51
|
Niedermaier B, Sak A, Zernickel E, Xu S, Groneberg M, Stuschke M. Targeting ARID1A-mutant colorectal cancer: depletion of ARID1B increases radiosensitivity and modulates DNA damage response. Sci Rep 2019; 9:18207. [PMID: 31796878 PMCID: PMC6890697 DOI: 10.1038/s41598-019-54757-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
The SWI/SNF chromatin remodeling complex has been found mutated in a wide range of human cancers, causing alterations in gene expression patterns, proliferation and DNA damage response that have been linked to poor clinical prognosis. Here, we investigated weather knockdown of ARID1B, one of two mutually exclusive subunits within the SWI/SNF complex, can sensitize colorectal cancer cell lines mutated in the other subunit, ARID1A, to ionizing radiation (IR). ARID1A-mutated colorectal cancer (CRC) cell lines are selectively sensitized to IR after siRNA mediated ARID1B depletion, as measured by clonogenic survival. This is characterized by a decrease in the surviving cell fraction to 87.3% ± 2.1%, 86.0% ± 1.1% and 77.2% ± 1.5% per 1 Gy compared with control siRNA exposed cells in the dose range of 0–6 Gy for the LS180, RKO and SW48 lines, respectively (p < 0.0001, F-test). The magnitude of this dose modifying effect was significantly larger in ARID1A mutated than in non-mutated cell lines (Spearman rank correlation rs = 0.88, p = 0.02). Furthermore, initial formation of RAD51 foci at 4 h after IR, as a measure for homologous recombination repair, was significantly reduced in ARID1A-mutant CRC cell lines but not in the majority of wildtype lines nor in fibroblasts. These findings open up perspectives for targeting ARID1B in combination with radiotherapy to improve outcomes of patients with ARID1A-mutant CRC.
Collapse
Affiliation(s)
- B Niedermaier
- Department of Radiotherapy, University of Duisburg-Essen, University Hospital, Essen, Germany.
| | - A Sak
- Department of Radiotherapy, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - E Zernickel
- Department of Radiotherapy, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Shan Xu
- Department of Radiotherapy, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - M Groneberg
- Department of Radiotherapy, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - M Stuschke
- Department of Radiotherapy, University of Duisburg-Essen, University Hospital, Essen, Germany
| |
Collapse
|
52
|
Lin DI, Allen JM, Hecht JL, Killian JK, Ngo NT, Edgerly C, Severson EA, Ali SM, Erlich RL, Ramkissoon SH, Vergilio JA, Ross JS, Elvin JA. SMARCA4 inactivation defines a subset of undifferentiated uterine sarcomas with rhabdoid and small cell features and germline mutation association. Mod Pathol 2019; 32:1675-1687. [PMID: 31190001 DOI: 10.1038/s41379-019-0303-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/28/2022]
Abstract
A rare subset of aggressive SMARCA4-deficient uterine sarcomas has been recently proposed, with only a limited number of cases having been previously described. Here, we identify 16 additional cases of SMARCA4-deficient uterine sarcoma from the database of a large, CLIA-certified and CAP-accredited, reference molecular laboratory, and we expand on their clinicopathological and genomic features. Median patient's age was 49 years (range 32-70). Most tumors were aggressive with distant metastasis. SMARCA4-deficient uterine sarcoma demonstrated predominantly rhabdoid or large epithelioid cells with abundant cytoplasm, but also had varying degrees of small cell and spindle cell morphology. Tumors were microsatellite stable and exhibited no other or only few co-occurring genomic alterations by comprehensive genomic profiling. We discovered one patient, who developed SMARCA4-deficient uterine sarcoma at the age of 55, had a germline SMARCA4 mutation, whose daughter had previously died of small cell carcinoma of the ovary, hypercalcemic type, at the age of 32. Our data support the notion that SMARCA4 inactivation is the driver oncogenic event of a morphologically and molecularly distinct form of uterine sarcoma. Identification of SMARCA4-deficient uterine sarcomas may be clinically important due to their aggressive behavior, germline association, and emerging targeted therapies.
Collapse
Affiliation(s)
- Douglas I Lin
- Foundation Medicine Inc., Cambridge, Massachusetts, USA.
| | | | | | | | - Nhu T Ngo
- Foundation Medicine Inc., Cambridge, Massachusetts, USA
| | | | | | - Siraj M Ali
- Foundation Medicine Inc., Cambridge, Massachusetts, USA
| | | | - Shakti H Ramkissoon
- Foundation Medicine, Morrisville, NC, USA.,Wake Forest Comprehensive Cancer Center and Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Jeffrey S Ross
- Foundation Medicine Inc., Cambridge, Massachusetts, USA.,Upstate Medical University, Syracuse, NY, USA
| | - Julia A Elvin
- Foundation Medicine Inc., Cambridge, Massachusetts, USA
| |
Collapse
|
53
|
El Hadidy N, Uversky VN. Intrinsic Disorder of the BAF Complex: Roles in Chromatin Remodeling and Disease Development. Int J Mol Sci 2019; 20:ijms20215260. [PMID: 31652801 PMCID: PMC6862534 DOI: 10.3390/ijms20215260] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/12/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
The two-meter-long DNA is compressed into chromatin in the nucleus of every cell, which serves as a significant barrier to transcription. Therefore, for processes such as replication and transcription to occur, the highly compacted chromatin must be relaxed, and the processes required for chromatin reorganization for the aim of replication or transcription are controlled by ATP-dependent nucleosome remodelers. One of the most highly studied remodelers of this kind is the BRG1- or BRM-associated factor complex (BAF complex, also known as SWItch/sucrose non-fermentable (SWI/SNF) complex), which is crucial for the regulation of gene expression and differentiation in eukaryotes. Chromatin remodeling complex BAF is characterized by a highly polymorphic structure, containing from four to 17 subunits encoded by 29 genes. The aim of this paper is to provide an overview of the role of BAF complex in chromatin remodeling and also to use literature mining and a set of computational and bioinformatics tools to analyze structural properties, intrinsic disorder predisposition, and functionalities of its subunits, along with the description of the relations of different BAF complex subunits to the pathogenesis of various human diseases.
Collapse
Affiliation(s)
- Nashwa El Hadidy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL 33612, USA.
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL 33612, USA.
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, 142290 Moscow Region, Russia.
| |
Collapse
|
54
|
Chabanon RM, Morel D, Postel-Vinay S. Exploiting epigenetic vulnerabilities in solid tumors: Novel therapeutic opportunities in the treatment of SWI/SNF-defective cancers. Semin Cancer Biol 2019; 61:180-198. [PMID: 31568814 DOI: 10.1016/j.semcancer.2019.09.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022]
Abstract
Mammalian switch/sucrose non-fermentable (mSWI/SNF) family complexes are pivotal elements of the chromatin remodeling machinery, which contribute to the regulation of several major cellular functions. Large-scale exome-wide sequencing studies have identified mutations in genes encoding mSWI/SNF subunits in 20% of all human cancers, establishing mSWI/SNF deficiency as a recurrent oncogenic alteration. Accumulating evidence now supports that several mSWI/SNF defects represent targetable vulnerabilities in cancer; notably, recent research advances have unveiled unexpected synthetic lethal opportunities that foster the development of novel biomarker-driven and mechanism-based therapeutic approaches for the treatment of mSWI/SNF-deficient tumors. Here, we review the latest breakthroughs and discoveries that inform our understanding of the mSWI/SNF complexes biology in carcinogenesis, and discuss the most promising therapeutic strategies to target mSWI/SNF defects in human solid malignancies.
Collapse
Affiliation(s)
- Roman M Chabanon
- Université Paris Saclay, Université Paris-Sud, Faculté de médicine, Le Kremlin Bicêtre, France; ATIP-Avenir Group, Inserm Unit U981, Gustave Roussy, Villejuif, France; The Breast Cancer Now Toby Robins Breast Cancer Research Centre, France; CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
| | - Daphné Morel
- Université Paris Saclay, Université Paris-Sud, Faculté de médicine, Le Kremlin Bicêtre, France; ATIP-Avenir Group, Inserm Unit U981, Gustave Roussy, Villejuif, France
| | - Sophie Postel-Vinay
- Université Paris Saclay, Université Paris-Sud, Faculté de médicine, Le Kremlin Bicêtre, France; ATIP-Avenir Group, Inserm Unit U981, Gustave Roussy, Villejuif, France; DITEP (Département d'Innovations Thérapeutiques et Essais Précoces), Gustave Roussy, Villejuif, France.
| |
Collapse
|
55
|
Muthuswami R, Bailey L, Rakesh R, Imbalzano AN, Nickerson JA, Hockensmith JW. BRG1 is a prognostic indicator and a potential therapeutic target for prostate cancer. J Cell Physiol 2019; 234:15194-15205. [PMID: 30667054 PMCID: PMC6563042 DOI: 10.1002/jcp.28161] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 02/06/2023]
Abstract
Brahma-related gene 1 (BRG1) is one of two mutually exclusive ATPases that function as the catalytic subunit of human SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeling enzymes. BRG1 has been identified as a tumor suppressor in some cancer types but has been shown to be expressed at elevated levels, relative to normal tissue, in other cancers. Using TCGA (The Cancer Genome Atlas) prostate cancer database, we determined that BRG1 mRNA and protein expression is elevated in prostate tumors relative to normal prostate tissue. Only 3 of 491 (0.6%) sequenced tumors showed amplification of the locus or mutation in the protein coding sequence, arguing against the idea that elevated expression due to amplification or expression of a mutant BRG1 protein is associated with prostate cancer. Kaplan-Meier survival curves showed that BRG1 expression in prostate tumors inversely correlated with survival. However, BRG1 expression did not correlate with Gleason score/International Society of Urological Pathology (ISUP) Grade Group, indicating it is an independent predictor of tumor progression/patient outcome. To experimentally assess BRG1 as a possible therapeutic target, we treated prostate cancer cells with a biologic inhibitor called ADAADi (active DNA-dependent ATPase A Domain inhibitor) that targets the activity of the SNF2 family of ATPases in biochemical assays but showed specificity for BRG1 in prior tissue culture experiments. The inhibitor decreased prostate cancer cell proliferation and induced apoptosis. When directly injected into xenografts established by injection of prostate cancer cells in mouse flanks, the inhibitor decreased tumor growth and increased survival. These results indicate the efficacy of pursuing BRG1 as both an indicator of patient outcome and as a therapeutic target.
Collapse
Affiliation(s)
- Rohini Muthuswami
- Department of Biochemistry and Molecular GeneticsUniversity of Virginia School of MedicineCharlottesvilleVirginia,School of Life Sciences, Jawaharlal Nehru UniversityNew DelhiIndia
| | - LeeAnn Bailey
- Department of Biochemistry and Molecular GeneticsUniversity of Virginia School of MedicineCharlottesvilleVirginia
| | | | - Anthony N. Imbalzano
- Department of Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical SchoolWorcesterMassachusetts
| | - Jeffrey A. Nickerson
- Department of PediatricsUniversity of Massachusetts Medical SchoolWorcesterMassachusetts
| | - Joel W. Hockensmith
- Department of Biochemistry and Molecular GeneticsUniversity of Virginia School of MedicineCharlottesvilleVirginia
| |
Collapse
|
56
|
Somsuan K, Peerapen P, Boonmark W, Plumworasawat S, Samol R, Sakulsak N, Thongboonkerd V. ARID1A knockdown triggers epithelial-mesenchymal transition and carcinogenesis features of renal cells: role in renal cell carcinoma. FASEB J 2019; 33:12226-12239. [PMID: 31424966 DOI: 10.1096/fj.201802720rr] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Down-regulation/mutation of AT-rich interactive domain 1A (ARID1A), a novel tumor suppressor gene, has been reported in various cancers. Nevertheless, its role in renal cell carcinoma (RCC) remained unclear and underinvestigated. We thus evaluated carcinogenesis effects of ARID1A knockdown in nonmalignant Madin-Darby canine kidney (MDCK) renal cells using small interfering RNA (siRNA) against ARID1A (siARID1A). The siARID1A-transfected cells had decreased cell death, increased cell proliferation, and cell cycle shift (from G0/G1 to G2/M) compared with those transfected with controlled siRNA (siControl). Additionally, the siARID1A-transfected cells exhibited epithelial-mesenchymal transition (EMT) shown by greater spindle index, increased mesenchymal markers (fibronectin/vimentin), and decreased epithelial markers (E-cadherin/zonula occludens-1). Moreover, the siARID1A-transfected cells had increases in migratory activity, nuclear size, self-aggregated multicellular spheroid size, invasion capability, chemoresistance (to docetaxel), Snail family transcriptional repressor 1 expression, and TGF-β1 secretion. All of these siARID1A-knockdown effects on the carcinogenic features were reproducible in malignant RCC (786-O) cells, which exhibited a higher degree of carcinogenic phenotypes compared with the nonmalignant MDCK cells. Finally, immunohistochemistry showed obvious decrease in ARID1A protein expression in human RCC tissues (n = 23) compared with adjacent normal renal tissues (n = 23). These data indicate that ARID1A down-regulation triggers EMT and carcinogenesis features of renal cells in vitro, and its role in RCC could be proven in human tissues.-Somsuan, K., Peerapen, P., Boonmark, W., Plumworasawat, S., Samol, R., Sakulsak, N., Thongboonkerd, V. ARID1A knockdown triggers epithelial-mesenchymal transition and carcinogenesis features of renal cells: role in renal cell carcinoma.
Collapse
Affiliation(s)
- Keerakarn Somsuan
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanida Boonmark
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sirikanya Plumworasawat
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ratirath Samol
- Department of Anatomical Pathology, Sawanpracharak Hospital, Nakorn Sawan, Thailand
| | - Natthiya Sakulsak
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
57
|
Chater-Diehl E, Ejaz R, Cytrynbaum C, Siu MT, Turinsky A, Choufani S, Goodman SJ, Abdul-Rahman O, Bedford M, Dorrani N, Engleman K, Flores-Daboub J, Genevieve D, Mendoza-Londono R, Meschino W, Perrin L, Safina N, Townshend S, Scherer SW, Anagnostou E, Piton A, Deardorff M, Brudno M, Chitayat D, Weksberg R. New insights into DNA methylation signatures: SMARCA2 variants in Nicolaides-Baraitser syndrome. BMC Med Genomics 2019; 12:105. [PMID: 31288860 PMCID: PMC6617651 DOI: 10.1186/s12920-019-0555-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/30/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Nicolaides-Baraitser syndrome (NCBRS) is a neurodevelopmental disorder caused by pathogenic sequence variants in SMARCA2 which encodes the catalytic component of the chromatin remodeling BAF complex. Pathogenic variants in genes that encode epigenetic regulators have been associated with genome-wide changes in DNA methylation (DNAm) in affected individuals termed DNAm signatures. METHODS Genome-wide DNAm was assessed in whole-blood samples from the individuals with pathogenic SMARCA2 variants and NCBRS diagnosis (n = 8) compared to neurotypical controls (n = 23) using the Illumina MethylationEPIC array. Differential methylated CpGs between groups (DNAm signature) were identified and used to generate a model enabling classification variants of uncertain significance (VUS; n = 9) in SMARCA2 as "pathogenic" or "benign". A validation cohort of NCBRS cases (n = 8) and controls (n = 96) demonstrated 100% model sensitivity and specificity. RESULTS We identified a DNAm signature of 429 differentially methylated CpG sites in individuals with NCBRS. The genes to which these CpG sites map are involved in cell differentiation, calcium signaling, and neuronal function consistent with NCBRS pathophysiology. DNAm model classifications of VUS were concordant with the clinical phenotype; those within the SMARCA2 ATPase/helicase domain classified as "pathogenic". A patient with a mild neurodevelopmental NCBRS phenotype and a VUS distal to the ATPase/helicase domain did not score as pathogenic, clustering away from cases and controls. She demonstrated an intermediate DNAm profile consisting of one subset of signature CpGs with methylation levels characteristic of controls and another characteristic of NCBRS cases; each mapped to genes with ontologies consistent with the patient's unique clinical presentation. CONCLUSIONS Here we find that a DNAm signature of SMARCA2 pathogenic variants in NCBRS maps to CpGs relevant to disorder pathophysiology, classifies VUS, and is sensitive to the position of the variant in SMARCA2. The patient with an intermediate model score demonstrating a unique genotype-epigenotype-phenotype correlation underscores the potential utility of this signature as a functionally relevant VUS classification system scalable beyond binary "benign" versus "pathogenic" scoring. This is a novel feature of DNAm signatures that could enable phenotypic predictions from genotype data. Our findings also demonstrate that DNAm signatures can be domain-specific, highlighting the precision with which they can reflect genotypic variation.
Collapse
Affiliation(s)
- Eric Chater-Diehl
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8 Canada
| | - Resham Ejaz
- Division of Genetics, Department of Pediatrics, McMaster University, Hamilton, Ontario L8S 4L8 Canada
| | - Cheryl Cytrynbaum
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8 Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario M5G 1X8 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A1 Canada
| | - Michelle T. Siu
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8 Canada
| | - Andrei Turinsky
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8 Canada
- Centre for Computational Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 1X8 Canada
| | - Sanaa Choufani
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8 Canada
| | - Sarah J. Goodman
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8 Canada
| | - Omar Abdul-Rahman
- Department of Genetic Medicine, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE USA
| | - Melanie Bedford
- Genetics Program, North York General Hospital, Toronto, Ontario M2K 1E1 Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario M5S 3H7 Canada
| | | | - Kendra Engleman
- Division of Clinical Genetics, Children’s Mercy Hospital, Kansas City, MO 66111 USA
| | - Josue Flores-Daboub
- Division of Pediatric Clinical Genetics, University of Utah School of Medicine, Salt Lake City, UT 84132 USA
| | - David Genevieve
- Service de génétique clinique, Département de génétique médicale, maladies rares, médecine personnalisée, Unité INSERM U1183, Université Montpellier, CHU Montpellier, 34000 Montpellier, France
| | - Roberto Mendoza-Londono
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8 Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario M5G 1X8 Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario M5S 1A1 Canada
| | - Wendy Meschino
- Genetics Program, North York General Hospital, Toronto, Ontario M2K 1E1 Canada
| | - Laurence Perrin
- AP-HP, Department of Genetics, Hôpital Robert Debré, 75019 Paris, France
| | - Nicole Safina
- University of Missouri Kansas City, School of Medicine, Kansas City, MO 64108 USA
- Division of Clinical Genetics, Children’s Mercy Hospital, Kansas City, MO 64108 USA
- Department of Pediatrics, Children’s Mercy Hospital, Kansas City, MO 64108 USA
| | - Sharron Townshend
- Department of Health, Government of Western Australia, Genetic Services of Western Australia, Perth, WA Australia
| | - Stephen W. Scherer
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A1 Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario M5G 1X8 Canada
- McLaughlin Centre, University of Toronto, Toronto, Ontario M5S 1A1 Canada
| | - Evdokia Anagnostou
- Holland Bloorview Kids Rehabilitation Hospital Toronto, Toronto, Ontario M4G 1R8 Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A1 Canada
| | - Amelie Piton
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France
- Laboratoire de Diagnostic Génétique, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - Matthew Deardorff
- Division of Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- The Department of Pediatrics, The Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Michael Brudno
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8 Canada
- Centre for Computational Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 1X8 Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario M5S 1A1 Canada
| | - David Chitayat
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario M5G 1X8 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A1 Canada
- Prenatal Diagnosis and Medical Genetics Program, Mount Sinai Hospital, Toronto, Ontario M5G 1X5 Canada
| | - Rosanna Weksberg
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8 Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario M5G 1X8 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A1 Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8 Canada
| |
Collapse
|
58
|
Yuan X, Xu D. Telomerase Reverse Transcriptase (TERT) in Action: Cross-Talking with Epigenetics. Int J Mol Sci 2019; 20:ijms20133338. [PMID: 31284662 PMCID: PMC6651578 DOI: 10.3390/ijms20133338] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023] Open
Abstract
Telomerase, an RNA-dependent DNA polymerase with telomerase reverse transcriptase (TERT) as the catalytic component, is silent due to the tight repression of the TERT gene in most normal human somatic cells, whereas activated only in small subsets of cells, including stem cells, activated lymphocytes, and other highly proliferative cells. In contrast, telomerase activation via TERT induction is widespread in human malignant cells, which is a prerequisite for malignant transformation. It is well established that TERT/telomerase extends telomere length, thereby conferring sustained proliferation capacity to both normal and cancerous cells. The recent evidence has also accumulated that TERT/telomerase may participate in the physiological process and oncogenesis independently of its telomere-lengthening function. For instance, TERT is shown to interact with chromatin remodeling factors and to regulate DNA methylation, through which multiple cellular functions are attained. In the present review article, we summarize the non-canonical functions of TERT with a special emphasis on its cross-talk with epigenetics: How TERT contributes to epigenetic alterations in physiological processes and cancer, and how the aberrant epigenetics in turn facilitate TERT expression and function, eventually promoting cancer either initiation or progression or both. Finally, we briefly discuss clinical implications of the TERT-related methylation.
Collapse
Affiliation(s)
- Xiaotian Yuan
- School of Medicine, Shandong University, Jinan 250012, China.
- Department of Medicine, Center for Molecular Medicine (CMM) and Bioclinicum, Karolinska Institute and Karolinska University Hospital Solna, 171 64 Solna, Sweden.
| | - Dawei Xu
- Department of Medicine, Center for Molecular Medicine (CMM) and Bioclinicum, Karolinska Institute and Karolinska University Hospital Solna, 171 64 Solna, Sweden.
- Shandong University-Karolinska Institute Collaborative Laboratory for Cancer and Stem Cell Research, Jinan 250033, China.
| |
Collapse
|
59
|
Glaucoma and degenerative vitreoretinopathy in a girl with Nicolaides-Baraitser syndrome. J AAPOS 2019; 23:169-171. [PMID: 30707941 DOI: 10.1016/j.jaapos.2018.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 12/23/2018] [Accepted: 12/27/2018] [Indexed: 12/15/2022]
Abstract
We report the case of a 12-year-old girl diagnosed with Nicolaides-Baraitser syndrome with novel ocular features. Diagnosis was based on clinical features, including developmental delay, sparse hair, and craniofacial features along with de novo mutation in SMARCA2. Eye findings included bilateral glaucoma, cataracts, and degenerative vitreoretinopathy. Given the absence of an associated recognizable disorder and the low prevalence of these ocular findings in the general population, we suggest that these ocular features may not be chance association.
Collapse
|
60
|
Orlando KA, Nguyen V, Raab JR, Walhart T, Weissman BE. Remodeling the cancer epigenome: mutations in the SWI/SNF complex offer new therapeutic opportunities. Expert Rev Anticancer Ther 2019; 19:375-391. [PMID: 30986130 DOI: 10.1080/14737140.2019.1605905] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Cancer genome sequencing studies have discovered mutations in members of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin-remodeling complex in nearly 25% of human cancers. The SWI/SNF complex, first discovered in S. cerevisiae, shows strong conservation from yeast to Drosophila to mammals, contains approximately 10-12 subunits and regulates nucleosome positioning through the energy generated by its ATPase subunits. The unexpected finding of frequent mutations in the complex has fueled studies to identify the mechanisms that drive tumor development and the accompanying therapeutic vulnerabilities. Areas covered: In the review, we focus upon the potential roles different SWI/SNF subunit mutations play in human oncogenesis, their common and unique mechanisms of transformation and the potential for translating these mechanisms into targeted therapies for SWI/SNF-mutant tumors. Expert opinion: We currently have limited insights into how mutations in different SWI/SNF subunits drive the development of human tumors. Because the SWI/SNF complex participates in a broad range of normal cellular functions, defining specific oncogenic pathways has proved difficult. In addition, therapeutic options for SWI/SNF-mutant cancers have mainly evolved from high-throughput screens of cell lines with mutations in different subunits. Future studies should follow a more coherent plan to pinpoint common vulnerabilities among these tumors.
Collapse
Affiliation(s)
- Krystal A Orlando
- a Department of Pathology and Laboratory Medicine , University of North Carolina , Chapel Hill , NC , USA
| | - Vinh Nguyen
- b Curriculum in Toxicology and Environmental Medicine , University of North Carolina , Chapel Hill , NC , USA
| | - Jesse R Raab
- c Department of Genetics , University of North Carolina , Chapel Hill , NC , USA
| | - Tara Walhart
- d Lineberger Comprehensive Cancer Center , University of North Carolina , Chapel Hill , NC , USA
| | - Bernard E Weissman
- a Department of Pathology and Laboratory Medicine , University of North Carolina , Chapel Hill , NC , USA.,b Curriculum in Toxicology and Environmental Medicine , University of North Carolina , Chapel Hill , NC , USA.,d Lineberger Comprehensive Cancer Center , University of North Carolina , Chapel Hill , NC , USA
| |
Collapse
|
61
|
Weissmiller AM, Wang J, Lorey SL, Howard GC, Martinez E, Liu Q, Tansey WP. Inhibition of MYC by the SMARCB1 tumor suppressor. Nat Commun 2019; 10:2014. [PMID: 31043611 PMCID: PMC6494882 DOI: 10.1038/s41467-019-10022-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/12/2019] [Indexed: 01/22/2023] Open
Abstract
SMARCB1 encodes the SNF5 subunit of the SWI/SNF chromatin remodeler. SNF5 also interacts with the oncoprotein transcription factor MYC and is proposed to stimulate MYC activity. The concept that SNF5 is a coactivator for MYC, however, is at odds with its role as a tumor-suppressor, and with observations that loss of SNF5 leads to activation of MYC target genes. Here, we reexamine the relationship between MYC and SNF5 using biochemical and genome-wide approaches. We show that SNF5 inhibits the DNA-binding ability of MYC and impedes target gene recognition by MYC in cells. We further show that MYC regulation by SNF5 is separable from its role in chromatin remodeling, and that reintroduction of SNF5 into SMARCB1-null cells mimics the primary transcriptional effects of MYC inhibition. These observations reveal that SNF5 antagonizes MYC and provide a mechanism to explain how loss of SNF5 can drive malignancy.
Collapse
Affiliation(s)
- April M Weissmiller
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Jing Wang
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Shelly L Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Gregory C Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Ernest Martinez
- Department of Biochemistry, University of California at Riverside, Riverside, CA, 92521, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| |
Collapse
|
62
|
BRM transcriptionally regulates miR-302a-3p to target SOCS5/STAT3 signaling axis to potentiate pancreatic cancer metastasis. Cancer Lett 2019; 449:215-225. [DOI: 10.1016/j.canlet.2019.02.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/03/2019] [Accepted: 02/14/2019] [Indexed: 12/11/2022]
|
63
|
Ribeiro-Silva C, Vermeulen W, Lans H. SWI/SNF: Complex complexes in genome stability and cancer. DNA Repair (Amst) 2019; 77:87-95. [PMID: 30897376 DOI: 10.1016/j.dnarep.2019.03.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 01/25/2023]
Abstract
SWI/SNF complexes are among the most studied ATP-dependent chromatin remodeling complexes, mostly due to their critical role in coordinating chromatin architecture and gene expression. Mutations in genes encoding SWI/SNF subunits are frequently observed in a large variety of human cancers, suggesting that one or more of the multiple SWI/SNF functions protect against tumorigenesis. Chromatin remodeling is an integral component of the DNA damage response (DDR), which safeguards against DNA damage-induced genome instability and tumorigenesis by removing DNA damage through interconnected DNA repair and signaling pathways. SWI/SNF has been implicated in facilitating repair of double-strand breaks, by non-homologous end-joining as well as homologous recombination, and repair of helix-distorting DNA damage by nucleotide excision repair. Here, we review current knowledge on SWI/SNF activity in the DDR and discuss the potential of exploiting DDR-related vulnerabilities due to SWI/SNF dysfunction for precision cancer therapy.
Collapse
Affiliation(s)
- Cristina Ribeiro-Silva
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands.
| | - Hannes Lans
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands.
| |
Collapse
|
64
|
Wang B, Kaufmann B, Engleitner T, Lu M, Mogler C, Olsavszky V, Öllinger R, Zhong S, Geraud C, Cheng Z, Rad RR, Schmid RM, Friess H, Hüser N, Hartmann D, von Figura G. Brg1 promotes liver regeneration after partial hepatectomy via regulation of cell cycle. Sci Rep 2019; 9:2320. [PMID: 30787318 PMCID: PMC6382836 DOI: 10.1038/s41598-019-38568-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/21/2018] [Indexed: 12/29/2022] Open
Abstract
Brahma-related gene 1 (Brg1), a catalytic subunit of the SWItch/Sucrose Non-Fermentable (SWI/SNF) complex, is known to be involved in proliferative cell processes. Liver regeneration is initiated spontaneously after injury and leads to a strong proliferative response. In this study, a hepatocyte-specific Brg1 gene knockout mouse model was used to analyse the role of Brg1 in liver regeneration by performing a 70% partial hepatectomy (PH). After PH, Brg1 was significantly upregulated in wildtype mice. Mice with hepatocyte-specific Brg1 gene knockout showed a significantly lower liver to body weight ratio 48 h post-PH concomitant with a lower hepatocellular proliferation rate compared to wildtype mice. RNA sequencing demonstrated that Brg1 controlled hepatocyte proliferation through the regulation of the p53 pathway and several cell cycle genes. The data of this study reveal a crucial role of Brg1 for liver regeneration by promoting hepatocellular proliferation through modulation of cell cycle genes and, thus, identify Brg1 as potential target for therapeutic approaches.
Collapse
Affiliation(s)
- Baocai Wang
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Germany.,Department of General Surgery, the Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210000, China
| | - Benedikt Kaufmann
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, Department of Medicine II and TranslaTUM Cancer Center, Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Germany
| | - Miao Lu
- Department of General Surgery, the Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210000, China
| | - Carolin Mogler
- Institute of Pathology, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Germany
| | - Victor Olsavszky
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University and Center of Excellence in Dermatology, Mannheim, 68135, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, Department of Medicine II and TranslaTUM Cancer Center, Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Germany
| | - Suyang Zhong
- Department of Medicine II, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Germany
| | - Cyrill Geraud
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University and Center of Excellence in Dermatology, Mannheim, 68135, Germany
| | - Zhangjun Cheng
- Department of General Surgery, the Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210000, China
| | - Roland R Rad
- Institute of Molecular Oncology and Functional Genomics, Department of Medicine II and TranslaTUM Cancer Center, Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Germany
| | - Roland M Schmid
- Department of Medicine II, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Germany
| | - Helmut Friess
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Germany
| | - Norbert Hüser
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Germany
| | - Daniel Hartmann
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Germany.
| | - Guido von Figura
- Department of Medicine II, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Germany.
| |
Collapse
|
65
|
Liu F, Xia Z, Zhang M, Ding J, Feng Y, Wu J, Dong Y, Gao W, Han Z, Liu Y, Yao Y, Li D. SMARCAD1 Promotes Pancreatic Cancer Cell Growth and Metastasis through Wnt/β-catenin-Mediated EMT. Int J Biol Sci 2019; 15:636-646. [PMID: 30745850 PMCID: PMC6367592 DOI: 10.7150/ijbs.29562] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most lethal diseases, characterized by early metastasis and high mortality. Subunits of the SWI/SNF complex have been identified in many studies as the regulators of tumor progression, but the role of SMARCAD1, one member of the SWI/SNF family, in pancreatic cancer has not been elucidated. Based on analysis of GEO database and immunohistochemical detection of patient-derived pancreatic cancer tissues, we found that SMARCAD1 is more highly expressed in pancreatic cancer tissues and that its expression level negatively correlates with patients' survival time. With further investigation, it shows that SMARCAD1 promotes the proliferation, migration, invasion of pancreatic cancer cells. Mechanistically, we first demonstrate that SMARCAD1 induces EMT via activating Wnt/β-catenin signaling pathway in pancreatic cancer. Our results provide the role and potential mechanism of SMARCAD1 in pancreatic cancer, which may prove useful marker for diagnostic or therapeutic applications of PC disease.
Collapse
Affiliation(s)
- Furao Liu
- Department of Radiation Oncology, Hainan West Central Hospital (Shanghai Ninth People's Hospital, Hainan Branch), Shanghai Jiaotong University School of Medicine, Hainan, China
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zebin Xia
- Department of General Surgery, DaHua Hospital, Xuhui, Shanghai, China
| | - Meichao Zhang
- Department of Radiation Oncology, Hainan West Central Hospital (Shanghai Ninth People's Hospital, Hainan Branch), Shanghai Jiaotong University School of Medicine, Hainan, China
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiping Ding
- Department of Radiation Oncology, Hainan West Central Hospital (Shanghai Ninth People's Hospital, Hainan Branch), Shanghai Jiaotong University School of Medicine, Hainan, China
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yang Feng
- Department of Radiation Oncology, Hainan West Central Hospital (Shanghai Ninth People's Hospital, Hainan Branch), Shanghai Jiaotong University School of Medicine, Hainan, China
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianwei Wu
- Department of Radiation Oncology, Hainan West Central Hospital (Shanghai Ninth People's Hospital, Hainan Branch), Shanghai Jiaotong University School of Medicine, Hainan, China
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yun Dong
- Department of Radiation Oncology, Hainan West Central Hospital (Shanghai Ninth People's Hospital, Hainan Branch), Shanghai Jiaotong University School of Medicine, Hainan, China
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Gao
- Department of Radiation Oncology, Hainan West Central Hospital (Shanghai Ninth People's Hospital, Hainan Branch), Shanghai Jiaotong University School of Medicine, Hainan, China
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zengwei Han
- Department of Radiation Oncology, Hainan West Central Hospital (Shanghai Ninth People's Hospital, Hainan Branch), Shanghai Jiaotong University School of Medicine, Hainan, China
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuanhua Liu
- Department of Chemotherapy, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China
| | - Yuan Yao
- Department of Radiation Oncology, Hainan West Central Hospital (Shanghai Ninth People's Hospital, Hainan Branch), Shanghai Jiaotong University School of Medicine, Hainan, China
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dong Li
- Department of Radiation Oncology, Hainan West Central Hospital (Shanghai Ninth People's Hospital, Hainan Branch), Shanghai Jiaotong University School of Medicine, Hainan, China
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
66
|
Yu Y, Cheng D, Parfrey P, Liu G, Savas S. Two functional indel polymorphisms in the promoter region of the Brahma gene (BRM) and disease risk and progression-free survival in colorectal cancer. PLoS One 2018; 13:e0198873. [PMID: 29894502 PMCID: PMC5997361 DOI: 10.1371/journal.pone.0198873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/25/2018] [Indexed: 01/28/2023] Open
Abstract
Background and objective The Brahma gene (BRM) encodes a catalytic ATPase subunit of the Switch/Sucrose non-fermentable (SWI/SNF) complex, which modulates gene expression and many important cellular processes. Two indel polymorphisms in the promoter region of BRM (BRM-741 and BRM-1321) are associated with its reduced expression and the risk of susceptibility or survival outcomes in multiple solid cancers. In this study, we have examined these variants in relation to susceptibility and survival outcomes in colorectal cancer. Methods Genotypes were obtained using TaqMan assays in 427 cases and 408 controls. Multivariate logistic and Cox regression models were fitted to examine the associations of the BRM-741 and BRM-1321 genotypes adjusting for relevant covariates. Sub-group analyses based on tumor location and patient sex were also performed. In all analyses, indels were examined individually as well as in combination. Results Our results showed that there was no association between the BRM polymorphisms and the risk of colorectal cancer. However, genotype combinations of the BRM-741 and BRM-1321 variants were associated with the risk of colon cancer. Particularly, patients having at least one variant allele had increased risk of colon cancer when compared to patients with the double wild-type genotype. In the survival analyses, BRM-741 heterozygosity was associated with longer progression-free survival time in the colorectal cancer patients. A stronger association was detected in the male patients under the recessive genetic model where the homozygosity for the variant allele of BRM-741 was associated with shorter progression-free survival time. Conclusions Our analyses suggest that BRM-741 and BRM-1321 indels are associated with the risk of developing colon cancer and the BRM-741 indel is associated with the disease progression in colorectal cancer patients, especially in the male patients. Although our results show a different relationship between these indels and colorectal cancer compared to other cancer sites, they also suggest that BRM and its promoter variants may have biological roles in susceptibility and survival outcomes in colorectal cancers. Performing further analyses in additional and larger cohorts are needed to confirm our conclusions.
Collapse
Affiliation(s)
- Yajun Yu
- Discipline of Genetics, Faculty of Medicine, Memorial University, St. John’s, Newfoundland and Labrador, Canada
| | - Dangxiao Cheng
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Patrick Parfrey
- Clinical Epidemiology Unit, Faculty of Medicine, Memorial University, St. John’s, Newfoundland and Labrador, Canada
| | - Geoffrey Liu
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre and University of Toronto, Toronto, Ontario, Canada
- Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Sevtap Savas
- Discipline of Genetics, Faculty of Medicine, Memorial University, St. John’s, Newfoundland and Labrador, Canada
- Discipline of Oncology, Faculty of Medicine, Memorial University, St. John’s, Newfoundland and Labrador, Canada
- * E-mail:
| |
Collapse
|