51
|
Wultańska D, Piotrowski M, Pituch H. The effect of berberine chloride and/or its combination with vancomycin on the growth, biofilm formation, and motility of Clostridioides difficile. Eur J Clin Microbiol Infect Dis 2020; 39:1391-1399. [PMID: 32140903 PMCID: PMC7303057 DOI: 10.1007/s10096-020-03857-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/21/2020] [Indexed: 02/08/2023]
Abstract
This study aims to investigate the antimicrobial and antibiofilm activity of berberine chloride (BBR) and vancomycin (VAN) as well as synergistic combinations of BBR with VAN against Clostridioides difficile strains. The effect of different concentrations of BBR on strain motility was also assessed. Twelve C. difficile strains (two reference C. difficile 630, ATCC 9689, and one control M120, and 9 clinical C. difficile strains belonging to the PCR-ribotype (RT027)) were collected and investigated for their susceptibility to BBR and VAN in planktonic and biofilm forms. Both the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of BBR for the C. difficile strains were found to vary over a broad range (256–1.024 mg/L and 256–16.384 mg/L, respectively). The MIC and MBC of VAN also varied greatly, ranging from 0.25 to 4.0 mg/L for MIC and 0.25 to 64.0 mg/L for MBC. The synergistic effect of the sub-MIC (1/2 MIC) BBR with VAN reduced of MICs of VAN against the planktonic forms of ten C. difficile strains. The sub-MIC of BBR enhanced the biofilm formation of one strain and was found to be statistically significant. In addition, the sub-MIC of BBR with VAN surprisingly enhanced the biofilm formation of one C. difficile strain. The effect of inhibition of motility in the presence of BBR was statistically significant for 3 clinical strains (p < 0.05). Altogether, BBR exhibited strong antimicrobial activity against C. difficile, and the analysis of the combination of BBR with VAN showed a synergistic effect.
Collapse
Affiliation(s)
- Dorota Wultańska
- Department of Medical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | - Michał Piotrowski
- Department of Medical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | - Hanna Pituch
- Department of Medical Microbiology, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
52
|
Jarmo O, Veli-Jukka A, Eero M. Treatment of Clostridioides (Clostridium) difficile infection. Ann Med 2020; 52:12-20. [PMID: 31801387 PMCID: PMC7877971 DOI: 10.1080/07853890.2019.1701703] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/29/2019] [Accepted: 11/24/2019] [Indexed: 02/06/2023] Open
Abstract
Clostridioides (formerly: Clostridium) difficile infection (CDI) is a major cause of diarrhoea for inpatients as well as outpatients. Usually, CDI is healthcare-associated but the number of community-acquired infections is increasing. CDI is generally associated with changes in the normal intestinal microbiota caused by administration of antibiotics. Elderly and immunocompromised patients are at greater risk for CDI and CDI recurrence. Recently, the treatment options of CDI have undergone major changes: current recommendations speak against using metronidazole for primary CDI, fidaxomicin and bezlotoxumab have been added to the treatment armamentarium and microbial replacement therapies have emerged. Several other therapies are undergoing clinical trials. In this article, we review current treatment guidelines, present the most recent data on the options to treat CDI and glance towards future developments.KEY MESSAGESThe cornerstones for the treatment of CDI are vancomycin and fidaxomicin. Metronidazole should be used only in mild-to-moderate disease in younger patients who have no or only few risk factors for recurrence.In recurrent CDI, bezlotoxumab infusion (a monoclonal antibody against C. difficile toxin B) may be considered as an adjunctive therapeutic strategy in addition to the standard care provided to patients with several risk factors for recurrence.Faecal microbiota transplantation (FMT) should be offered to patients with frequently recurring CDI.
Collapse
Affiliation(s)
- Oksi Jarmo
- Department of Infectious Diseases, Turku University Hospital, University of Turku, Turku, Finland
| | - Anttila Veli-Jukka
- Department of Infectious Diseases, Helsinki University Central Hospital, Helsinki, Finland
| | - Mattila Eero
- Department of Infectious Diseases, Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
53
|
Luo Y, Cheong E, Bian Q, Collins DA, Ye J, Shin JH, Yam WC, Takata T, Song X, Wang X, Kamboj M, Gottlieb T, Jiang J, Riley TV, Tang YW, Jin D. Different molecular characteristics and antimicrobial resistance profiles of Clostridium difficile in the Asia-Pacific region. Emerg Microbes Infect 2020; 8:1553-1562. [PMID: 31662120 PMCID: PMC6830245 DOI: 10.1080/22221751.2019.1682472] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Molecular epidemiology of Clostridium difficile infection (CDI) has been extensively studied in North America and Europe; however, limited data on CDI are available in the Asia-Pacific region. A multicentre retrospective study was conducted in this region. C. difficile isolates were subjected to multilocus sequence typing (ST) and antimicrobial susceptibility testing. Totally, 394 isolates were collected from Hangzhou, Hong Kong, China; Busan, South Korea; Fukuoka, Japan; Singapore; Perth, Sydney, Australia; New York, the United States. C. difficile isolates included 337 toxin A-positive/B-positive/binary toxin-negative (A+B+CDT-), 48 A-B+CDT-, and nine A+B+CDT+. Distribution of dominant STs varied geographically with ST17 in Fukuoka (18.6%), Busan (56.0%), ST2 in Sydney (20.4%), Perth (25.8%). The antimicrobial resistance patterns were significantly different among the eight sites (χ2 = 325.64, p < 0.001). Five major clonal complexes correlated with unique antimicrobial resistances. Healthcare-associated (HA) CDI was mainly from older patients with more frequent antimicrobial use and higher A-B+ positive rates. Higher resistance to gatifloxacin, tetracycline, and erythromycin were observed in HA-CDI patients (χ2 = 4.76-7.89, p = 0.005-0.029). In conclusion, multiple C. difficile genotypes with varied antimicrobial resistance patterns have been circulating in the Asia-Pacific region. A-B+ isolates from older patients with prior antimicrobial use were correlated with HA-CDI.
Collapse
Affiliation(s)
- Yun Luo
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, People's Republic of China.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Elaine Cheong
- Department of Infectious Diseases & Microbiology, Concord Repatriation General Hospital, Concord, Australia.,Sydney Medical School, University of Sydney, Sydney, Australia
| | - Qiao Bian
- School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Deirdre A Collins
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Julian Ye
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, People's Republic of China
| | - Jeong Hwan Shin
- Department of Laboratory Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea.,Paik Institute for Clinical Research, Inje University College of Medicine, Busan, Republic of Korea
| | - Wing Cheong Yam
- Department of Microbiology, Queen Mary Hospital, Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Tohru Takata
- Department of Infection Control, Fukuoka University Hospital, Fukuoka, Japan.,Division of Infectious Diseases, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Xiaojun Song
- Centre of Laboratory Medicine, Zhejiang Provincial People Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Xianjun Wang
- Department of Laboratory Medicine, Hangzhou First People's Hospital, Hangzhou, People's Republic of China
| | - Mini Kamboj
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | - Thomas Gottlieb
- Department of Infectious Diseases & Microbiology, Concord Repatriation General Hospital, Concord, Australia.,Sydney Medical School, University of Sydney, Sydney, Australia
| | - Jianmin Jiang
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, People's Republic of China.,Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Hangzhou, People's Republic of China
| | - Thomas V Riley
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.,School of Veterinary and Life Sciences, Murdoch University, Murdoch, Australia.,Department of Microbiology, PathWest Laboratory Medicine, Nedlands, Australia
| | - Yi-Wei Tang
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | - Dazhi Jin
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, People's Republic of China.,Centre of Laboratory Medicine, Zhejiang Provincial People Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, People's Republic of China.,Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Hangzhou, People's Republic of China.,School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, People's Republic of China
| |
Collapse
|
54
|
Novakova E, Stefkovicova M, Kopilec MG, Novak M, Kotlebova N, Kuijper E, Krutova M. The emergence of Clostridium difficile ribotypes 027 and 176 with a predominance of the Clostridium difficile ribotype 001 recognized in Slovakia following the European standardized Clostridium difficile infection surveillance of 2016. Int J Infect Dis 2020; 90:111-115. [PMID: 31707136 PMCID: PMC6912155 DOI: 10.1016/j.ijid.2019.10.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 12/26/2022] Open
Abstract
AIM To obtain standardized epidemiological data for Clostridium difficile infection (CDI) in Slovakia. METHODS Between October and December 2016, 36 hospitals in Slovakia used the European Centre for Disease Prevention and Control (ECDC) Clostridium difficile infection (CDI) surveillance protocol. RESULTS The overall mean CDI incidence density was 2.8 (95% confidence interval 1.9-3.9) cases per 10 000 patient-days. Of 332 CDI cases, 273 (84.9%) were healthcare-associated, 45 (15.1%) were community-associated, and 14 (4.2%) were cases of recurrent CDI. A complicated course of CDI was reported in 14.8% of cases (n=51). CDI outcome data were available for 95.5% of cases (n=317). Of the 35 patients (11.1%) who died, 34 did so within 30 days after their CDI diagnosis. Of the 78 isolates obtained from 12 hospitals, 46 belonged to PCR ribotype 001 (59.0%; 11 hospitals) and 23 belonged to ribotype 176 (29.5%; six hospitals). A total of 73 isolates (93.6%) showed reduced susceptibility to moxifloxacin (ribotypes 001 and 176; p< 0.01). A reduced susceptibility to metronidazole was observed in 13 isolates that subsequently proved to be metronidazole-susceptible when, after thawing, they were retested using the agar dilution method. No reduced susceptibility to vancomycin was found. CONCLUSIONS These results show the emergence of C. difficile ribotypes 027 and 176 with a predominance of ribotype 001 in Slovakia in 2016. Given that an almost homogeneous reduced susceptibility to moxifloxacin was detected in C. difficile isolates, this stresses the importance of reducing fluoroquinolone prescriptions in Slovak healthcare settings.
Collapse
Affiliation(s)
- Elena Novakova
- Department of Microbiology and Immunology, Comenius University, Jessenius Faculty of Medicine in Martin, Slovakia
| | - Maria Stefkovicova
- Department of Epidemiology, Regional Public Health Authority, Trenčín, Slovakia; Department of Laboratory Medicine and Public Health, Faculty of Health Care, Alexander Dubcek University, Trenčín, Slovakia
| | | | - Martin Novak
- Department of Public Health, Comenius University, Jessenius Faculty of Medicine in Martin, Slovakia
| | - Nina Kotlebova
- Department of Microbiology and Immunology, Comenius University, Jessenius Faculty of Medicine in Martin, Slovakia
| | - Ed Kuijper
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Marcela Krutova
- Department of Medical Microbiology, Charles University in Prague, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic.
| |
Collapse
|
55
|
Nana T, Moore C, Boyles T, Brink AJ, Cleghorn J, Devenish LM, du Toit B, Fredericks ES, Lekalakala-Mokaba MR, Maluleka C, Rajabally MN, Reubenson G, Shuping L, Swart K, Swe Han KS, Wadula J, Wojno J, Lowman W. South African Society of Clinical Microbiology Clostridioides difficile infection diagnosis, management and infection prevention and control guideline. S Afr J Infect Dis 2020; 35:219. [PMID: 34485483 PMCID: PMC8378053 DOI: 10.4102/sajid.v35i1.219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/24/2020] [Indexed: 12/17/2022] Open
Abstract
Clostridioides difficile infection (CDI) is a problem in both developed and developing countries and is a common hospital-acquired infection. This guideline provides evidence-based practical recommendations for South Africa and other developing countries. The scope of the guideline includes CDI diagnostic approaches; adult, paediatric and special populations treatment options; and surveillance and infection prevention and control recommendations.
Collapse
Affiliation(s)
- Trusha Nana
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Charlotte Maxeke Johannesburg Academic Hospital Microbiology Laboratory, National Health Laboratory Services, Johannesburg, South Africa
| | | | - Tom Boyles
- Department of Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Adrian J. Brink
- Department of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Joy Cleghorn
- Life Healthcare Group, Johannesburg, South Africa
| | - Lesley M. Devenish
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Infection Control Services Laboratory, National Health Laboratory Services, Johannesburg, South Africa
| | | | - Ernst S. Fredericks
- Department of Physiology, Faculty of Science, Nelson Mandela University, Port Elizabeth, South Africa
| | - Molebogeng R. Lekalakala-Mokaba
- Department of Microbiology, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Pretoria, South Africa
- Dr George Mukhari Academic Hospital Microbiology Laboratory, National Health Laboratory Services, Pretoria, South Africa
| | - Caroline Maluleka
- Department of Microbiology, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Pretoria, South Africa
- Dr George Mukhari Academic Hospital Microbiology Laboratory, National Health Laboratory Services, Pretoria, South Africa
| | | | - Gary Reubenson
- Department of Paediatrics and Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Liliwe Shuping
- Centre for Healthcare-Associated Infections, National Institute for Communicable Diseases, a division of National Health Laboratory Service, Johannesburg, South Africa
| | - Karin Swart
- Netcare Hospitals Limited, Johannesburg, South Africa
| | - Khine Swe Swe Han
- Medical Microbiology Department, Inkosi Albert Luthuli Central Hospital Academic Complex, National Health Laboratory Services, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Jeannette Wadula
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Chris Hani Baragwanath Hospital Microbiology Laboratory, National Health Laboratory Services, Johannesburg, South Africa
| | | | - Warren Lowman
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Clinical Microbiology, PathCare/Vermaak Pathologists, Johannesburg, South Africa
- Department of Clinical Microbiology and Infection Prevention and Control, WITS Donald Gordon Medical Centre, Johannesburg, South Africa
| |
Collapse
|
56
|
Crobach MJT, Notermans DW, Harmanus C, Sanders IMJG, De Greeff SC, Kuijper EJ. Community-Onset Clostridioides Difficile Infection in Hospitalized Patients in The Netherlands. Open Forum Infect Dis 2019; 6:ofz501. [PMID: 31844637 PMCID: PMC6904416 DOI: 10.1093/ofid/ofz501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 11/25/2019] [Indexed: 02/04/2023] Open
Abstract
Background Clostridioides difficile infection (CDI) is increasingly reported in the community. The aim of this study was to analyze characteristics of hospitalized patients with community-onset CDI (CO-CDI). Methods In the Netherlands, 24 hospitals (university-affiliated and general hospitals) participate in the sentinel CDI surveillance program. Clinical characteristics and 30-day outcomes of hospitalized patients >2 years old diagnosed with CDI are registered. Samples of these patients are sent to the national reference laboratory for polymerase chain reaction ribotyping. Data obtained for this surveillance from May 2012 to May 2018 were used to compare CO-CDI with hospital-onset (HO)-CDI episodes. Results Of 5405 registered cases, 2834 (52.4%) were reported as HO-CDI, 2174 (40.2%) were CO-CDI, and 339 (6.3%) had onset of symptoms in another healthcare facility (eg, nursing home). The proportion of CO-CDI increased over the years and was lower during winter months. Hospitalized patients with CO-CDI were younger (63.8 vs 68.0 years, P < .001) and more often females (53.0% vs 49.6%, P = .02) than patients with HO-CDI. Median time between onset of symptoms and CDI testing was longer in CO-CDI (4 vs 1 day, P < .001). Similar ribotypes were found in CO-CDI and HO-CDI, but ribotype 001 was more frequent among HO-CDI, whereas ribotype 023 was more frequent in CO-CDI. Six of 7 (85.7%) surgeries due to CDI, 27 of 50 (54%) ICU admissions due to CDI, and 48 of 107 (44.9%) of CDI-associated deaths were attributable to CO-CDI. Conclusions Our study demonstrates that patients hospitalized with CO-CDI contribute substantially to the total number of CDI episodes and CDI-associated complications in hospitals, stressing the need for awareness and early testing for CDI in community and outpatient settings and also in patients admitted from community with diarrhoea. Surveillance programs that also target nonhospitalized CDI patients are needed to understand the true burden and dynamics of CDI.
Collapse
Affiliation(s)
- M J T Crobach
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - D W Notermans
- Centre for Infectious Disease Control, the National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - C Harmanus
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - I M J G Sanders
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - S C De Greeff
- Centre for Infectious Disease Control, the National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - E J Kuijper
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
57
|
Barbanti F, Spigaglia P. Microbiological characteristics of human and animal isolates of Clostridioides difficile in Italy: Results of the Istituto Superiore di Sanità in the years 2006-2016. Anaerobe 2019; 61:102136. [PMID: 31857201 DOI: 10.1016/j.anaerobe.2019.102136] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/29/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022]
Abstract
The increased incidence of Clostridioides difficile infection (CDI) and the emergence of highly virulent types highlight the need of microbiological characterization to gain insight CDI epidemiological changes. This paper, reporting data obtained by the Istituto Superiore di Sanità Central Laboratory Service for C. difficile (ISS-CLSCD) in 2006-2016, provides a first long-term microbiological analysis of human and animal C. difficile strains circulating in Italy. The number of human isolates analyzed by ISS-CLSCD significantly increased over the time (170 in 2006-2011 vs 661 in 2012-2016). Independently from the year of isolation, 42% of the clinical isolates belonged to the PCR-ribotype (RT) 018-lineage (RT 018, RT 607, RT 541, PR07661 and PR14328), with RT 018 and RT 607 grouping the majority of isolates. This lineage was significantly associated to CDIs occurred in the General Medicine Units, Clinic Units or Long-Term Care Facilities, while it was rarely found in pediatric patients. Although the percentage of isolates positive for the binary toxin (CDT) was stable during the study (20%), several CDT-positive RTs emerged in 2012-2016, including RT 027. In total, 32 RTs overlapped between animals and humans and six of these RTs were non-toxigenic. The two lineages prevalent in animals, the RT 078-lineage and the RT 569-lineage (RT 569, RT 049, RT 056 and RT 727), were also found in humans, while the RT 018-lineage was rarely detected in animals, suggesting that it is prevalently associated to human infections. Sixty-two percent of clinical isolates showed a multidrug-resistance (MDR) phenotype, with resistance to rifampicin characterizing successful RTs. A MDR phenotype was also observed in 18% of animal isolates, in particular from dogs, supporting animals as potential reservoirs of resistant C. difficile strains. Interestingly, multiple resistances were observed in both human and animal non-toxigenic isolates suggesting their contribution to antibiotic resistance spread among C. difficile population. All these data indicate that CDI is an issue of growing concern in Italy, highlighting the need for a standardized surveillance in our Country and an interdisciplinary approach to deal successfully with this infection.
Collapse
Affiliation(s)
- Fabrizio Barbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Patrizia Spigaglia
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
58
|
Antibiotic resistance of clinical isolates of Clostridioides difficile in China and its association with geographical regions and patient age. Anaerobe 2019; 60:102094. [PMID: 31499177 DOI: 10.1016/j.anaerobe.2019.102094] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/20/2019] [Accepted: 08/30/2019] [Indexed: 12/20/2022]
Abstract
It is known that antibiotic usage is associated with the development of Clostridioides difficile infection (CDI), especially clindamycin, third-generation cephalosporins, and fuoroquinolones. Antibiotic resistance rates to many antibiotics varies a lot by study. We performed a study focused on antibiotic resistance in clinical isolates of C. difficile from more widespread geographic regions across China. Of 319 C. difficile isolates tested against 11 antibiotics, 313 (98.1%) were resistant to at least one antibiotic. The highest rate of resistance was to ciprofloxacin, clindamycin, and erythromycin across all age groups, similar to previous studies. However, all isolates were susceptible to metronidazole and vancomycin. Overall the resistance rate to tested antibiotics was lower than other reports in China except for chloramphenicol and meropenem. Genotype ST37/RT017 in clade 4 was resistant to more antibiotics than other types. Unexpectedly, RT078 isolates in this study were susceptible to almost all tested antibiotics. In addition, the proportion of multi-drug resistant (MDR) isolates observed (17%) in this study was much lower than several European studies (up to 55%) and a previous study in China (78%). Although isolates from patients aged between 65 and 85 were more resistant to antibiotics in comparison to other age groups, MDR isolates were still detected in children below 2-years of age. The highest percentage of MDR isolates was determined in South China, an area that is most developed economically. The clade 4, RT017 (ST37) has been associated with outbreaks in Europe and North America and is responsible for most C. difficile infections (CDIs) in Asia. In addition, RT017 is often clindamycin and fluoroquinolone resistant. This study provided a relatively comprehensive description of antibiotic resistance of C. difficile in China, and further elucidates the epidemiology and antibiotic resistance of clinical isolates of C. difficile in China at a national level.
Collapse
|
59
|
Krutova M, Wilcox MH, Kuijper EJ. A two-step approach for the investigation of a Clostridium difficile outbreak by molecular methods. Clin Microbiol Infect 2019; 25:1300-1301. [PMID: 31369805 DOI: 10.1016/j.cmi.2019.07.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 11/25/2022]
Affiliation(s)
- M Krutova
- Department of Medical Microbiology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic; European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Study Group for Clostridioides difficile (ESGCD).
| | - M H Wilcox
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Study Group for Clostridioides difficile (ESGCD); Leeds Teaching Hospitals NHS Trust & University of Leeds, Leeds, United Kingdom
| | - E J Kuijper
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Study Group for Clostridioides difficile (ESGCD); Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| |
Collapse
|
60
|
Tratulyte S, Miciuleviciene J, Kuisiene N. First genotypic characterization of toxigenic Clostridioides difficile in Lithuanian hospitals reveals the prevalence of the hypervirulent ribotype 027/ST1. Eur J Clin Microbiol Infect Dis 2019; 38:1953-1959. [DOI: 10.1007/s10096-019-03633-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 07/08/2019] [Indexed: 12/14/2022]
|
61
|
Imwattana K, Wangroongsarb P, Riley TV. High prevalence and diversity of tcdA-negative and tcdB-positive, and non-toxigenic, Clostridium difficile in Thailand. Anaerobe 2019; 57:4-10. [PMID: 30862468 DOI: 10.1016/j.anaerobe.2019.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 02/05/2023]
Abstract
Studies on the prevalence and diversity of Clostridium difficile in Thailand have been limited to those derived from a few tertiary hospitals in Central Thailand. In this study, 145 C. difficile isolates collected in 13 provinces in Thailand during 2006-2018 were characterized by ribotyping and detection of toxin genes. Minimum inhibitory concentrations of eight antimicrobial agents were determined also for all 100 C. difficile strains collected from 2006 until 2015. Of the 145 strains of C. difficile, 71 (49%) were non-toxigenic, 46 (32%) were toxin A-negative, toxin B-positive (A-B+) and 28 (19%) were A+B+. No binary toxin-positive strain was found. The most common ribotype (RT) was RT 017 (A-B+CDT-, 19%, 28/145). Besides RT 017, 20 novel non-toxigenic and A-B+ ribotyping profiles, which may be related to RT 017 by the similarity of ribotyping profile, were identified. All C. difficile strains remained susceptible to metronidazole and vancomycin, however, a slight increase in MIC for metronidazole was seen in both toxigenic and non-toxigenic strains (overall MIC50/90 0.25/0.25 mg/L during 2006-2010 compared to overall MIC50/90 1.0/2.0 mg/L during 2011-2015). There was a high rate of fluoroquinolone resistance among RT 017 strains (77%), but there was little resistance among non-toxigenic strains. These results suggest that RT 017 is endemic in Thailand, and that the misuse of fluoroquinolones may lead to outbreaks of RT 017 infection in this country. Further studies on non-toxigenic C. difficile are needed to understand whether they have a role in the pathogenesis of C. difficile infection in Asia.
Collapse
Affiliation(s)
- Korakrit Imwattana
- School of Biomedical Sciences, The University of Western Australia, Western Australia, 6009, Australia
| | - Piyada Wangroongsarb
- The National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Thomas V Riley
- School of Biomedical Sciences, The University of Western Australia, Western Australia, 6009, Australia; School of Veterinary and Life Sciences, Murdoch University, Western Australia, 6150, Australia; School of Medical and Health Sciences, Edith Cowan University, Western Australia, 6027, Australia; Department of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Western Australia, 6009, Australia.
| |
Collapse
|
62
|
Berger FK, Gfrörer S, Becker SL, Baldan R, Cirillo DM, Frentrup M, Steglich M, Engling P, Nübel U, Mellmann A, Bischoff M, Gärtner B, von Müller L. Hospital outbreak due to Clostridium difficile ribotype 018 (RT018) in Southern Germany. Int J Med Microbiol 2019; 309:189-193. [PMID: 30879971 DOI: 10.1016/j.ijmm.2019.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/18/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
Clostridium (Clostridioides) difficile is the main cause of nosocomial diarrhoea. Ribotype 018 (RT018) has been recognized as the predominant strain responsible for C. difficile infection (CDI) in Italy, whereas in most other European countries only sporadic RT018 cases occur. Between August and October 2015, a suspected C. difficile outbreak at two associated hospitals in Southern Germany was investigated by comprehensive molecular typing. Surprisingly, RT018 was detected in 9/82 CDI patients, which has never been described before in a German outbreak. Phenotypic analysis revealed fluoroquinolone and macrolide resistance. Genetic subtyping using multiple-locus variable-number tandem-repeat analysis (MLVA) and whole genome sequencing (WGS) was performed and outbreak isolates were directly compared to sporadic German RT018 isolates and to epidemic ones from Milan, Northern Italy. Molecular typing confirmed a hospital outbreak with closely related RT018 isolates. Both, MLVA and WGS revealed high similarity of outbreak strains with epidemic isolates from Italy, but low similarity to other German isolates. Comparison between both typing strategies showed that ribotyping in combination with MLVA was appropriate to identify related isolates and clonal complexes, whereas WGS provided a better discrimination with more detailed information about the phylogenetic relationship of isolates. This is the first hospital outbreak in Germany presumably caused by cross-national transmission of an Italian epidemic RT018 strain.
Collapse
Affiliation(s)
- Fabian K Berger
- Institute of Medical Microbiology and Hygiene, National Reference Centre for Clostridium difficile, Saarland University, Kirrberger Straße, Building 43, 66421 Homburg, Saar, Germany.
| | - Sabine Gfrörer
- Regionale Kliniken Holding RKH GmbH, Ludwigsburg, Germany
| | - Sören L Becker
- Institute of Medical Microbiology and Hygiene, National Reference Centre for Clostridium difficile, Saarland University, Kirrberger Straße, Building 43, 66421 Homburg, Saar, Germany; Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland; University of Basel, P.O. Box, CH-4003 Basel, Switzerland
| | - Rossella Baldan
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Via Olgettina Milano 60, 20132 Italy
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Via Olgettina Milano 60, 20132 Italy
| | | | - Matthias Steglich
- Leibniz Institute DSMZ, Inhoffenstraße 7B, 38124 Braunschweig, Germany; German Centre for Infection Research (DZIF), Partner site Braunschweig-Hannover, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Pit Engling
- Leibniz Institute DSMZ, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Ulrich Nübel
- Leibniz Institute DSMZ, Inhoffenstraße 7B, 38124 Braunschweig, Germany; German Centre for Infection Research (DZIF), Partner site Braunschweig-Hannover, Inhoffenstraße 7, 38124 Braunschweig, Germany; Braunschweig Integrated Centre of Systems Biology (BRICS), Technical University Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Alexander Mellmann
- Institute of Hygiene, University Hospital Münster, National Reference Centre for Clostridium difficile, Robert-Koch-Straße 41, 48149 Münster, Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, National Reference Centre for Clostridium difficile, Saarland University, Kirrberger Straße, Building 43, 66421 Homburg, Saar, Germany
| | - Barbara Gärtner
- Institute of Medical Microbiology and Hygiene, National Reference Centre for Clostridium difficile, Saarland University, Kirrberger Straße, Building 43, 66421 Homburg, Saar, Germany
| | - Lutz von Müller
- Institute of Medical Microbiology and Hygiene, National Reference Centre for Clostridium difficile, Saarland University, Kirrberger Straße, Building 43, 66421 Homburg, Saar, Germany; Institute for Laboratory Medicine, Microbiology and Hygiene, National Reference Centre for Clostridium difficile, Christophorus Kliniken, Südwall 22, 48653 Coesfeld, Germany
| |
Collapse
|
63
|
Barbut F, Day N, Bouée S, Youssouf A, Grandvoinnet L, Lalande V, Couturier J, Eckert C. Toxigenic Clostridium difficile carriage in general practice: results of a laboratory-based cohort study. Clin Microbiol Infect 2019; 25:588-594. [PMID: 30616013 DOI: 10.1016/j.cmi.2018.12.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/08/2018] [Accepted: 12/17/2018] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Reported rates of community-acquired Clostridium difficile infections (CDIs) have been increasing. However, the true burden of the disease in general practice is unknown in France. Our objective was to determine the incidence of toxigenic C. difficile carriage and the percentage of stool samples prescribed by general practitioners (GPs) which contained free C. difficile toxins. METHODS During an 11-month period, all stool samples submitted for any enteric pathogen detection to 15 different private laboratories in Paris and the surrounding areas were tested for C. difficile, irrespective of the GPs' request. A clinical questionnaire was completed for each patient. Stool samples were screened using a rapid simultaneous glutamate dehydrogenase and toxins A/B detection test: any positive result (glutamate dehydrogenase or toxin) was further confirmed by the stool cytotoxicity assay (CTA) on MRC-5 cells and by toxigenic culture (TC) at a central laboratory. The C. difficile isolates were characterized by PCR ribotyping. RESULTS A total of 2541 patients (1295 female, 1246 male) were included. The incidences of patients with a positive toxigenic culture and a positive CTA were 3.27% (95% CI 2.61%-4.03%) and 1.81% (95% CI 1.33%-2.41%), respectively. GPs requested C. difficile testing in only 12.93% of the stool samples, detecting 52.30% of all TC-positive patients. The 83 toxigenic C. difficile strains belonged to 36 different PCR ribotypes. CONCLUSIONS Toxigenic C. difficile carriage is frequent in general practice but remains under-recognized. It may affect young patients without previous antimicrobial therapy or hospitalization.
Collapse
Affiliation(s)
- F Barbut
- National Reference Laboratory for Clostridium difficile, Paris, France; Department of Bacteriology, AP-HP, Saint-Antoine Hospital, Hôpitaux Universitaires de l'Est Parisien, Paris, France; INSERM 1139, Université Paris Descartes, Paris, France.
| | - N Day
- Laboratory of Chemin Vert, Paris, France
| | - S Bouée
- CEMKA-EVAL, Bourg la Reine, France
| | - A Youssouf
- National Reference Laboratory for Clostridium difficile, Paris, France; Department of Bacteriology, AP-HP, Saint-Antoine Hospital, Hôpitaux Universitaires de l'Est Parisien, Paris, France
| | | | - V Lalande
- Department of Bacteriology, AP-HP, Saint-Antoine Hospital, Hôpitaux Universitaires de l'Est Parisien, Paris, France
| | - J Couturier
- National Reference Laboratory for Clostridium difficile, Paris, France; Department of Bacteriology, AP-HP, Saint-Antoine Hospital, Hôpitaux Universitaires de l'Est Parisien, Paris, France
| | - C Eckert
- National Reference Laboratory for Clostridium difficile, Paris, France; Department of Bacteriology, AP-HP, Saint-Antoine Hospital, Hôpitaux Universitaires de l'Est Parisien, Paris, France; Sorbonne Université, Centre d'immunologie et des Maladies Infectieuses-Paris (CIMI), Paris, France.
| |
Collapse
|
64
|
Corver J, Sen J, Hornung BVH, Mertens BJ, Berssenbrugge EKL, Harmanus C, Sanders IMJG, Kumar N, Lawley TD, Kuijper EJ, Hensbergen PJ, Nicolardi S. Identification and validation of two peptide markers for the recognition of Clostridioides difficile MLST-1 and MLST-11 by MALDI-MS. Clin Microbiol Infect 2018; 25:904.e1-904.e7. [PMID: 31130255 DOI: 10.1016/j.cmi.2018.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/08/2018] [Accepted: 10/13/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Clostridioides difficile infection (CDI) has become the main cause of nosocomial infective diarrhoea. To survey and control the spread of different C. difficile strains, there is a need for suitable rapid tests. The aim of this study was to identify peptide/protein markers for the rapid recognition of C. difficile strains by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). METHODS We analysed 44 well-characterized strains, belonging to eight different multi-locus sequence types (MLST), using ultrahigh-resolution Fourier transform ion cyclotron resonance (FTICR) MS. The amino acid sequence of two peptide markers specific for MLST-1 and MLST-11 strains was elucidated by MALDI-TOF-MS/MS. The investigation of 2689 C. difficile genomes allowed the determination of the sensitivity and specificity of these markers. C18-solid-phased extraction was used to enrich the MLST-1 marker. RESULTS Two peptide markers (m/z 4927.81 and m/z 5001.84) were identified and characterized for MLST-1 and MLST-11 strains, respectively. The MLST-1 marker was found in 786 genomes of which three did not belong to MLST-1. The MLST-11 marker was found in 319 genomes, of which 14 did not belong to MLST-11. Importantly, all MLST-1 and MLST-11 genomes were positive for their respective marker. Furthermore, a peptide marker (m/z 5015.86) specific for MLST-15 was found in 59 genomes. We translated our findings into a fast and simple method that allowed the unambiguous identification of the MLST-1 marker on a MALDI-TOF-MS platform. CONCLUSIONS MALDI-FTICR MS-based peptide profiling resulted in the identification of peptide markers for C. difficile MLST-1 and MLST-11.
Collapse
Affiliation(s)
- J Corver
- Leiden University Medical Centre, Centre of Infectious Diseases, Department Medical Microbiology, Section Experimental Bacteriology, Leiden, the Netherlands; Centre for Microbiota Analysis and Therapeutics, Department Medical Microbiology, Leiden University, Leiden, the Netherlands
| | - J Sen
- Leiden University Medical Centre, Centre for Proteomics and Metabolomics, Leiden, the Netherlands
| | - B V H Hornung
- Leiden University Medical Centre, Centre of Infectious Diseases, Department Medical Microbiology, Section Experimental Bacteriology, Leiden, the Netherlands; Centre for Microbiota Analysis and Therapeutics, Department Medical Microbiology, Leiden University, Leiden, the Netherlands
| | - B J Mertens
- Leiden University Medical Centre, Department of Medical Statistics and Bioinformatics, Leiden, the Netherlands
| | - E K L Berssenbrugge
- Leiden University Medical Centre, Centre of Infectious Diseases, Department Medical Microbiology, Section Experimental Bacteriology, Leiden, the Netherlands
| | - C Harmanus
- Leiden University Medical Centre, Centre of Infectious Diseases, Department Medical Microbiology, Section Experimental Bacteriology, Leiden, the Netherlands
| | - I M J G Sanders
- Leiden University Medical Centre, Centre of Infectious Diseases, Department Medical Microbiology, Section Experimental Bacteriology, Leiden, the Netherlands
| | - N Kumar
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - T D Lawley
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - E J Kuijper
- Leiden University Medical Centre, Centre of Infectious Diseases, Department Medical Microbiology, Section Experimental Bacteriology, Leiden, the Netherlands; Centre for Microbiota Analysis and Therapeutics, Department Medical Microbiology, Leiden University, Leiden, the Netherlands
| | - P J Hensbergen
- Leiden University Medical Centre, Centre for Proteomics and Metabolomics, Leiden, the Netherlands.
| | - S Nicolardi
- Leiden University Medical Centre, Centre for Proteomics and Metabolomics, Leiden, the Netherlands.
| |
Collapse
|
65
|
Bouza E, Muñoz P, Burillo A. Role of the Clinical Microbiology Laboratory in Antimicrobial Stewardship. Med Clin North Am 2018; 102:883-898. [PMID: 30126578 DOI: 10.1016/j.mcna.2018.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For adequate antimicrobial stewardship, microbiology needs to move from the laboratory to become physically and verbally amenable to the caregivers of an institution. Herein, we describe the contributions of our microbiology department to the antimicrobial stewardship program of a large teaching hospital as 10 main points ranging from the selection of patients deemed likely to benefit from a fast track approach, to their clinical samples, or the rapid reporting of results via a microbiology hotline, to rapid searches for pathogens and susceptibility testing. These points should serve as guidelines for similar programs designed to decrease the unnecessary use of antimicrobials.
Collapse
Affiliation(s)
- Emilio Bouza
- Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, Madrid 28040, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Doctor Esquerdo, 46, Madrid 28007, Spain; Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Doctor Esquerdo 46, Madrid 28007, Spain; CIBER de Enfermedades Respiratorias (CIBERES CB06/06/0058), Doctor Esquerdo 46, Madrid 28007, Spain.
| | - Patricia Muñoz
- Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, Madrid 28040, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Doctor Esquerdo, 46, Madrid 28007, Spain; Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Doctor Esquerdo 46, Madrid 28007, Spain; CIBER de Enfermedades Respiratorias (CIBERES CB06/06/0058), Doctor Esquerdo 46, Madrid 28007, Spain
| | - Almudena Burillo
- Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, Madrid 28040, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Doctor Esquerdo, 46, Madrid 28007, Spain; Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Doctor Esquerdo 46, Madrid 28007, Spain
| |
Collapse
|
66
|
Krehelova M, Nyč O, Sinajová E, Krutova M. The predominance and clustering of Clostridioides (Clostridium) difficile PCR ribotype 001 isolates in three hospitals in Eastern Slovakia, 2017. Folia Microbiol (Praha) 2018; 64:49-54. [PMID: 29971567 DOI: 10.1007/s12223-018-0629-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/27/2018] [Indexed: 12/20/2022]
Abstract
This study aimed to implement a toxigenic culture as an optional third diagnostic step for glutamate dehydrogenase (GDH)-positive and toxin A/B-negative diarrheal stool samples into a diagnostic algorithm for Clostridioides (Clostridium) difficile infection (CDI), and to characterise C. difficile isolates for epidemiological purposes. During the 5-month study, 481 diarrhoeal stool samples from three Slovak hospitals were investigated and 66 non-duplicated GDH-positive stool samples were found. Of them, 36 were also toxin A/B-positive. Twenty-three GDH-positive and toxin A/B-negative stool samples were shown subsequently to be positive following toxigenic culture (TC). Molecular characterisation of C. difficile isolates showed the predominance of PCR ribotype (RT) 001 (n = 37, 56.1%) and the occurrence of RT 176 (n = 3, 4.5%). C. difficile RT 001 isolates clustered to eight clonal complexes (CCs) using multiple-locus variable-number tandem repeats analysis (MLVA). Interestingly, one third of RT 001 isolates clustering in these CCs were cultured from toxin A/B-negative stool samples. Our observations highlight the need of use multiple step diagnostic algorithm in CDI diagnosis in order to detect all CDI cases and to avoid the spread of C. difficile in healthcare settings.
Collapse
Affiliation(s)
| | - Otakar Nyč
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06, Prague 5, Czech Republic
| | - Eva Sinajová
- Department of Microbiology, Medirex Group, Kosice, Slovakia
| | - Marcela Krutova
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06, Prague 5, Czech Republic.
| |
Collapse
|