51
|
Turi L. On the applicability of one- and many-electron quantum chemistry models for hydrated electron clusters. J Chem Phys 2016; 144:154311. [PMID: 27389224 DOI: 10.1063/1.4945780] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- László Turi
- Department of Physical Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest 112, Hungary
| |
Collapse
|
52
|
Turi L. Hydrated Electrons in Water Clusters: Inside or Outside, Cavity or Noncavity? J Chem Theory Comput 2016; 11:1745-55. [PMID: 26889512 DOI: 10.1021/ct501160k] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In this work, we compare the applicability of three electron–water molecule pseudopotentials in modeling the physical properties of hydrated electrons. Quantum model calculations illustrate that the recently suggested Larsen–Glover–Schwartz (LGS) model and its modified m-LGS version have a too-attractive potential in the vicinity of the oxygen. As a result, LGS models predict a noncavity hydrated electron structure in clusters at room temperature, as seen from mixed one-electron quantum–classical molecular dynamics simulations of water cluster anions, with the electron localizing exclusively in the interior of the clusters. Comparative calculations using the cavity-preferring Turi–Borgis (TB) model predict interior-state and surface-state cluster isomers. The computed associated physical properties are also analyzed and compared to available experimental data. We find that the LGS and m-LGS potentials provide results that appear to be inconsistent with the size dependence of the experimental data. The simulated TB tendencies are qualitatively correct. Furthermore, ab initio calculations on static LGS noncavity structures indicate weak stabilization of the excess electron in regions where the LGS potential preferably and strongly binds the electron. TB calculations give stabilization energies that are in line with the ab initio results. In conclusion, we observe that the cavity-preferring pseudopotential model predicts cluster physical properties in better agreement with experimental data and ab initio calculations than the models predicting noncavity structures for the hydrated electron.
Collapse
|
53
|
Karashima S, Yamamoto YI, Suzuki T. Resolving Nonadiabatic Dynamics of Hydrated Electrons Using Ultrafast Photoemission Anisotropy. PHYSICAL REVIEW LETTERS 2016; 116:137601. [PMID: 27082002 DOI: 10.1103/physrevlett.116.137601] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Indexed: 05/05/2023]
Abstract
We have studied ultrafast nonadiabatic dynamics of excess electrons trapped in the band gap of liquid water using time- and angle-resolved photoemission spectroscopy. Anisotropic photoemission from the first excited state was discovered, which enabled unambiguous identification of nonadiabatic transition to the ground state in 60 fs in H_{2}O and 100 fs in D_{2}O. The photoelectron kinetic energy distribution exhibited a rapid spectral shift in ca. 20 fs, which is ascribed to the librational response of a hydration shell to electronic excitation. Photoemission anisotropy indicates that the electron orbital in the excited state is depolarized in less than 40 fs.
Collapse
Affiliation(s)
- Shutaro Karashima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, 606-8502 Kyoto, Japan
| | - Yo-Ichi Yamamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, 606-8502 Kyoto, Japan
| | - Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, 606-8502 Kyoto, Japan
| |
Collapse
|
54
|
Seidel R, Winter B, Bradforth SE. Valence Electronic Structure of Aqueous Solutions: Insights from Photoelectron Spectroscopy. Annu Rev Phys Chem 2016; 67:283-305. [PMID: 27023757 DOI: 10.1146/annurev-physchem-040513-103715] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The valence orbital electron binding energies of water and of embedded solutes are crucial quantities for understanding chemical reactions taking place in aqueous solution, including oxidation/reduction, transition-metal coordination, and radiation chemistry. Their experimental determination based on liquid-photoelectron spectroscopy using soft X-rays is described, and we provide an overview of valence photoelectron spectroscopy studies reported to date. We discuss principal experimental aspects and several theoretical approaches to compute the measured binding energies of the least tightly bound molecular orbitals. Solutes studied are presented chronologically, from simple electrolytes, via transition-metal ion solutions and several organic and inorganic molecules, to biologically relevant molecules, including aqueous nucleotides and their components. In addition to the lowest vertical ionization energies, the measured valence photoelectron spectra also provide information on adiabatic ionization energies and reorganization energies for the oxidation (ionization) half-reaction. For solutes with low solubility, resonantly enhanced ionization provides a promising alternative pathway.
Collapse
Affiliation(s)
- Robert Seidel
- Institute of Methods for Material Development, Helmholtz-Zentrum Berlin, D-12489 Berlin, Germany; ,
| | - Bernd Winter
- Institute of Methods for Material Development, Helmholtz-Zentrum Berlin, D-12489 Berlin, Germany; ,
| | - Stephen E Bradforth
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482;
| |
Collapse
|
55
|
Kumar A, Adhikary A, Shamoun L, Sevilla MD. Do Solvated Electrons (e(aq)⁻) Reduce DNA Bases? A Gaussian 4 and Density Functional Theory-Molecular Dynamics Study. J Phys Chem B 2016; 120:2115-23. [PMID: 26878197 PMCID: PMC4863935 DOI: 10.1021/acs.jpcb.5b11269] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The solvated electron (e(aq)⁻) is a primary intermediate after an ionization event that produces reductive DNA damage. Accurate standard redox potentials (E(o)) of nucleobases and of e(aq)⁻ determine the extent of reaction of e(aq)⁻ with nucleobases. In this work, E(o) values of e(aq)⁻ and of nucleobases have been calculated employing the accurate ab initio Gaussian 4 theory including the polarizable continuum model (PCM). The Gaussian 4-calculated E(o) of e(aq)⁻ (-2.86 V) is in excellent agreement with the experimental one (-2.87 V). The Gaussian 4-calculated E(o) of nucleobases in dimethylformamide (DMF) lie in the range (-2.36 V to -2.86 V); they are in reasonable agreement with the experimental E(o) in DMF and have a mean unsigned error (MUE) = 0.22 V. However, inclusion of specific water molecules reduces this error significantly (MUE = 0.07). With the use of a model of e(aq)⁻ nucleobase complex with six water molecules, the reaction of e(aq)⁻ with the adjacent nucleobase is investigated using approximate ab initio molecular dynamics (MD) simulations including PCM. Our MD simulations show that e(aq)⁻ transfers to uracil, thymine, cytosine, and adenine, within 10 to 120 fs and e(aq)⁻ reacts with guanine only when a water molecule forms a hydrogen bond to O6 of guanine which stabilizes the anion radical.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| | - Amitava Adhikary
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| | - Lance Shamoun
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| | - Michael D Sevilla
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| |
Collapse
|
56
|
Faust JA, Sobyra TB, Nathanson GM. Gas-Microjet Reactive Scattering: Collisions of HCl and DCl with Cool Salty Water. J Phys Chem Lett 2016; 7:730-735. [PMID: 26828574 DOI: 10.1021/acs.jpclett.5b02848] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Liquid microjets provide a powerful means to investigate reactions of gases with salty water in vacuum while minimizing gas-vapor collisions. We use this technique to explore the fate of gaseous HCl and DCl molecules impinging on 8 molal LiCl and LiBr solutions at 238 K. The experiments reveal that HCl or DCl evaporate infrequently if they become thermally accommodated at the surface of either solution. In particular, we observe minimal thermal desorption of HCl following HCl collisions and no distinct evidence for rapid, interfacial DCl→HCl exchange following DCl collisions. These results imply that surface thermal motions are not generally strong enough to propel momentarily trapped HCl or DCl back into the gas phase before they ionize and disappear into solution. Instead, only HCl and DCl molecules that scatter directly from the surface escape entry. These recoiling molecules transfer less energy upon collision to LiBr/H2O than to LiCl/H2O, reflecting the heavier mass of Br(-) than of Cl(-) in the interfacial region.
Collapse
Affiliation(s)
- Jennifer A Faust
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706-1322, United States
| | - Thomas B Sobyra
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706-1322, United States
| | - Gilbert M Nathanson
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706-1322, United States
| |
Collapse
|
57
|
Yamamoto YI, Karashima S, Adachi S, Suzuki T. Wavelength Dependence of UV Photoemission from Solvated Electrons in Bulk Water, Methanol, and Ethanol. J Phys Chem A 2016; 120:1153-9. [DOI: 10.1021/acs.jpca.5b09601] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yo-ichi Yamamoto
- Department
of Chemistry,
Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Shutaro Karashima
- Department
of Chemistry,
Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Shunsuke Adachi
- Department
of Chemistry,
Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Toshinori Suzuki
- Department
of Chemistry,
Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| |
Collapse
|
58
|
Elkins MH, Williams HL, Neumark DM. Dynamics of electron solvation in methanol: Excited state relaxation and generation by charge-transfer-to-solvent. J Chem Phys 2015; 142:234501. [DOI: 10.1063/1.4922441] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Madeline H. Elkins
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Holly L. Williams
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Daniel M. Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
59
|
Herbert JM. The Quantum Chemistry of Loosely-Bound Electrons. REVIEWS IN COMPUTATIONAL CHEMISTRY 2015. [DOI: 10.1002/9781118889886.ch8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
60
|
West AHC, Yoder BL, Luckhaus D, Saak CM, Doppelbauer M, Signorell R. Angle-Resolved Photoemission of Solvated Electrons in Sodium-Doped Clusters. J Phys Chem Lett 2015; 6:1487-1492. [PMID: 26263156 DOI: 10.1021/acs.jpclett.5b00477] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Angle-resolved photoelectron spectroscopy of the unpaired electron in sodium-doped water, methanol, ammonia, and dimethyl ether clusters is presented. The experimental observations and the complementary calculations are consistent with surface electrons for the cluster size range studied. Evidence against internally solvated electrons is provided by the photoelectron angular distribution. The trends in the ionization energies seem to be mainly determined by the degree of hydrogen bonding in the solvent and the solvation of the ion core. The onset ionization energies of water and methanol clusters do not level off at small cluster sizes but decrease slightly with increasing cluster size.
Collapse
Affiliation(s)
- Adam H C West
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Bruce L Yoder
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - David Luckhaus
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Clara-Magdalena Saak
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Maximilian Doppelbauer
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Ruth Signorell
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| |
Collapse
|
61
|
Park YI, Postupna O, Zhugayevych A, Shin H, Park YS, Kim B, Yen HJ, Cheruku P, Martinez JS, Park JW, Tretiak S, Wang HL. A new pH sensitive fluorescent and white light emissive material through controlled intermolecular charge transfer. Chem Sci 2015; 6:789-797. [PMID: 28936321 PMCID: PMC5592806 DOI: 10.1039/c4sc01911c] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/07/2014] [Indexed: 11/21/2022] Open
Abstract
A new, pH dependent and water-soluble, conjugated oligomer (amino, trimethylammonium oligophenylene vinylene, ATAOPV) was synthesized with a quaternary ammonium salt and an aromatic amine at the two ends of a π-conjugated oligomer, thus creating a strong dipole across the molecule. A unique white light LED is successfully fabricated from a stimuli responsive organic molecule whose emission properties are dominated by the pH value of the solution through controlled intermolecular charge transfer.
Collapse
Affiliation(s)
- Y I Park
- Physical Chemistry and Applied Spectroscopy (C-PCS) , Chemistry Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , USA .
| | - O Postupna
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , USA .
| | - A Zhugayevych
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , USA .
| | - H Shin
- Department of Chemistry/Display Research Center , Catholic University of Korea , Bucheon 420-743 , Republic of Korea
| | - Y-S Park
- Physical Chemistry and Applied Spectroscopy (C-PCS) , Chemistry Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , USA .
| | - B Kim
- Department of Chemistry/Display Research Center , Catholic University of Korea , Bucheon 420-743 , Republic of Korea
| | - H-J Yen
- Physical Chemistry and Applied Spectroscopy (C-PCS) , Chemistry Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , USA .
| | - P Cheruku
- Physical Chemistry and Applied Spectroscopy (C-PCS) , Chemistry Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , USA .
| | - J S Martinez
- Center for Integrated Nanotechnologies , Materials Physics and Applications Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , USA
| | - J W Park
- Department of Chemistry/Display Research Center , Catholic University of Korea , Bucheon 420-743 , Republic of Korea
| | - S Tretiak
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , USA .
| | - H-L Wang
- Physical Chemistry and Applied Spectroscopy (C-PCS) , Chemistry Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , USA .
| |
Collapse
|
62
|
Kothe A, Wilke M, Moguilevski A, Engel N, Winter B, Kiyan IY, Aziz EF. Charge transfer to solvent dynamics in iodide aqueous solution studied at ionization threshold. Phys Chem Chem Phys 2015; 17:1918-24. [DOI: 10.1039/c4cp02482f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The population of charge-transfer-to-solvent states in iodide aqueous solution can undergo via non-resonant multiphoton electronic excitation above the vacuum level.
Collapse
Affiliation(s)
- Alexander Kothe
- Joint Laboratory for Ultrafast Dynamics in Solutions and at Interfaces (JULiq)
- Institute of Methods for Material Development
- Helmholtz-Zentrum Berlin
- D-12489 Berlin
- Germany
| | - Martin Wilke
- Joint Laboratory for Ultrafast Dynamics in Solutions and at Interfaces (JULiq)
- Institute of Methods for Material Development
- Helmholtz-Zentrum Berlin
- D-12489 Berlin
- Germany
| | - Alexandre Moguilevski
- Joint Laboratory for Ultrafast Dynamics in Solutions and at Interfaces (JULiq)
- Institute of Methods for Material Development
- Helmholtz-Zentrum Berlin
- D-12489 Berlin
- Germany
| | - Nicholas Engel
- Joint Laboratory for Ultrafast Dynamics in Solutions and at Interfaces (JULiq)
- Institute of Methods for Material Development
- Helmholtz-Zentrum Berlin
- D-12489 Berlin
- Germany
| | - Bernd Winter
- Joint Laboratory for Ultrafast Dynamics in Solutions and at Interfaces (JULiq)
- Institute of Methods for Material Development
- Helmholtz-Zentrum Berlin
- D-12489 Berlin
- Germany
| | - Igor Yu. Kiyan
- Joint Laboratory for Ultrafast Dynamics in Solutions and at Interfaces (JULiq)
- Institute of Methods for Material Development
- Helmholtz-Zentrum Berlin
- D-12489 Berlin
- Germany
| | - Emad F. Aziz
- Joint Laboratory for Ultrafast Dynamics in Solutions and at Interfaces (JULiq)
- Institute of Methods for Material Development
- Helmholtz-Zentrum Berlin
- D-12489 Berlin
- Germany
| |
Collapse
|
63
|
Kothe A, Wilke M, Moguilevski A, Engel N, Winter B, Kiyan IY, Aziz EF. Reply to the ‘Comment on “Charge Transfer to Solvent Dynamics in Iodide Aqueous Solution Studied at Ionization Threshold”’ by A. Lübcke and H.-H. Ritze, Phys. Chem. Chem. Phys., 2015, 17, DOI: 10.1039/C5CP00346F. Phys Chem Chem Phys 2015. [DOI: 10.1039/c5cp01804h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Following multiphoton excitation above the vacuum threshold, the charge transfer dynamics involves the population of a transient intermediate state, |t〉.
Collapse
Affiliation(s)
- Alexander Kothe
- Joint Laboratory for Ultrafast Dynamics in Solutions and at Interfaces (JULiq)
- Institute of Methods for Material Development
- Helmholtz-Zentrum Berlin
- D-12489 Berlin
- Germany
| | - Martin Wilke
- Joint Laboratory for Ultrafast Dynamics in Solutions and at Interfaces (JULiq)
- Institute of Methods for Material Development
- Helmholtz-Zentrum Berlin
- D-12489 Berlin
- Germany
| | - Alexandre Moguilevski
- Joint Laboratory for Ultrafast Dynamics in Solutions and at Interfaces (JULiq)
- Institute of Methods for Material Development
- Helmholtz-Zentrum Berlin
- D-12489 Berlin
- Germany
| | - Nicholas Engel
- Joint Laboratory for Ultrafast Dynamics in Solutions and at Interfaces (JULiq)
- Institute of Methods for Material Development
- Helmholtz-Zentrum Berlin
- D-12489 Berlin
- Germany
| | - Bernd Winter
- Joint Laboratory for Ultrafast Dynamics in Solutions and at Interfaces (JULiq)
- Institute of Methods for Material Development
- Helmholtz-Zentrum Berlin
- D-12489 Berlin
- Germany
| | - Igor Yu. Kiyan
- Joint Laboratory for Ultrafast Dynamics in Solutions and at Interfaces (JULiq)
- Institute of Methods for Material Development
- Helmholtz-Zentrum Berlin
- D-12489 Berlin
- Germany
| | - Emad F. Aziz
- Joint Laboratory for Ultrafast Dynamics in Solutions and at Interfaces (JULiq)
- Institute of Methods for Material Development
- Helmholtz-Zentrum Berlin
- D-12489 Berlin
- Germany
| |
Collapse
|
64
|
Abstract
Solvated electrons were first discovered in solutions of metals in liquid ammonia. The physical and chemical properties of these species have been studied extensively for many decades using an arsenal of electrochemical, spectroscopic, and theoretical techniques. Yet, in contrast to their hydrated counterpart, the ultrafast dynamics of ammoniated electrons remained completely unexplored until quite recently. Femtosecond pump-probe spectroscopy on metal-ammonia solutions and femtosecond multiphoton ionization spectroscopy on the neat ammonia solvent have provided new insights into the optical properties and the reactivities of this fascinating species. This article reviews the nature of the optical transition, which gives the metal-ammonia solutions their characteristic blue appearance, in terms of ultrafast relaxation processes involving bound and continuum excited states. The recombination processes following the injection of an electron via photoionization of the solvent are discussed in the context of the electronic structure of the liquid and the anionic defect associated with the solvated electron.
Collapse
Affiliation(s)
- Peter Vöhringer
- Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität, 53115 Bonn, Germany;
| |
Collapse
|
65
|
On the electron affinity of cytosine in bulk water and at hydrophobic aqueous interfaces. J Mol Model 2014; 20:2453. [DOI: 10.1007/s00894-014-2453-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/01/2014] [Indexed: 10/24/2022]
|
66
|
Arrell CA, Ojeda J, Sabbar M, Okell WA, Witting T, Siegel T, Diveki Z, Hutchinson S, Gallmann L, Keller U, van Mourik F, Chapman RT, Cacho C, Rodrigues N, Turcu ICE, Tisch JWG, Springate E, Marangos JP, Chergui M. A simple electron time-of-flight spectrometer for ultrafast vacuum ultraviolet photoelectron spectroscopy of liquid solutions. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:103117. [PMID: 25362381 DOI: 10.1063/1.4899062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We present a simple electron time of flight spectrometer for time resolved photoelectron spectroscopy of liquid samples using a vacuum ultraviolet (VUV) source produced by high-harmonic generation. The field free spectrometer coupled with the time-preserving monochromator for the VUV at the Artemis facility of the Rutherford Appleton Laboratory achieves an energy resolution of 0.65 eV at 40 eV with a sub 100 fs temporal resolution. A key feature of the design is a differentially pumped drift tube allowing a microliquid jet to be aligned and started at ambient atmosphere while preserving a pressure of 10(-1) mbar at the micro channel plate detector. The pumping requirements for photoelectron (PE) spectroscopy in vacuum are presented, while the instrument performance is demonstrated with PE spectra of salt solutions in water. The capability of the instrument for time resolved measurements is demonstrated by observing the ultrafast (50 fs) vibrational excitation of water leading to temporary proton transfer.
Collapse
Affiliation(s)
- C A Arrell
- Laboratory of Ultrafast Spectroscopy, ISIC, Station 6, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - J Ojeda
- Laboratory of Ultrafast Spectroscopy, ISIC, Station 6, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - M Sabbar
- Physics Department, ETH Zurich, 8093 Zurich, Switzerland
| | - W A Okell
- Department of Physics, The Blackett Laboratory, Imperial College, London SW7 2AZ, United Kingdom
| | - T Witting
- Department of Physics, The Blackett Laboratory, Imperial College, London SW7 2AZ, United Kingdom
| | - T Siegel
- Department of Physics, The Blackett Laboratory, Imperial College, London SW7 2AZ, United Kingdom
| | - Z Diveki
- Department of Physics, The Blackett Laboratory, Imperial College, London SW7 2AZ, United Kingdom
| | - S Hutchinson
- Department of Physics, The Blackett Laboratory, Imperial College, London SW7 2AZ, United Kingdom
| | - L Gallmann
- Physics Department, ETH Zurich, 8093 Zurich, Switzerland
| | - U Keller
- Physics Department, ETH Zurich, 8093 Zurich, Switzerland
| | - F van Mourik
- Laboratory of Ultrafast Spectroscopy, ISIC, Station 6, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - R T Chapman
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxon OX11 0QX, United Kingdom
| | - C Cacho
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxon OX11 0QX, United Kingdom
| | - N Rodrigues
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxon OX11 0QX, United Kingdom
| | - I C E Turcu
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxon OX11 0QX, United Kingdom
| | - J W G Tisch
- Department of Physics, The Blackett Laboratory, Imperial College, London SW7 2AZ, United Kingdom
| | - E Springate
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxon OX11 0QX, United Kingdom
| | - J P Marangos
- Department of Physics, The Blackett Laboratory, Imperial College, London SW7 2AZ, United Kingdom
| | - M Chergui
- Laboratory of Ultrafast Spectroscopy, ISIC, Station 6, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
67
|
Yamamoto YI, Suzuki YI, Tomasello G, Horio T, Karashima S, Mitríc R, Suzuki T. Time- and angle-resolved photoemission spectroscopy of hydrated electrons near a liquid water surface. PHYSICAL REVIEW LETTERS 2014; 112:187603. [PMID: 24856723 DOI: 10.1103/physrevlett.112.187603] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Indexed: 05/05/2023]
Abstract
We present time- and angle-resolved photoemission spectroscopy of trapped electrons near liquid surfaces. Photoemission from the ground state of a hydrated electron at 260 nm is found to be isotropic, while anisotropic photoemission is observed for the excited states of 1,4-diazabicyclo[2,2,2]octane and I- in aqueous solutions. Our results indicate that surface and subsurface species create hydrated electrons in the bulk side. No signature of a surface-bound electron has been observed.
Collapse
Affiliation(s)
- Yo-ichi Yamamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Yoshi-Ichi Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan and RIKEN Center for Advanced Photonics, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Gaia Tomasello
- Institut für Physikalishce und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Takuya Horio
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan and RIKEN Center for Advanced Photonics, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan and Japan Science and Technology Agency, CREST, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Shutaro Karashima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Roland Mitríc
- Institut für Physikalishce und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan and RIKEN Center for Advanced Photonics, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan and Japan Science and Technology Agency, CREST, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
68
|
Suzuki T. Nonadiabatic Electronic Dynamics in Isolated Molecules and in Solution Studied by Ultrafast Time–Energy Mapping of Photoelectron Distributions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2014. [DOI: 10.1246/bcsj.20130272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University
- CREST, Japan Science and Technology Agency
- RIKEN Center for Advanced Photonics, RIKEN
| |
Collapse
|
69
|
Uhlig F, Herbert JM, Coons MP, Jungwirth P. Optical Spectroscopy of the Bulk and Interfacial Hydrated Electron from Ab Initio Calculations. J Phys Chem A 2014; 118:7507-15. [DOI: 10.1021/jp5004243] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Frank Uhlig
- Institute of Organic
Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | - John M. Herbert
- Department
of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Marc P. Coons
- Department
of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Pavel Jungwirth
- Institute of Organic
Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| |
Collapse
|
70
|
Liu P, Zhao J, Liu J, Zhang M, Bu Y. Ab initio molecular dynamics simulations reveal localization and time evolution dynamics of an excess electron in heterogeneous CO2–H2O systems. J Chem Phys 2014; 140:044318. [DOI: 10.1063/1.4863343] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
71
|
Elkins MH, Williams HL, Shreve AT, Neumark DM. Relaxation mechanism of the hydrated electron. Science 2014; 342:1496-9. [PMID: 24357314 DOI: 10.1126/science.1246291] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The relaxation dynamics of the photoexcited hydrated electron have been subject to conflicting interpretations. Here, we report time-resolved photoelectron spectra of hydrated electrons in a liquid microjet with the aim of clarifying ambiguities from previous experiments. A sequence of three ultrashort laser pulses (~100 femtosecond duration) successively created hydrated electrons by charge-transfer-to-solvent excitation of dissolved anions, electronically excited these electrons via the s→p transition, and then ejected them into vacuum. Two distinct transient signals were observed. One was assigned to the initially excited p-state with a lifetime of ~75 femtoseconds, and the other, with a lifetime of ~400 femtoseconds, was attributed to s-state electrons just after internal conversion in a nonequilibrated solvent environment. These assignments support the nonadiabatic relaxation model.
Collapse
Affiliation(s)
- Madeline H Elkins
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
72
|
Thürmer S, Seidel R, Faubel M, Eberhardt W, Hemminger JC, Bradforth SE, Winter B. Photoelectron angular distributions from liquid water: effects of electron scattering. PHYSICAL REVIEW LETTERS 2013; 111:173005. [PMID: 24206487 DOI: 10.1103/physrevlett.111.173005] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Indexed: 05/03/2023]
Abstract
Photoelectron angular distributions (PADs) from the liquid-water surface and from bulk liquid water are reported for water oxygen-1s ionization. Although less so than for the gas phase, the measured PADs from the liquid are remarkably anisotropic, even at electron kinetic energies lower than 100 eV, when elastic scattering cross sections for the outgoing electrons with other water molecules are large. The PADs reveal that theoretical estimates of the inelastic mean free path are likely too long at low kinetic energies, and hence the electron probing depth in water, near threshold ionization, appears to be considerably smaller than so far assumed.
Collapse
Affiliation(s)
- Stephan Thürmer
- Joint Laboratory for Ultrafast Dynamics in Solutions and at Interfaces, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
73
|
|
74
|
Affiliation(s)
- Bernd Abel
- Leibniz Institute of Surface Modification (IOM), Chemical Department, D-04318 Leipzig, Germany, and Wilhelm-Ostwald Institute for Physical and Theoretical Chemistry, D-04103 Leipzig, Germany;
| |
Collapse
|
75
|
Preissler N, Buchner F, Schultz T, Lübcke A. Electrokinetic Charging and Evidence for Charge Evaporation in Liquid Microjets of Aqueous Salt Solution. J Phys Chem B 2013; 117:2422-8. [DOI: 10.1021/jp304773n] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Natalie Preissler
- Max-Born-Institut für nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Strasse 2A,
12489 Berlin, Germany
| | - Franziska Buchner
- Max-Born-Institut für nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Strasse 2A,
12489 Berlin, Germany
| | - Thomas Schultz
- Max-Born-Institut für nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Strasse 2A,
12489 Berlin, Germany
| | - Andrea Lübcke
- Max-Born-Institut für nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Strasse 2A,
12489 Berlin, Germany
| |
Collapse
|
76
|
Uhlig F, Marsalek O, Jungwirth P. Electron at the Surface of Water: Dehydrated or Not? J Phys Chem Lett 2013; 4:338-343. [PMID: 26283445 DOI: 10.1021/jz3020953] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The hydrated electron is a crucial species in radiative processes, and it has been speculated that its behavior at the water surface could lead to specific interfacial chemical properties. Here, we address fundamental questions concerning the structure and energetics of an electron at the surface of water. We use the method of ab initio molecular dynamics, which was shown to provide a faithful description of solvated electrons in large water clusters and in bulk water. The present results clearly demonstrate that the surface electron is mostly buried in the interfacial water layer, with only about 10 % of its density protruding into the vapor phase. Consequently, it has a structure that is very similar to that of an electron solvated in the aqueous bulk. This points to a general feature of charges at the surface of water, namely, that they do not behave as half-dehydrated but rather as almost fully hydrated species.
Collapse
Affiliation(s)
- Frank Uhlig
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | - Ondrej Marsalek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| |
Collapse
|
77
|
Buchner F, Ritze HH, Beutler M, Schultz T, Hertel IV, Lübcke A. Excited state dynamics of liquid water near the surface. EPJ WEB OF CONFERENCES 2013. [DOI: 10.1051/epjconf/20134106006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
78
|
Suzuki T. Visualization of chemical reaction dynamics: toward understanding complex polyatomic reactions. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2013; 89:1-15. [PMID: 23318678 PMCID: PMC3610866 DOI: 10.2183/pjab.89.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 10/12/2012] [Indexed: 06/01/2023]
Abstract
Polyatomic molecules have several electronic states that have similar energies. Consequently, their chemical dynamics often involve nonadiabatic transitions between multiple potential energy surfaces. Elucidating the complex reactions of polyatomic molecules is one of the most important tasks of theoretical and experimental studies of chemical dynamics. This paper describes our recent experimental studies of the multidimensional multisurface dynamics of polyatomic molecules based on two-dimensional ion/electron imaging. It also discusses ultrafast photoelectron spectroscopy of liquids for elucidating nonadiabatic electronic dynamics in aqueous solutions. (Communicated by Hiroo INOKUCHI, M.J.A.)
Collapse
Affiliation(s)
- Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University.
| |
Collapse
|
79
|
Shreve AT, Elkins MH, Neumark DM. Photoelectron spectroscopy of solvated electrons in alcohol and acetonitrile microjets. Chem Sci 2013. [DOI: 10.1039/c3sc22063j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
80
|
Uhlig F, Marsalek O, Jungwirth P. Unraveling the Complex Nature of the Hydrated Electron. J Phys Chem Lett 2012; 3:3071-3075. [PMID: 26292252 DOI: 10.1021/jz301449f] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The structure of the hydrated electron, which is a key species in radiative processes in water, has remained elusive. The traditional cavity model has been questioned recently, but the newly suggested picture of an electron delocalized over a region of enhanced water density is controversial. Here, we present results from ab initio molecular dynamics simulations, where not only the excess electron but also the valence electrons of the surrounding water molecules are described quantum mechanically. Unlike in previous one-electron pseudopotential calculations, many-electron interactions are explicitly accounted for. The present approach allows for partitioning of the electron solvated in liquid water into contributions from an inner cavity, neighboring water molecules, and a diffuse tail. We demonstrate that all three of these contributions are sizable and, consequently, important, which underlines the complex nature of the hydrated electron and warns against oversimplified interpretations based on pseudopotential models.
Collapse
Affiliation(s)
- Frank Uhlig
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | - Ondrej Marsalek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| |
Collapse
|
81
|
Turi L, Rossky PJ. Theoretical studies of spectroscopy and dynamics of hydrated electrons. Chem Rev 2012; 112:5641-74. [PMID: 22954423 DOI: 10.1021/cr300144z] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- László Turi
- Department of Physical Chemistry, Eötvös Loránd University, Budapest, Hungary.
| | | |
Collapse
|
82
|
Buchner F, Ritze HH, Beutler M, Schultz T, Hertel IV, Lübcke A. Role of alkali cations for the excited state dynamics of liquid water near the surface. J Chem Phys 2012; 137:024503. [DOI: 10.1063/1.4732582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
83
|
Affiliation(s)
- Ryan M. Young
- Department of Chemistry, University of California, Berkeley, California 94720,
United States
| | - Daniel M. Neumark
- Department of Chemistry, University of California, Berkeley, California 94720,
United States
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
94720, United States
| |
Collapse
|
84
|
Horio T, Shen H, Adachi S, Suzuki T. Photoelectron spectra of solvated electrons in bulk water, methanol, and ethanol. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.03.051] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
85
|
Suzuki T. Time-resolved photoelectron spectroscopy of non-adiabatic electronic dynamics in gas and liquid phases. INT REV PHYS CHEM 2012. [DOI: 10.1080/0144235x.2012.699346] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
86
|
Buchner F, Schultz T, Lübcke A. Solvated electrons at the water-air interface: surface versus bulk signal in low kinetic energy photoelectron spectroscopy. Phys Chem Chem Phys 2012; 14:5837-42. [PMID: 22414952 DOI: 10.1039/c2cp23305c] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Time-resolved photoelectron spectroscopy at low kinetic energies (≲5 eV) is applied to dilute iodide solutions with different surface and bulk contributions. The results indicate a pronounced surface sensitivity. Signals assigned to solvated electrons near the liquid surface decay rapidly on a sub-ps timescale. In contrast to the literature, a long-lived surface solvated electron at 1.6 eV binding energy is not observed.
Collapse
Affiliation(s)
- Franziska Buchner
- Max-Born Institut für nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Str. 2A, 12489 Berlin, Germany
| | | | | |
Collapse
|
87
|
Young RM, Yandell MA, King SB, Neumark DM. Thermal effects on energetics and dynamics in water cluster anions (H2O)n−. J Chem Phys 2012; 136:094304. [DOI: 10.1063/1.3689439] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
88
|
Faubel M, Siefermann KR, Liu Y, Abel B. Ultrafast soft X-ray photoelectron spectroscopy at liquid water microjets. Acc Chem Res 2012; 45:120-30. [PMID: 22075058 DOI: 10.1021/ar200154w] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Since the pioneering work of Kai Siegbahn, electron spectroscopy for chemical analysis (ESCA) has been developed into an indispensable analytical technique for surface science. The value of this powerful method of photoelectron spectroscopy (PES, also termed photoemission spectroscopy) and Siegbahn's contributions were recognized in the 1981 Nobel Prize in Physics. The need for high vacuum, however, originally prohibited PES of volatile liquids, and only allowed for investigation of low-vapor-pressure molecules attached to a surface (or close to a surface) or liquid films of low volatility. Only with the invention of liquid beams of volatile liquids compatible with high-vacuum conditions was PES from liquid surfaces under vacuum made feasible. Because of the ubiquity of water interfaces in nature, the liquid water-vacuum interface became a most attractive research topic, particularly over the past 10 years. PES studies of these important aqueous interfaces remained significantly challenging because of the need to develop high-pressure PES methods. For decades, ESCA or PES (termed XPS, for X-ray photoelectron spectroscopy, in the case of soft X-ray photons) was restricted to conventional laboratory X-ray sources or beamlines in synchrotron facilities. This approach enabled frequency domain measurements, but with poor time resolution. Indirect access to time-resolved processes in the condensed phase was only achieved if line-widths could be analyzed or if processes could be related to a fast clock, that is, reference processes that are fast enough and are also well understood in the condensed phase. Just recently, the emergence of high harmonic light sources, providing short-wavelength radiation in ultrashort light pulses, added the dimension of time to the classical ESCA or XPS technique and opened the door to (soft) X-ray photoelectron spectroscopy with ultrahigh time resolution. The combination of high harmonic light sources (providing radiation with laserlike beam qualities) and liquid microjet technology recently enabled the first liquid interface PES experiments in the IR/UV-pump and extreme ultraviolet-probe (EUV-probe) configuration. In this Account, we highlight features of the technology and a number of recent applications, including extreme states of matter and the discovery and detection of short-lived transients of the solvated electron in water. Properties of the EUV radiation, such as its controllable polarization and features of the liquid microjet, will enable unique experiments in the near future. PES measures electron binding energies and angular distributions of photoelectrons, which comprise unique information about electron orbitals and their involvement in chemical bonding. One of the future goals is to use this information to trace molecular orbitals, over time, in chemical reactions or biological transformations.
Collapse
Affiliation(s)
- M. Faubel
- Max-Planck-Institut für Dynamik und Selbstorganisation, Bunsenstrasse 10, D-37073 Göttingen, Germany
| | - K. R. Siefermann
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road 2-306, Berkeley, California 94720, United States
| | - Y. Liu
- Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, University Leipzig, Linnéstrasse 2, D-04103 Leipzig, Germany
| | - B. Abel
- Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, University Leipzig, Linnéstrasse 2, D-04103 Leipzig, Germany
| |
Collapse
|
89
|
Stähler J, Gahl C, Wolf M. Dynamics and reactivity of trapped electrons on supported ice crystallites. Acc Chem Res 2012; 45:131-8. [PMID: 22185698 DOI: 10.1021/ar200170s] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The solvation dynamics and reactivity of localized excess electrons in aqueous environments have attracted great attention in many areas of physics, chemistry, and biology. This manifold attraction results from the importance of water as a solvent in nature as well as from the key role of low-energy electrons in many chemical reactions. One prominent example is the electron-induced dissociation of chlorofluorocarbons (CFCs). Low-energy electrons are also critical in the radiation chemistry that occurs in nuclear reactors. Excess electrons in an aqueous environment are localized and stabilized by the local rearrangement of the surrounding water dipoles. Such solvated or hydrated electrons are known to play an important role in systems such as biochemical reactions and atmospheric chemistry. Despite numerous studies over many years, little is known about the microscopic details of these electron-induced chemical processes, and interest in the fundamental processes involved in the reactivity of trapped electrons continues. In this Account, we present a surface science study of the dynamics and reactivity of such localized low-energy electrons at D(2)O crystallites that are supported by a Ru(001) single crystal metal surface. This approach enables us to investigate the generation and relaxation dynamics as well as dissociative electron attachment (DEA) reaction of excess electrons under well-defined conditions. They are generated by photoexcitation in the metal template and transferred to trapping sites at the vacuum interface of crystalline D(2)O islands. In these traps, the electrons are effectively decoupled from the electronic states of the metal template, leading to extraordinarily long excited state lifetimes on the order of minutes. Using these long-lived, low-energy electrons, we study the DEA to CFCl(3) that is coadsorbed at very low concentrations (∼10(12) cm(-2)). Using rate equations and direct measurement of the change of surface dipole moment, we estimated the electron surface density for DEA, yielding cross sections that are orders of magnitude higher than the electron density measured in the gas phase.
Collapse
Affiliation(s)
- Julia Stähler
- Department of Physical Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Cornelius Gahl
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
- Max-Born-Institute Berlin, Max-Born-Str. 2 A, 12489 Berlin, Germany
| | - Martin Wolf
- Department of Physical Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
90
|
Marsalek O, Uhlig F, VandeVondele J, Jungwirth P. Structure, dynamics, and reactivity of hydrated electrons by ab initio molecular dynamics. Acc Chem Res 2012; 45:23-32. [PMID: 21899274 DOI: 10.1021/ar200062m] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the properties of hydrated electrons, which were first observed using pulse radiolysis of water in 1962, is crucial because they are key species in many radiation chemistry processes. Although time-resolved spectroscopic studies and molecular simulations have shown that an electron in water (prepared, for example, by water photoionization) relaxes quickly to a localized, cavity-like structure ∼2.5 Å in radius, this picture has recently been questioned. In another experimental approach, negatively charged water clusters of increasing size were studied with photoelectron and IR spectroscopies. Although small water clusters can bind an excess electron, their character is very different from bulk hydrated species. As data on electron binding in liquid water have become directly accessible experimentally, the cluster-to-bulk extrapolations have become a topic of lively debate. Quantum electronic structure calculations addressing experimental measurables have, until recently, been largely limited to small clusters; extended systems were approached mainly with pseudopotential calculations combining a classical description of water with a quantum mechanical treatment of the excess electron. In this Account, we discuss our investigations of electrons solvated in water by means of ab initio molecular dynamics simulations. This approach, applied to a model system of a negatively charged cluster of 32 water molecules, allows us to characterize structural, dynamical, and reactive aspects of the hydrated electron using all of the system's valence electrons. We show that under ambient conditions, the electron localizes into a cavity close to the surface of the liquid cluster. This cavity is, however, more flexible and accessible to water molecules than an analogous area around negatively charged ions. The dynamical process of electron attachment to a neutral water cluster is strongly temperature dependent. Under ambient conditions, the electron relaxes in the liquid cluster and becomes indistinguishable from an equilibrated, solvated electron on a picosecond time scale. In contrast, for solid, cryogenic systems, the electron only partially localizes outside of the cluster, being trapped in a metastable, weakly bound "cushion-like" state. Strongly bound states under cryogenic conditions could only be prepared by cooling equilibrated, liquid, negatively charged clusters. These calculations allow us to rationalize how different isomers of electrons in cryogenic clusters can be observed experimentally. Our results also bring into question the direct extrapolation of properties of cryogenic, negatively charged water clusters to those of electrons in the bulk liquid. Ab initio molecular dynamics represents a unique computational tool for investigating the reactivity of the solvated electron in water. As a prototype, the electron-proton reaction was followed in the 32-water cluster. In accord with experiment, the molecular mechanism is a proton transfer process that is not diffusion limited, but rather controlled by a proton-induced deformation of the excess electron's solvent shell. We demonstrate the necessary ingredients of a successful density functional methodology for the hydrated electron that avoids potential pitfalls, such as self-interaction error, insufficient basis set, or lack of dispersion interactions. We also benchmark the density functional theory methods and outline the path to faithful ab initio simulations of dynamics and reactivity of electrons solvated in extended aqueous systems.
Collapse
Affiliation(s)
- Ondrej Marsalek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Frank Uhlig
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Joost VandeVondele
- Physical Chemistry Institute, Zürich University, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| |
Collapse
|
91
|
Forck RM, Pradzynski CC, Wolff S, Ončák M, Slavíček P, Zeuch T. Size resolved infrared spectroscopy of Na(CH3OH)n (n = 4–7) clusters in the OH stretching region: unravelling the interaction of methanol clusters with a sodium atom and the emergence of the solvated electron. Phys Chem Chem Phys 2012; 14:3004-16. [DOI: 10.1039/c2cp23301k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
92
|
Abel B, Buck U, Sobolewski AL, Domcke W. On the nature and signatures of the solvated electron in water. Phys Chem Chem Phys 2012; 14:22-34. [DOI: 10.1039/c1cp21803d] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
93
|
Herbert JM, Jacobson LD. Structure of the aqueous electron: assessment of one-electron pseudopotential models in comparison to experimental data and time-dependent density functional theory. J Phys Chem A 2011; 115:14470-83. [PMID: 22032635 DOI: 10.1021/jp206391d] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The prevailing structural paradigm for the aqueous electron is that of an s-like ground-state wave function that inhabits a quasi-spherical solvent cavity, a viewpoint that is supported by numerous atomistic simulations using various one-electron pseudopotential models. This conceptual picture has recently been challenged, however, on the basis of results obtained from a new electron-water pseudopotential model that predicts a more delocalized wave function and no well-defined solvent cavity. Here, we examine this new model in comparison to two alternative, cavity-forming pseudopotential models. We find that the cavity-forming models are far more consistent with the experimental data for the electron's radius of gyration, optical absorption spectrum, and vertical electron binding energy. Calculations of the absorption spectrum using time-dependent density functional theory are in quantitative or semiquantitative agreement with experiment when the solvent geometries are obtained from the cavity-forming pseudopotential models, but differ markedly from experiment when geometries that do not form a cavity are used.
Collapse
Affiliation(s)
- John M Herbert
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, United States.
| | | |
Collapse
|
94
|
Jacobson LD, Herbert JM. Theoretical Characterization of Four Distinct Isomer Types in Hydrated-Electron Clusters, and Proposed Assignments for Photoelectron Spectra of Water Cluster Anions. J Am Chem Soc 2011; 133:19889-99. [PMID: 22026436 DOI: 10.1021/ja208024p] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Leif D. Jacobson
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - John M. Herbert
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
95
|
Hiranuma Y, Kaniwa K, Shoji M, Mafuné F. Solvation structures of iodide on and below a surface of aqueous solution studied by photodetachment spectroscopy. J Phys Chem A 2011; 115:8493-7. [PMID: 21721573 DOI: 10.1021/jp204195t] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated solvation structures of I(-) on and below a surface of an aqueous solution by photodetachment spectroscopy. An aqueous solution of an alkali halide was introduced to the vacuum as a continuous liquid flow (liquid beam), and the liquid beam was irradiated with a UV laser pulse. The intensity of electrons emitted from the surface by the laser excitation was measured as a function of wavelength (photodetachment spectroscopy), and we obtained absorption spectrum of I(-) on and below the solution surface. From the absorption spectrum, we found that I(-) starts to appear on the solution surface as the bulk NaI concentration increases. Similar concentration dependence was observed for the KI solution. We also found that I(-) located inside the solution is pushed to the surface, when NaCl is added to the solution. These changes are explained in terms of the difference in the polarizability of halide ions.
Collapse
Affiliation(s)
- Yojiro Hiranuma
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | | | | | | |
Collapse
|
96
|
Siefermann KR, Abel B. The Hydrated Electron: A Seemingly Familiar Chemical and Biological Transient. Angew Chem Int Ed Engl 2011; 50:5264-72. [DOI: 10.1002/anie.201006521] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 02/15/2011] [Indexed: 11/05/2022]
|
97
|
Siefermann KR, Abel B. Das hydratisierte Elektron - eine scheinbar vertraute transiente Spezies in chemischen und biologischen Systemen. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006521] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
98
|
Jacobson LD, Herbert JM. Comment on “Does the Hydrated Electron Occupy a Cavity?”. Science 2011; 331:1387; author reply 1387. [PMID: 21415336 DOI: 10.1126/science.1198191] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Leif D. Jacobson
- Department of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - John M. Herbert
- Department of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
99
|
Turi L, Madarász Á. Comment on “Does the Hydrated Electron Occupy a Cavity?”. Science 2011; 331:1387; author reply 1387. [DOI: 10.1126/science.1197559] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- László Turi
- Eötvös Loránd University, Department of Physical Chemistry, Budapest 112, P.O. Box 32, H-1518, Hungary
| | - Ádám Madarász
- Eötvös Loránd University, Department of Physical Chemistry, Budapest 112, P.O. Box 32, H-1518, Hungary
| |
Collapse
|
100
|
Forck RM, Dauster I, Buck U, Zeuch T. Sodium Microsolvation in Ethanol: Common Features of Na(HO-R)n (R = H, CH3, C2H5) Clusters. J Phys Chem A 2011; 115:6068-76. [DOI: 10.1021/jp110584s] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Richard M. Forck
- Institut für Physikalische Chemie, Tammannstr. 6, Georg-August-Universität, D-37077 Göttingen, Germany
| | - Ingo Dauster
- Institut für Physikalische Chemie, Tammannstr. 6, Georg-August-Universität, D-37077 Göttingen, Germany
| | - Udo Buck
- Max-Planck-Institut für Dynamik und Selbstorganisation, Bunsenstrasse 10, D-37073 Göttingen, Germany
| | - Thomas Zeuch
- Institut für Physikalische Chemie, Tammannstr. 6, Georg-August-Universität, D-37077 Göttingen, Germany
| |
Collapse
|