion to host ligands. J Biol Chem 2020; 295:16700-16712. [PMID: 32978256 PMCID: PMC7864066 DOI: 10.1074/jbc.ra120.015360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus adhesion to the host's skin and mucosae enables asymptomatic colonization and the establishment of infection. This process is facilitated by cell wall-anchored adhesins that bind to host ligands. Therapeutics targeting this process could provide significant clinical benefits; however, the development of anti-adhesives requires an in-depth knowledge of adhesion-associated factors and an assay amenable to high-throughput applications. Here, we describe the development of a sensitive and robust whole cell assay to enable the large-scale profiling of S. aureus adhesion to host ligands. To validate the assay, and to gain insight into cellular factors contributing to adhesion, we profiled a sequence-defined S. aureus transposon mutant library, identifying mutants with attenuated adhesion to human-derived fibronectin, keratin, and fibrinogen. Our screening approach was validated by the identification of known adhesion-related proteins, such as the housekeeping sortase responsible for covalently linking adhesins to the cell wall. In addition, we also identified genetic loci that could represent undescribed anti-adhesive targets. To compare and contrast the genetic requirements of adhesion to each host ligand, we generated a S. aureus Genetic Adhesion Network, which identified a core gene set involved in adhesion to all three host ligands, and unique genetic signatures. In summary, this assay will enable high-throughput chemical screens to identify anti-adhesives and our findings provide insight into the target space of such an approach.
Collapse
Affiliation(s)
- Laurenne E Petrie
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Allison C Leonard
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Julia Murphy
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Georgina Cox
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
74
|
Mulcahy ME, O'Brien EC, O'Keeffe KM, Vozza EG, Leddy N, McLoughlin RM. Manipulation of Autophagy and Apoptosis Facilitates Intracellular Survival of Staphylococcus aureus in Human Neutrophils. Front Immunol 2020; 11:565545. [PMID: 33262756 PMCID: PMC7686353 DOI: 10.3389/fimmu.2020.565545] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/15/2020] [Indexed: 01/13/2023] Open
Abstract
Polymorphonuclear neutrophils (PMN) are critical for first line innate immune defence against Staphylococcus aureus. Mature circulating PMN maintain a short half-life ending in constitutive apoptotic cell death. This makes them unlikely candidates as a bacterial intracellular niche. However, there is significant evidence to suggest that S. aureus can survive intracellularly within PMN and this contributes to persistence and dissemination during infection. The precise mechanism by which S. aureus parasitizes these cells remains to be established. Herein we propose a novel mechanism by which S. aureus subverts both autophagy and apoptosis in PMN in order to maintain an intracellular survival niche during infection. Intracellular survival of S. aureus within primary human PMN was associated with an accumulation of the autophagic flux markers LC3-II and p62, while inhibition of the autophagy pathway led to a significant reduction in intracellular survival of bacteria. This intracellular survival of S. aureus was coupled with a delay in neutrophil apoptosis as well as increased expression of several anti-apoptotic factors. Importantly, blocking autophagy in infected PMN partially restored levels of apoptosis to that of uninfected PMN, suggesting a connection between the autophagic and apoptotic pathways during intracellular survival. These results provide a novel mechanism for S. aureus intracellular survival and suggest that S. aureus may be subverting crosstalk between the autophagic and apoptosis pathways in order to maintain an intracellular niche within human PMN.
Collapse
Affiliation(s)
- Michelle E Mulcahy
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Eóin C O'Brien
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Kate M O'Keeffe
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Emilio G Vozza
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Neal Leddy
- bioTEM, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rachel M McLoughlin
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
75
|
Van den Bossche S, Vandeplassche E, Ostyn L, Coenye T, Crabbé A. Bacterial Interference With Lactate Dehydrogenase Assay Leads to an Underestimation of Cytotoxicity. Front Cell Infect Microbiol 2020; 10:494. [PMID: 33042868 PMCID: PMC7523407 DOI: 10.3389/fcimb.2020.00494] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022] Open
Abstract
Models to study host-pathogen interactions in vitro are an important tool for investigating the infectious disease process and evaluating the efficacy of antimicrobial compounds. In these models, the viability of mammalian cells is often determined using the lactate dehydrogenase (LDH) cytotoxicity assay. In the present study we evaluated whether bacteria could interfere with the LDH assay. As a model for host-pathogen interactions, we co-cultured lung epithelial cells with eight bacteria encountered in the lower respiratory tract. We show that LDH activity is affected by Pseudomonas aeruginosa, Klebsiella pneumoniae, Stenotrophomonas maltophilia, and Streptococcus pneumoniae, and that this depends on the density of the start inoculum and the duration of infection. Two different mechanisms were discovered through which bacteria interfered with LDH activity, i.e., acidification of the cell culture medium (by K. pneumoniae and S. pneumoniae) and protease production (by P. aeruginosa and S. maltophilia). In addition, we developed and validated a modified protocol to evaluate cytotoxicity using the LDH assay, where bacterial interference with LDH quantification is avoided.
Collapse
Affiliation(s)
| | - Eva Vandeplassche
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Lisa Ostyn
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
76
|
Mrochen DM, Fernandes de Oliveira LM, Raafat D, Holtfreter S. Staphylococcus aureus Host Tropism and Its Implications for Murine Infection Models. Int J Mol Sci 2020; 21:E7061. [PMID: 32992784 PMCID: PMC7582387 DOI: 10.3390/ijms21197061] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a pathobiont of humans as well as a multitude of animal species. The high prevalence of multi-resistant and more virulent strains of S. aureus necessitates the development of new prevention and treatment strategies for S. aureus infection. Major advances towards understanding the pathogenesis of S. aureus diseases have been made using conventional mouse models, i.e., by infecting naïve laboratory mice with human-adapted S.aureus strains. However, the failure to transfer certain results obtained in these murine systems to humans highlights the limitations of such models. Indeed, numerous S. aureus vaccine candidates showed promising results in conventional mouse models but failed to offer protection in human clinical trials. These limitations arise not only from the widely discussed physiological differences between mice and humans, but also from the lack of attention that is paid to the specific interactions of S. aureus with its respective host. For instance, animal-derived S. aureus lineages show a high degree of host tropism and carry a repertoire of host-specific virulence and immune evasion factors. Mouse-adapted S.aureus strains, humanized mice, and microbiome-optimized mice are promising approaches to overcome these limitations and could improve transferability of animal experiments to human trials in the future.
Collapse
Affiliation(s)
- Daniel M. Mrochen
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
| | - Liliane M. Fernandes de Oliveira
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
| | - Dina Raafat
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Silva Holtfreter
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
| |
Collapse
|
77
|
Bianchi F, van den Bogaart G. Vacuolar escape of foodborne bacterial pathogens. J Cell Sci 2020; 134:134/5/jcs247221. [PMID: 32873733 DOI: 10.1242/jcs.247221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The intracellular pathogens Listeria monocytogenes, Salmonella enterica, Shigella spp. and Staphylococcus aureus are major causes of foodborne illnesses. Following the ingestion of contaminated food or beverages, pathogens can invade epithelial cells, immune cells and other cell types. Pathogens survive and proliferate intracellularly via two main strategies. First, the pathogens can remain in membrane-bound vacuoles and tailor organellar trafficking to evade host-cell defenses and gain access to nutrients. Second, pathogens can rupture the vacuolar membrane and proliferate within the nutrient-rich cytosol of the host cell. Although this virulence strategy of vacuolar escape is well known for L. monocytogenes and Shigella spp., it has recently become clear that S. aureus and Salmonella spp. also gain access to the cytosol, and that this is important for their survival and growth. In this Review, we discuss the molecular mechanisms of how these intracellular pathogens rupture the vacuolar membrane by secreting a combination of proteins that lyse the membranes or that remodel the lipids of the vacuolar membrane, such as phospholipases. In addition, we also propose that oxidation of the vacuolar membrane also contributes to cytosolic pathogen escape. Understanding these escape mechanisms could aid in the identification of new therapeutic approaches to combat foodborne pathogens.
Collapse
Affiliation(s)
- Frans Bianchi
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9722GR Groningen, The Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9722GR Groningen, The Netherlands .,Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 9625GA Nijmegen, The Netherlands
| |
Collapse
|
78
|
Häffner N, Bär J, Dengler Haunreiter V, Mairpady Shambat S, Seidl K, Crosby HA, Horswill AR, Zinkernagel AS. Intracellular Environment and agr System Affect Colony Size Heterogeneity of Staphylococcus aureus. Front Microbiol 2020; 11:1415. [PMID: 32695082 PMCID: PMC7339952 DOI: 10.3389/fmicb.2020.01415] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus causes chronic and relapsing infections, which may be difficult to treat. So-called small colony variants (SCVs) have been associated with chronic infections and their occurrence has been shown to increase under antibiotic pressure, low pH and intracellular localization. In clinics, S. aureus isolated from invasive infections often show a dysfunction in the accessory gene regulator (agr), a major virulence regulatory system in S. aureus. To assess whether intracellular environment and agr function influence SCV formation, an infection model was established using lung epithelial cells and skin fibroblasts. This allowed analyzing intracellular survival and localization of a panel of S. aureus wild type strains and their isogenic agr knock out mutants as well as a natural dysfunctional agr strain by confocal laser scanning microscopy (CLSM). Furthermore, bacterial colonies were quantified after 1, 3, and 5 days of intracellular survival by time-lapse analysis to determine kinetics of colony appearance and SCV formation. Here, we show that S. aureus strains with an agr knock out predominantly resided in a neutral environment, whereas wild type strains and an agr complemented strain resided in an acidic environment. S. aureus agr mutants derived from an intracellular environment showed a higher percentage of SCVs as compared to their corresponding wild type strains. Neutralizing acidic phagolysosomes with chloroquine resulted in a significant reduction of SCVs in S. aureus wild type strain 6850, but not in its agr mutant indicating a pH dependent formation of SCVs in the wild type strain. The in-depth understanding of the interplay between intracellular persistence, agr function and pH should help to identify new therapeutic options facilitating the treatment of chronic S. aureus infections in the future.
Collapse
Affiliation(s)
- Nicola Häffner
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Julian Bär
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Vanina Dengler Haunreiter
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Srikanth Mairpady Shambat
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Kati Seidl
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Heidi A Crosby
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Veterans Affairs Eastern Colorado Health Care System, Denver, CO, United States
| | - Annelies S Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
79
|
Ji Z, Su J, Hou Y, Yao Z, Yu B, Zhang X. EGFR/FAK and c-Src signalling pathways mediate the internalisation of Staphylococcus aureus by osteoblasts. Cell Microbiol 2020; 22:e13240. [PMID: 32584493 DOI: 10.1111/cmi.13240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 01/18/2023]
Abstract
Internalisation of Staphylococcus aureus in osteoblasts plays a critical role in the persistence and recurrence of osteomyelitis, the mechanisms involved in this process remain largely unknown. In the present study, evidence of internalised S. aureus in osteoblasts was found in long bone of haematogenous osteomyelitis in mice after 2 weeks of infection. Meanwhile, eliminating extracellular S. aureus by gentamicin can partially rescue bone loss, whereas the remaining intracellular S. aureus in osteoblasts may be associated with continuous bone destruction. In osteoblastic MC3T3 cells, intracellular S. aureus was detectable as early as 15 min after infection, and the internalisation rates increased with the extension of infection time. Additionally, S. aureus invasion stimulated the expression of phosphor-focal adhesion kinase (FAK), phosphor-epidermal growth factor receptor (EGFR) and phosphor-c-Src in a time-dependent way, and blocking EGFR/FAK or c-Src signalling significantly reduced the internalisation rate of S. aureus in osteoblasts. Our findings provide new insights into the mechanism of S. aureus internalisation in osteoblast and raise the potential of targeting EGFR/FAK and c-Src as adjunctive therapeutics for treating chronic S. aureus osteomyelitis.
Collapse
Affiliation(s)
- Zhiguo Ji
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianwen Su
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yilong Hou
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zilong Yao
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xianrong Zhang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
80
|
Schwarz C, Hoerr V, Töre Y, Hösker V, Hansen U, Van de Vyver H, Niemann S, Kuhlmann MT, Jeibmann A, Wildgruber M, Faber C. Isolating Crucial Steps in Induction of Infective Endocarditis With Preclinical Modeling of Host Pathogen Interaction. Front Microbiol 2020; 11:1325. [PMID: 32625192 PMCID: PMC7314968 DOI: 10.3389/fmicb.2020.01325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
Animal models of Staphylococcus aureus infective endocarditis (IE), especially in rodents, are commonly used to investigate the underlying pathogenesis, disease progression, potential diagnostic approaches, and therapeutic treatment. All these models are based on surgical interventions, and imply valve trauma by placing a polyurethane catheter at the aortic root. While the influence of endothelial damage and inflammation on the induction of IE has been studied intensively, the role of the catheter, as permanent source of bacteremia, and the interplay with bacterial virulence factors during the formation of IE is poorly understood. In our study, we aimed at identifying which set of preconditions is required for induction and formation of IE: (1) tissue injury, (2) permanent presence of bacteria, and (3) presence of the full bacterial repertoire of adhesion proteins. We investigated the manifestation of the disease in different modifications of the animal model, considering different degrees of endothelial damage and the presence or absence of the catheter. In four infection models the induction of IE was assessed by using two bacterial strains with different expression patterns of virulence factors – S. aureus 6850 and Newman. In vivo magnetic resonance imaging showed conspicuous morphological structures on the aortic valves, when an endothelial damage and a continuous bacterial source were present simultaneously. Cellular and inflammatory pathophysiology were characterized additionally by histology, real-time quantitative polymerase chain reaction analysis, and bacterial counts, revealing strain-specific pathogenesis and manifestation of IE, crucially influenced by bacterial adherence and toxicity. The severity of IE was dependent on the degree of endothelial irritation. However, even severe endothelial damage in the absence of a permanent bacterial source resulted in reduced valve infection. The spread of bacteria to other organs was also dependent on the pathogenic profile of the infectious agent.
Collapse
Affiliation(s)
- Christian Schwarz
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Muenster, Muenster, Germany
| | - Verena Hoerr
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Muenster, Muenster, Germany.,Institute of Medical Microbiology, University Hospital Jena, Jena, Germany
| | - Yasemin Töre
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Muenster, Muenster, Germany
| | - Vanessa Hösker
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Muenster, Muenster, Germany
| | - Uwe Hansen
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
| | - Hélène Van de Vyver
- Institute of Medical Microbiology, University Hospital Muenster, Muenster, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital Muenster, Muenster, Germany
| | - Michael T Kuhlmann
- European Institute for Molecular Imaging, University of Muenster, Muenster, Germany
| | - Astrid Jeibmann
- Institute for Neuropathology, University Hospital Muenster, Muenster, Germany
| | - Moritz Wildgruber
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Muenster, Muenster, Germany.,Klinik und Poliklinik für Radiologie, Klinikum der Universität München, Munich, Germany
| | - Cornelius Faber
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
81
|
Stoneham SM, Cantillon DM, Waddell SJ, Llewelyn MJ. Spontaneously Occurring Small-Colony Variants of Staphylococcus aureus Show Enhanced Clearance by THP-1 Macrophages. Front Microbiol 2020; 11:1300. [PMID: 32595630 PMCID: PMC7303551 DOI: 10.3389/fmicb.2020.01300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/20/2020] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a common cause of chronic and relapsing infection, especially when the ability of the immune system to sterilize a focus of infection is compromised (e.g., because of a foreign body or in the cystic fibrosis lung). Chronic infections are associated with slow-growing colony phenotypes of S. aureus on solid media termed small-colony variants (SCVs). Stable SCVs show characteristic mutations in the electron transport chain that convey resistance to antibiotics, particularly aminoglycosides. This can be used to identify SCVs from within mixed-colony phenotype populations of S. aureus. More recently, populations of SCVs that rapidly revert to a “wild-type” (WT) colony phenotype, in the absence of selection pressure, have also been described. In laboratory studies, SCVs accumulate through prolonged infection of non-professional phagocytes and may represent an adaptation to the intracellular environment. However, data from phagocytic cells are lacking. In this study, we mapped SCV and WT colony populations in axenic growth of multiple well-characterized methicillin-sensitive and methicillin-resistant S. aureus strains. We identified SCVs populations on solid media both in the presence and absence of gentamicin. We generated stable SCVs from Newman strain S. aureus, and infected human macrophages with WT S. aureus (Newman, 8325-4) and their SCV counterparts (SCV3, I10) to examine intracellular formation and survival of SCVs. We show that SCVs arise spontaneously during axenic growth, and that the ratio of SCV:WT morphology differs between strains. Exposure to the intracellular environment of human macrophages did not increase formation of SCVs over 5 days and macrophages were able to clear stable SCV bacteria more effectively than their WT counterparts.
Collapse
Affiliation(s)
- Simon M Stoneham
- Department of Microbiology and Infection, Royal Sussex County Hospital, Brighton, United Kingdom.,Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Daire M Cantillon
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Simon J Waddell
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Martin J Llewelyn
- Department of Microbiology and Infection, Royal Sussex County Hospital, Brighton, United Kingdom.,Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
82
|
Watkins KE, Unnikrishnan M. Evasion of host defenses by intracellular Staphylococcus aureus. ADVANCES IN APPLIED MICROBIOLOGY 2020; 112:105-141. [PMID: 32762866 DOI: 10.1016/bs.aambs.2020.05.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Staphylococcus aureus is one of the leading causes of hospital and community-acquired infections worldwide. The increasing occurrence of antibiotic resistant strains and the high rates of recurrent staphylococcal infections have placed several treatment challenges on healthcare systems. In recent years, it has become evident that S. aureus is a facultative intracellular pathogen, able to invade and survive in a range of cell types. The ability to survive intracellularly provides this pathogen with yet another way to evade antibiotics and immune responses during infection. Intracellular S. aureus have been strongly linked to several recurrent infections, including severe bone infections and septicemias. S. aureus is armed with an array of virulence factors as well as an intricate network of regulators that enable it to survive, replicate and escape from a number of immune and nonimmune host cells. It is able to successfully manipulate host cell pathways and use it as a niche to multiply, disseminate, as well as persist during an infection. This bacterium is also known to adapt to the intracellular environment by forming small colony variants, which are metabolically inactive. In this review we will discuss the clinical evidence, the molecular pathways involved in S. aureus intracellular persistence, and new treatment strategies for targeting intracellular S. aureus.
Collapse
|
83
|
Tan X, Ramond E, Jamet A, Barnier JP, Decaux-Tramoni B, Dupuis M, Euphrasie D, Tros F, Nemazanyy I, Ziveri J, Nassif X, Charbit A, Coureuil M. Transketolase of Staphylococcus aureus in the Control of Master Regulators of Stress Response During Infection. J Infect Dis 2020; 220:1967-1976. [PMID: 31420648 DOI: 10.1093/infdis/jiz404] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/07/2019] [Indexed: 12/31/2022] Open
Abstract
Staphylococcus aureus is a leading cause of both acute and chronic infections in humans. The importance of the pentose phosphate pathway (PPP) during S. aureus infection is currently largely unexplored. In the current study, we focused on one key PPP enzyme, transketolase (TKT). We showed that inactivation of the unique gene encoding TKT activity in S. aureus USA300 (∆tkt) led to drastic metabolomic changes. Using time-lapse video imaging and mice infection, we observed a major defect of the ∆tkt strain compared with wild-type strain in early intracellular proliferation and in the ability to colonize kidneys. Transcriptional activity of the 2 master regulators sigma B and RpiRc was drastically reduced in the ∆tkt mutant during host cells invasion. The concomitant increased RNAIII transcription suggests that TKT-or a functional PPP-strongly influences the ability of S. aureus to proliferate within host cells by modulating key transcriptional regulators.
Collapse
Affiliation(s)
- Xin Tan
- Université de Paris.,INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades, Paris
| | - Elodie Ramond
- Université de Paris.,INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades, Paris
| | - Anne Jamet
- Université de Paris.,INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades, Paris
| | - Jean-Philippe Barnier
- Université de Paris.,INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades, Paris
| | | | - Marion Dupuis
- Université de Paris.,INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades, Paris
| | - Daniel Euphrasie
- Université de Paris.,INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades, Paris
| | - Fabiola Tros
- Université de Paris.,INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades, Paris
| | - Ivan Nemazanyy
- Université de Paris.,INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades, Paris.,Plateforme Métabolomique Institut Necker, Structure Fédérative de Recherche Necker, Université Paris Descartes, France
| | - Jason Ziveri
- Université de Paris.,INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades, Paris
| | - Xavier Nassif
- Université de Paris.,INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades, Paris
| | - Alain Charbit
- Université de Paris.,INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades, Paris
| | - Mathieu Coureuil
- Université de Paris.,INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades, Paris
| |
Collapse
|
84
|
Gao T, Lin J, Zhang C, Zhu H, Zheng X. Is intracellular Staphylococcus aureus associated with recurrent infection in a rat model of open fracture? Bone Joint Res 2020; 9:71-76. [PMID: 32435457 PMCID: PMC7229308 DOI: 10.1302/2046-3758.92.bjr-2019-0201.r1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Aims The purpose of this study was to determine whether intracellular Staphylococcus aureus is associated with recurrent infection in a rat model of open fracture. Methods After stabilizing with Kirschner wire, we created a midshaft femur fracture in Sprague-Dawley rats and infected the wound with green fluorescent protein (GFP)-tagged S. aureus. After repeated debridement and negative swab culture was achieved, the isolation of GFP-containing cells from skin, bone marrow, and muscle was then performed. The composition and viability of intracellular S. aureus in isolated GFP-positive cells was assessed. We suppressed the host immune system and observed whether recurrent infection would occur. Finally, rats were assigned to one of six treatment groups (a combination of antibiotic treatment and implant removal/retention). The proportion of successful eradication was determined. Results Green fluorescent protein-containing cells were successfully isolated after the swab culture was negative from skin (n = 0, 0%), muscle (n = 10, 100%), and bone marrow (n = 10, 100%) of a total of ten rats. The phagocytes were predominant in GFP-positive cells from muscle (73%) and bone marrow (81%) with a significantly higher viability of intracellular S. aureus (all p-values < 0.001). The recurrent infection occurred in up to 75% of rats after the immunosuppression. The proportion of successful eradication was not associated with implant retention or removal, and the efficacy of linezolid in eradicating intracellular S. aureus is significantly higher than that of vancomycin. Conclusion Intracellular S. aureus is associated with recurrent infection in the rat model of open fracture. Usage of linezolid, a membrane-permeable antibiotic, is an effective strategy against intracellular S. aureus. Cite this article:Bone Joint Res. 2020;9(2):71–76.
Collapse
Affiliation(s)
- Tao Gao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Junqing Lin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Changqing Zhang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hongyi Zhu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xianyou Zheng
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
85
|
Bongiorno D, Musso N, Lazzaro LM, Mongelli G, Stefani S, Campanile F. Detection of methicillin-resistant Staphylococcus aureus persistence in osteoblasts using imaging flow cytometry. Microbiologyopen 2020; 9:e1017. [PMID: 32237200 PMCID: PMC7221431 DOI: 10.1002/mbo3.1017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/01/2020] [Accepted: 02/10/2020] [Indexed: 11/10/2022] Open
Abstract
Methicillin-resistant S. aureus has been reported as the main pathogen involved in chronic infections, osteomyelitis, and prosthetic joint infections. The host/pathogen interaction is dynamic and requires several changes to promote bacterial survival. Here, we focused on the internalization and persistence behavior of well-characterized Staphylococcus aureus invasive strains belonging to the main ST-MRSA-SCCmec clones. To overcome the limitations of the cell culture method, we comparatively analyzed the ability of internalization within human MG-63 osteoblasts with imaging flow cytometry (IFC). After evaluation by cell culture assay, the MRSA clones in the study were all able to readily internalize at 3h postinfection, the persistence of intracellular bacteria was evaluated at 24h both by routine cell culture and IFC assay, after vancomycin-BODIPY staining. A statistical difference of persistence was found in ST5-SCCmecII (26.59%), ST228-SCCmecI (20.25%), ST8-SCCmecIV (19.52%), ST239-SCCmecIII (47.82%), and ST22-SCCmecIVh (50.55%) showing the same ability to internalize as ATCC12598 (51%), the invasive isolate used as control strain for invasion and persistence assays. We demonstrated that the intracellular persistence process depends on the total number of infected cells. Comparing our data obtained by IFC with those of the cell culture assay, we obtained greater reproducibility rates and a number of intracellular bacteria, with the advantage of analyzing live host cells. Moreover, with some limitations related to the lack of whole-genome sequencing analysis, we validated the different proclivities to persist in the main Italian HA-MRSA invasive isolates and our results highlighted the heterogeneity of the different clones to persist during cell infection.
Collapse
Affiliation(s)
- Dafne Bongiorno
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Medical Molecular Microbiology and Antibiotic Resistance Laboratory (MMARLab), University of Catania, Catania, Italy
| | - Nicolò Musso
- Bio-nanotech Research and Innovation Tower (BRIT), University of Catania, Catania, Italy
| | - Lorenzo Mattia Lazzaro
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Medical Molecular Microbiology and Antibiotic Resistance Laboratory (MMARLab), University of Catania, Catania, Italy
| | - Gino Mongelli
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Medical Molecular Microbiology and Antibiotic Resistance Laboratory (MMARLab), University of Catania, Catania, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Medical Molecular Microbiology and Antibiotic Resistance Laboratory (MMARLab), University of Catania, Catania, Italy.,Bio-nanotech Research and Innovation Tower (BRIT), University of Catania, Catania, Italy
| | - Floriana Campanile
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Medical Molecular Microbiology and Antibiotic Resistance Laboratory (MMARLab), University of Catania, Catania, Italy
| |
Collapse
|
86
|
Gaidar D, Jonas A, Akulenko R, Ruffing U, Herrmann M, Helms V, von Müller L. Analysis of the dynamics of Staphylococcus aureus binding to white blood cells using whole blood assay and geno-to-pheno mapping. Int J Med Microbiol 2020; 310:151411. [DOI: 10.1016/j.ijmm.2020.151411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/02/2019] [Accepted: 02/03/2020] [Indexed: 12/28/2022] Open
|
87
|
Marchetti M, De Bei O, Bettati S, Campanini B, Kovachka S, Gianquinto E, Spyrakis F, Ronda L. Iron Metabolism at the Interface between Host and Pathogen: From Nutritional Immunity to Antibacterial Development. Int J Mol Sci 2020; 21:E2145. [PMID: 32245010 PMCID: PMC7139808 DOI: 10.3390/ijms21062145] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 02/08/2023] Open
Abstract
Nutritional immunity is a form of innate immunity widespread in both vertebrates and invertebrates. The term refers to a rich repertoire of mechanisms set up by the host to inhibit bacterial proliferation by sequestering trace minerals (mainly iron, but also zinc and manganese). This strategy, selected by evolution, represents an effective front-line defense against pathogens and has thus inspired the exploitation of iron restriction in the development of innovative antimicrobials or enhancers of antimicrobial therapy. This review focuses on the mechanisms of nutritional immunity, the strategies adopted by opportunistic human pathogen Staphylococcus aureus to circumvent it, and the impact of deletion mutants on the fitness, infectivity, and persistence inside the host. This information finally converges in an overview of the current development of inhibitors targeting the different stages of iron uptake, an as-yet unexploited target in the field of antistaphylococcal drug discovery.
Collapse
Affiliation(s)
- Marialaura Marchetti
- Interdepartmental Center Biopharmanet-TEC, University of Parma, 43124 Parma, Italy; (M.M.); (S.B.)
| | - Omar De Bei
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (O.D.B.); (B.C.)
| | - Stefano Bettati
- Interdepartmental Center Biopharmanet-TEC, University of Parma, 43124 Parma, Italy; (M.M.); (S.B.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Institute of Biophysics, National Research Council, 56124 Pisa, Italy
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| | - Barbara Campanini
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (O.D.B.); (B.C.)
| | - Sandra Kovachka
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (S.K.); (E.G.); (F.S.)
| | - Eleonora Gianquinto
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (S.K.); (E.G.); (F.S.)
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (S.K.); (E.G.); (F.S.)
| | - Luca Ronda
- Interdepartmental Center Biopharmanet-TEC, University of Parma, 43124 Parma, Italy; (M.M.); (S.B.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Institute of Biophysics, National Research Council, 56124 Pisa, Italy
| |
Collapse
|
88
|
Hofstee MI, Muthukrishnan G, Atkins GJ, Riool M, Thompson K, Morgenstern M, Stoddart MJ, Richards RG, Zaat SAJ, Moriarty TF. Current Concepts of Osteomyelitis: From Pathologic Mechanisms to Advanced Research Methods. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1151-1163. [PMID: 32194053 DOI: 10.1016/j.ajpath.2020.02.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 01/18/2023]
Abstract
Osteomyelitis is an inflammation of the bone and bone marrow that is most commonly caused by a Staphylococcus aureus infection. Much of our understanding of the underlying pathophysiology of osteomyelitis, from the perspective of both host and pathogen, has been revised in recent years, with notable discoveries including the role played by osteocytes in the recruitment of immune cells, the invasion and persistence of S. aureus in submicron channels of cortical bone, and the diagnostic role of polymorphonuclear cells in implant-associated osteomyelitis. Advanced in vitro cell culture models, such as ex vivo culture models or organoids, have also been developed over the past decade, and have become widespread in many fields, including infectious diseases. These models better mimic the in vivo environment, allow the use of human cells, and can reduce our reliance on animals in osteomyelitis research. In this review, we provide an overview of the main pathologic concepts in osteomyelitis, with a focus on the new discoveries in recent years. Furthermore, we outline the value of modern in vitro cell culture techniques, with a focus on their current application to infectious diseases and osteomyelitis in particular.
Collapse
Affiliation(s)
- Marloes I Hofstee
- AO Research Institute Davos, Davos, Switzerland; Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research and Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York
| | - Gerald J Atkins
- Centre for Orthopaedic and Trauma Research, University of Adelaide, Adelaide, South Australia, Australia
| | - Martijn Riool
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | | | - Mario Morgenstern
- Department of Orthopedic Surgery and Traumatology, University Hospital Basel, Basel, Switzerland
| | | | | | - Sebastian A J Zaat
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | | |
Collapse
|
89
|
Molecular Epidemiology of Staphylococcus aureus Lineages in Wild Animals in Europe: A Review. Antibiotics (Basel) 2020; 9:antibiotics9030122. [PMID: 32183272 PMCID: PMC7148531 DOI: 10.3390/antibiotics9030122] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus is an opportunist pathogen that is responsible for numerous types of infections. S. aureus is known for its ability to easily acquire antibiotic resistance determinants. Methicillin-resistant S. aureus (MRSA) is a leading cause of infections both in humans and animals and is usually associated with a multidrug-resistant profile. MRSA dissemination is increasing due to its capability of establishing new reservoirs and has been found in humans, animals and the environment. Despite the fact that the information on the incidence of MRSA in the environment and, in particular, in wild animals, is scarce, some studies have reported the presence of these strains among wildlife with no direct contact with antibiotics. This shows a possible transmission between species and, consequently, a public health concern. The aim of this review is to better understand the distribution, prevalence and molecular lineages of MRSA in European free-living animals.
Collapse
|
90
|
Staphylococcus Aureus Bacteriuria as a Predictor of In-Hospital Mortality in Patients with Staphylococcus Aureus Bacteremia. Results of a Retrospective Cohort Study. J Clin Med 2020; 9:jcm9020508. [PMID: 32069840 PMCID: PMC7074291 DOI: 10.3390/jcm9020508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/05/2020] [Accepted: 02/09/2020] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus bloodstream infection (SA-BSI) is an infection with increasing morbidity and mortality. Concomitant Staphylococcus aureus bacteriuria (SABU) frequently occurs in patients with SA-BSI. It is considered as either a sign of exacerbation of SA-BSI or a primary source in terms of urosepsis. The clinical implications are still under investigation. In this study, we investigated the role of SABU in patients with SA-BSI and its effect on the patients' mortality. We performed a retrospective cohort study that included all patients in our university hospital (Charité Universitätsmedizin Berlin) between 1 January 2014 and 31 March 2017. We included all patients with positive blood cultures for Staphylococcus aureus who had a urine culture 48 h before or after the first positive blood culture. We identified cases while using the microbiology database and collected additional demographic and clinical parameters, retrospectively, from patient files and charts. We conducted univariate analyses and multivariable Cox regression analysis to evaluate the risk factors for in-hospital mortality. 202 patients met the eligibility criteria. Overall, 55 patients (27.5%) died during their hospital stay. Cox regression showed SABU (OR 2.3), Pitt Bacteremia Score (OR 1.2), as well as moderate to severe liver disease (OR 2.1) to be independent risk factors for in-hospital mortality. Our data indicates that SABU in patients with concurrent SA-BSI is a prognostic marker for in-hospital death. Further studies are needed for evaluating implications for therapeutic optimization.
Collapse
|
91
|
Cai J, Li J, Zhou Y, Wang J, Li J, Cui L, Meng X, Zhu G, Wang H. Staphylococcus aureus facilitates its survival in bovine macrophages by blocking autophagic flux. J Cell Mol Med 2020; 24:3460-3468. [PMID: 31997584 PMCID: PMC7131951 DOI: 10.1111/jcmm.15027] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/16/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022] Open
Abstract
Staphylococcus aureus is a pathogen that is the causative agent of several human and veterinary infections and plays a critical role in the clinical and subclinical mastitis of cattle. Autophagy is a conserved pathogen defence mechanism in eukaryotes. Studies have reported that S aureus can subvert autophagy and survive in cells. Staphylococcus aureus survival in cells is an important cause of chronic persistent mastitis infection. However, it is unclear whether S aureus can escape autophagy in innate immune cells. In this study, initiation of autophagy due to the presence of S aureus was detected in bovine macrophages. We observed autophagic vacuoles increased after S aureus infection of bovine macrophages by transmission electron microscopy (TEM). It was also found that S aureus‐infected bovine macrophages increased the expression of LC3 at different times(0, 0.5, 1, 1.5, 2, 2.5, 3 and 4 hours). Data also showed the accumulation of p62 induced by S aureus infection. Application of autophagy regulatory agents showed that the degradation of p62 was blocked in S aureus induced bovine macrophages. In addition, we also found that the accumulation of autophagosomes promotes S aureus to survive in macrophage cells. In conclusion, this study indicates that autophagy occurs in S aureus‐infected bovine macrophages but is blocked at a later stage of autophagy. The accumulation of autophagosomes facilitates the survival of S aureus in bovine macrophages. These findings provide new insights into the interaction of S aureus with autophagy in bovine macrophages.
Collapse
Affiliation(s)
- Juan Cai
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jun Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yuqi Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Luying Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xia Meng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
92
|
Treffon J, Chaves-Moreno D, Niemann S, Pieper DH, Vogl T, Roth J, Kahl BC. Importance of superoxide dismutases A and M for protection of Staphylococcus aureus in the oxidative stressful environment of cystic fibrosis airways. Cell Microbiol 2020; 22:e13158. [PMID: 31895486 DOI: 10.1111/cmi.13158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/18/2022]
Abstract
Staphylococcus aureus is one of the earliest pathogens that persists the airways of cystic fibrosis (CF) patients and contributes to increased inflammation and decreased lung function. In contrast to other staphylococci, S. aureus possesses two superoxide dismutases (SODs), SodA and SodM, with SodM being unique to S. aureus. Both SODs arm S. aureus for its fight against oxidative stress, a by-product of inflammatory reactions. Despite complex investigations, it is still unclear if both enzymes are crucial for the special pathogenicity of S. aureus. To investigate the role of both SODs during staphylococcal persistence in CF airways, we analysed survival and gene expression of S. aureus CF isolates and laboratory strains in different CF-related in vitro and ex vivo settings. Bacteria located in inflammatory and oxidised CF sputum transcribed high levels of sodA and sodM. Especially expression values of sodM were remarkably higher in CF sputum than in bacterial in vitro cultures. Interestingly, also S. aureus located in airway epithelial cells expressed elevated transcript numbers of both SODs, indicating that S. aureus is exposed to oxidative stress at various sites within CF airways. Both enzymes promoted survival of S. aureus during polymorphonuclear leukocyte killing and seem to act compensatory, thereby giving evidence that the interwoven interaction of SodA and SodM contributes to S. aureus virulence and facilitates S. aureus persistence within CF airways.
Collapse
Affiliation(s)
- Janina Treffon
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Diego Chaves-Moreno
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Dietmar Helmut Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thomas Vogl
- Institute of Immunology, University Hospital Münster, Münster, Germany
| | - Johannes Roth
- Institute of Immunology, University Hospital Münster, Münster, Germany
| | - Barbara C Kahl
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| |
Collapse
|
93
|
Dubois J, Dubois M. Levonadifloxacin (WCK 771) exerts potent intracellular activity against Staphylococcus aureus in THP-1 monocytes at clinically relevant concentrations. J Med Microbiol 2019; 68:1716-1722. [DOI: 10.1099/jmm.0.001102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
94
|
ClpC affects the intracellular survival capacity of Staphylococcus aureus in non-professional phagocytic cells. Sci Rep 2019; 9:16267. [PMID: 31700127 PMCID: PMC6838064 DOI: 10.1038/s41598-019-52731-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/22/2019] [Indexed: 12/22/2022] Open
Abstract
Invasion and persistence of bacteria within host cells requires that they adapt to life in an intracellular environment. This adaptation induces bacterial stress through events such as phagocytosis and enhanced nutrient-restriction. During stress, bacteria synthesize a family of proteins known as heat shock proteins (HSPs) to facilitate adaptation and survival. Previously, we determined the Staphylococcus aureus HSP ClpC temporally alters bacterial metabolism and persistence. This led us to hypothesize that ClpC might alter intracellular survival. Inactivation of clpC in S. aureus strain DSM20231 significantly enhanced long-term intracellular survival in human epithelial (HaCaT) and endothelial (EA.hy926) cell lines, without markedly affecting adhesion or invasion. This phenotype was similar across a genetically diverse collection of S. aureus isolates, and was influenced by the toxin/antitoxin encoding locus mazEF. Importantly, MazEF alters mRNA synthesis and/or stability of S. aureus virulence determinants, indicating ClpC may act through the mRNA modulatory activity of MazEF. Transcriptional analyses of total RNAs isolated from intracellular DSM20231 and isogenic clpC mutant cells identified alterations in transcription of α-toxin (hla), protein A (spa), and RNAIII, consistent with the hypothesis that ClpC negatively affects the intracellular survival of S. aureus in non-professional phagocytic cells, via modulation of MazEF and Agr.
Collapse
|
95
|
Rigaill J, Morgene MF, Gavid M, Lelonge Y, He Z, Carricajo A, Grattard F, Pozzetto B, Berthelot P, Botelho-Nevers E, Verhoeven PO. Intracellular activity of antimicrobial compounds used for Staphylococcus aureus nasal decolonization. J Antimicrob Chemother 2019; 73:3044-3048. [PMID: 30124897 DOI: 10.1093/jac/dky318] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/11/2018] [Indexed: 01/04/2023] Open
Abstract
Background Staphylococcus aureus is able to invade mammalian cells during infection and was recently observed inside nasal mucosa of healthy carriers. Objectives To determine the intracellular activity of antimicrobial compounds used for decolonization procedures using a cell model mimicking S. aureus nasal epithelium invasion. Patients and methods HaCaT cells and human nasal epithelial cells (HNECs) recovered from nasal swabs of S. aureus carriers were visualized by confocal laser scanning microscopy to detect intracellular S. aureus cells. An HaCaT cell model, mimicking S. aureus internalization observed ex vivo in HNECs, was used to assess the intracellular activity against S. aureus of 21 antimicrobial compounds used for nasal decolonization, including mupirocin and chlorhexidine. Results HaCaT cells and HNECs were found to internalize S. aureus with the same focal pattern. Most antimicrobial compounds tested on HaCaT cells were shown to have weak activity against intracellular S. aureus. Some systemic antimicrobials, including fusidic acid, clindamycin, linezolid, minocycline, ciprofloxacin, moxifloxacin, rifampicin and levofloxacin, reduced S. aureus intracellular loads by 0.43-1.66 log cfu/106 cells compared with the control (P < 0.001). By contrast, mupirocin and chlorhexidine reduced the S. aureus intracellular load by 0.19 and 0.23 log cfu/106 cells, respectively. Conclusions These data indicate that most of the antimicrobial compounds used for nasal decolonization, including mupirocin and chlorhexidine, exhibit weak activity against intracellular S. aureus using the HaCaT cell model. This work emphasizes the need to better understand the role of the S. aureus intracellular reservoir during nasal colonization in order to improve decolonization procedures.
Collapse
Affiliation(s)
- J Rigaill
- Group for Mucosal Immunity and Pathogen Agents (GIMAP), EA 3064, University of Lyon, St-Etienne, France.,Laboratory of Infectious Agents and Hygiene, University Hospital of St-Etienne, St-Etienne cedex 02, France
| | - M F Morgene
- Laboratory of Infectious Agents and Hygiene, University Hospital of St-Etienne, St-Etienne cedex 02, France
| | - M Gavid
- Department of Ear Nose Throat Surgery, University Hospital of St-Etienne, St-Etienne cedex 02, France
| | - Y Lelonge
- Department of Ear Nose Throat Surgery, University Hospital of St-Etienne, St-Etienne cedex 02, France
| | - Z He
- Corneal Graft Biology, Engineering and Imaging Laboratory (BiiGC), EA2521, University of Lyon, St-Etienne, France
| | - A Carricajo
- Group for Mucosal Immunity and Pathogen Agents (GIMAP), EA 3064, University of Lyon, St-Etienne, France.,Laboratory of Infectious Agents and Hygiene, University Hospital of St-Etienne, St-Etienne cedex 02, France
| | - F Grattard
- Group for Mucosal Immunity and Pathogen Agents (GIMAP), EA 3064, University of Lyon, St-Etienne, France.,Laboratory of Infectious Agents and Hygiene, University Hospital of St-Etienne, St-Etienne cedex 02, France
| | - B Pozzetto
- Group for Mucosal Immunity and Pathogen Agents (GIMAP), EA 3064, University of Lyon, St-Etienne, France.,Laboratory of Infectious Agents and Hygiene, University Hospital of St-Etienne, St-Etienne cedex 02, France
| | - P Berthelot
- Group for Mucosal Immunity and Pathogen Agents (GIMAP), EA 3064, University of Lyon, St-Etienne, France.,Department of Infectious Diseases, University Hospital of St-Etienne, St-Etienne cedex 02, France
| | - E Botelho-Nevers
- Group for Mucosal Immunity and Pathogen Agents (GIMAP), EA 3064, University of Lyon, St-Etienne, France.,Department of Infectious Diseases, University Hospital of St-Etienne, St-Etienne cedex 02, France
| | - P O Verhoeven
- Group for Mucosal Immunity and Pathogen Agents (GIMAP), EA 3064, University of Lyon, St-Etienne, France.,Laboratory of Infectious Agents and Hygiene, University Hospital of St-Etienne, St-Etienne cedex 02, France
| |
Collapse
|
96
|
Al Kindi A, Alkahtani AM, Nalubega M, El-Chami C, O'Neill C, Arkwright PD, Pennock JL. Staphylococcus aureus Internalized by Skin Keratinocytes Evade Antibiotic Killing. Front Microbiol 2019; 10:2242. [PMID: 31608046 PMCID: PMC6771413 DOI: 10.3389/fmicb.2019.02242] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/12/2019] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus causes the majority of skin and soft tissue infections. Half of patients treated for primary skin infections suffer recurrences within 6 months despite appropriate antibiotic sensitivities and infection control measures. We investigated whether S. aureus internalized by human skin keratinocytes are effectively eradicated by standard anti-staphylococcal antibiotics. S. aureus, but not S. epidermidis, were internalized and survive within keratinocytes without inducing cytotoxicity or releasing the IL-33 danger signal. Except for rifampicin, anti-staphylococcal antibiotics in regular clinical use, including flucloxacillin, teicoplanin, clindamycin, and linezolid, did not kill internalized S. aureus, even at 20-fold their standard minimal inhibitory concentration. We conclude that internalization of S. aureus by human skin keratinocytes allows the bacteria to evade killing by most anti-staphylococcal antibiotics. Antimicrobial strategies, including antibiotic combinations better able to penetrate into mammalian cells are required if intracellular S. aureus are to be effectively eradicated and recurrent infections prevented.
Collapse
Affiliation(s)
- Arwa Al Kindi
- Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, United Kingdom.,Division of Infection, Immunity and Respiratory Medicine, The University of Manchester, Manchester, United Kingdom
| | | | - Mayimuna Nalubega
- Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, United Kingdom.,Division of Infection, Immunity and Respiratory Medicine, The University of Manchester, Manchester, United Kingdom
| | - Cecile El-Chami
- Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester, United Kingdom
| | - Catherine O'Neill
- Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester, United Kingdom
| | - Peter D Arkwright
- Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, United Kingdom.,Division of Infection, Immunity and Respiratory Medicine, The University of Manchester, Manchester, United Kingdom
| | - Joanne L Pennock
- Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, United Kingdom.,Division of Infection, Immunity and Respiratory Medicine, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
97
|
Tavakolian A, Heydari S, Siavoshi F, Brojeni GN, Sarrafnejad A, Eftekhar F, Khormali M. Localization of Staphylococcus inside the vacuole of Candida albicans by immunodetection and FISH. INFECTION GENETICS AND EVOLUTION 2019; 75:104014. [PMID: 31446135 DOI: 10.1016/j.meegid.2019.104014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 01/04/2023]
Abstract
In our previous study, two bacteria B1 and B2 were excised from two amphotericin B-treated Candida albicans Y1 and Y2, respectively. Bacteria were identified as B1: Staphylococcus hominis and B2: Staphylococcus haemolyticus according to their biochemical characteristics and detection and sequencing of Staphylococcus-specific genes. In this study the intracellular origin of staphylococci inside the vacuole of yeast was examined. Polyclonal antibodies against S. hominis and S. haemolyticus were raised in rabbit and used for detection of staphylococcal proteins in protein pool of yeasts by western blotting (WB). Fluorescein-isothiocyanate (FITC)-conjugated antibodies were used for bacterial localization inside yeast's vacuole by direct immunofluorescence (DIF). Fluorescent in situ hybridization (FISH) with Staphylococcaceae -specific probe was performed for validation of immunodetection results. WB results showed occurrence of several proteins in protein pool of yeasts that were similar to staphylococcal proteins such as those with molecular weight of 57.5 and 66 kDa. Fluorescent microscopy showed interactions of FITC-antibodies with intracellular staphylococci which appeared as green spots. Hybridization of staphylococcal- specific probe with bacteria inside yeasts' vacuole confirmed immunodetection results. Detection of staphylococcal proteins and genes inside Candida albicans yeast indicates existence of intracellular bacteria inside the vacuole of yeast. These results suggest C. albicans as the potential reservoir of medically important bacteria.
Collapse
Affiliation(s)
- Atefeh Tavakolian
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Samira Heydari
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Farideh Siavoshi
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran.
| | - Gholamreza Nikbakht Brojeni
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Abdolfatah Sarrafnejad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Eftekhar
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Mahmood Khormali
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
98
|
Otopathogenic Staphylococcus aureus Invades Human Middle Ear Epithelial Cells Primarily through Cholesterol Dependent Pathway. Sci Rep 2019; 9:10777. [PMID: 31346200 PMCID: PMC6658548 DOI: 10.1038/s41598-019-47079-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/26/2019] [Indexed: 01/20/2023] Open
Abstract
Chronic suppurative otitis media (CSOM) is one of the most common infectious diseases of the middle ear especially affecting children, leading to delay in language development and communication. Although Staphylococcus aureus is the most common pathogen associated with CSOM, its interaction with middle ear epithelial cells is not well known. In the present study, we observed that otopathogenic S. aureus has the ability to invade human middle ear epithelial cells (HMEECs) in a dose and time dependent manner. Scanning electron microscopy demonstrated time dependent increase in the number of S. aureus on the surface of HMEECs. We observed that otopathogenic S. aureus primarily employs a cholesterol dependent pathway to colonize HMEECs. In agreement with these findings, confocal microscopy showed that S. aureus colocalized with lipid rafts in HMEECs. The results of the present study provide new insights into the pathogenesis of S. aureus induced CSOM. The availability of in vitro cell culture model will pave the way to develop novel effective treatment modalities for CSOM beyond antibiotic therapy.
Collapse
|
99
|
Mikkaichi T, Yeaman MR, Hoffmann A. Identifying determinants of persistent MRSA bacteremia using mathematical modeling. PLoS Comput Biol 2019; 15:e1007087. [PMID: 31295255 PMCID: PMC6622483 DOI: 10.1371/journal.pcbi.1007087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 05/10/2019] [Indexed: 11/18/2022] Open
Abstract
Persistent bacteremia caused by Staphylococcus aureus (SA), especially methicillin-resistant SA (MRSA), is a significant cause of morbidity and mortality. Despite susceptibility phenotypes in vitro, persistent MRSA strains fail to clear with appropriate anti-MRSA therapy during bacteremia in vivo. Thus, identifying the factors that cause such MRSA persistence is of direct and urgent clinical relevance. To address the dynamics of MRSA persistence in the face of host immunity and typical antibiotic regimens, we developed a mathematical model based on the overarching assumption that phenotypic heterogeneity is a hallmark of MRSA persistence. First, we applied an ensemble modeling approach and obtained parameter sets that satisfied the condition of a minimum inoculum dose to establish infection. Second, by simulating with the selected parameter sets under vancomycin therapy which follows clinical practices, we distinguished the models resulting in resolving or persistent bacteremia, based on the total SA exceeding a detection limit after five days of treatment. Third, to find key determinants that discriminate resolving and persistent bacteremia, we applied a machine learning approach and found that the immune clearance rate of persister cells is a key feature. But, fourth, when relapsing bacteremia was considered, the growth rate of persister cells was also found to be a key feature. Finally, we explored pharmacological strategies for persistent and relapsing bacteremia and found that a persister killer, but not a persister formation inhibitor, could provide for an effective cure the persistent bacteremia. Thus, to develop better clinical solutions for MRSA persistence and relapse, our modeling results indicate that we need to better understand the pathogen-host interactions of persister MRSAs in vivo. Staphylococcus aureus causes potentially lethal infections of the bloodstream and target organs when able to enter the body, often via skin trauma or catheterization. Methicillin-resistant Staphylococcus aureus (MRSA) resist common antibiotics, but are often successfully treated with vancomycin. However, in some MRSA patients, vancomycin is less effective. This results in persistent bacteremia, even though the isolates can be effectively killed in vitro. MRSA bacteria are thought to switch between two forms, normal and persister cells, that are genetically identical. Persisters, the minor subpopulation, are slow-growing and show lower susceptibility to vancomycin than normal MRSA. To understand the dynamic interplay between the two bacterial populations when challenged by host immunity and vancomycin treatment, we developed a mathematical model and analyzed it in simulations of clinically relevant scenarios. Our work suggests that the immune clearance rate of persister MRSA rather than the MRSA switch rate is a key determinant to establish persistent bacteremia. The model also suggests that increasing killing rate of persisters is a promising therapeutic strategy. Our findings emphasize the need to better understand the interactions of persister MRSAs with host cells and immune responses in vivo.
Collapse
Affiliation(s)
- Tsuyoshi Mikkaichi
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, United States of America
- * E-mail: (TM); (AH)
| | - Michael R. Yeaman
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Divisions of Molecular Medicine and Infectious Diseases, Harbor-UCLA Medical Center, Torrance, California, United States of America
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Alexander Hoffmann
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- * E-mail: (TM); (AH)
| | | |
Collapse
|
100
|
Leimer N, Zinkernagel AS. Reply to Perez and Patel. J Infect Dis 2019; 215:490-491. [PMID: 27974435 DOI: 10.1093/infdis/jiw504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 10/13/2016] [Indexed: 11/12/2022] Open
Affiliation(s)
- Nadja Leimer
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Annelies S Zinkernagel
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
| |
Collapse
|