51
|
Orfanou IM, Argyros O, Papapetropoulos A, Tseleni-Balafouta S, Vougas K, Tamvakopoulos C. Discovery and Pharmacological Evaluation of STEAP4 as a Novel Target for HER2 Overexpressing Breast Cancer. Front Oncol 2021; 11:608201. [PMID: 33842315 PMCID: PMC8034292 DOI: 10.3389/fonc.2021.608201] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 03/08/2021] [Indexed: 01/11/2023] Open
Abstract
Breast cancer (BC) is a highly heterogeneous disease encompassing multiple subtypes with different molecular and histopathological features, disease prognosis, and therapeutic responses. Among these, the Triple Negative BC form (TNBC) is an aggressive subtype with poor prognosis and therapeutic outcome. With respect to HER2 overexpressing BC, although advanced targeted therapies have improved the survival of patients, disease relapse and metastasis remains a challenge for therapeutic efficacy. In this study the aim was to identify key membrane-associated proteins which are overexpressed in these aggressive BC subtypes and can serve as potential biomarkers or drug targets. We leveraged on the development of a membrane enrichment protocol in combination with the global profiling GeLC-MS/MS technique, and compared the proteomic profiles of a HER2 overexpressing (HCC-1954) and a TNBC (MDA-MB-231) cell line with that of a benign control breast cell line (MCF-10A). An average of 2300 proteins were identified from each cell line, of which approximately 600 were membrane-associated proteins. Our global proteomic methodology in tandem with invigoration by Western blot and Immunofluorescence analysis, readily detected several previously-established BC receptors like HER2 and EPHA2, but importantly STEAP4 and CD97 emerged as novel potential candidate markers. This is the first time that the mitochondrial iron reductase STEAP4 protein up-regulation is linked to BC (HER2+ subtype), while for CD97, its role in BC has been previously described, but never before by a global proteomic technology in TNBC. STEAP4 was selected for further detailed evaluation by the employment of Immunohistochemical analysis of BC xenografts and clinical tissue microarray studies. Results showed that STEAP4 expression was evident only in malignant breast tissues whereas all the benign breast cases had no detectable levels. A functional role of STEAP4 intervention was established in HER2 overexpressing BC by pharmacological studies, where blockage of the STEAP4 pathway with an iron chelator (Deferiprone) in combination with the HER2 inhibitor Lapatinib led to a significant reduction in cell growth in vitro. Furthermore, siRNA mediated knockdown of STEAP4 also suppressed cell proliferation and enhanced the inhibition of Lapatinib in HER2 overexpressing BC, confirming its potential oncogenic role in BC. In conclusion, STEAP4 may represent a novel BC related biomarker and a potential pharmacological target for the treatment of HER2 overexpressing BC.
Collapse
Affiliation(s)
- Ioanna-Maria Orfanou
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Orestis Argyros
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Andreas Papapetropoulos
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Sofia Tseleni-Balafouta
- Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Vougas
- Proteomics Laboratory, Division of Biotechnology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Constantin Tamvakopoulos
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
52
|
Li X, Chen J, Yu Q, Huang H, Liu Z, Wang C, He Y, Zhang X, Li W, Li C, Zhao J, Long W. A Signature of Autophagy-Related Long Non-coding RNA to Predict the Prognosis of Breast Cancer. Front Genet 2021; 12:569318. [PMID: 33796128 PMCID: PMC8007922 DOI: 10.3389/fgene.2021.569318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 02/16/2021] [Indexed: 12/24/2022] Open
Abstract
Background: A surge in newly diagnosed breast cancer has overwhelmed the public health system worldwide. Joint effort had beed made to discover the genetic mechanism of these disease globally. Accumulated research has revealed autophagy may act as a vital part in the pathogenesis of breast cancer. Objective: Aim to construct a prognostic model based on autophagy-related lncRNAs and investigate their potential mechanisms in breast cancer. Methods: The transcriptome data and clinical information of patients with breast cancer were obtained from The Cancer Genome Atlas (TCGA) database. Autophagy-related genes were obtained from the Human Autophagy Database (HADb). Long non-coding RNAs (lncRNAs) related to autophagy were acquired through the Pearson correlation analysis. Univariate Cox regression analysis as well as the least absolute shrinkage and selection operator (LASSO) regression analysis were used to identify autophagy-related lncRNAs with prognostic value. We constructed a risk scoring model to assess the prognostic significance of the autophagy-related lncRNAs signatures. The nomogram was then established based on the risk score and clinical indicators. Through the calibration curve, the concordance index (C-index) and receiver operating characteristic (ROC) curve analysis were evaluated to obtain the model's predictive performance. Subgroup analysis was performed to evaluate the differential ability of the model. Subsequently, gene set enrichment analysis was conducted to investigate the potential functions of these lncRNAs. Results: We attained 1,164 breast cancer samples from the TCGA database and 231 autophagy-related genes from the HAD database. Through correlation analysis, 179 autophagy-related lncRNAs were finally identified. Univariate Cox regression analysis and LASSO regression analysis further screened 18 prognosis-associated lncRNAs. The risk scoring model was constructed to divide patients into high-risk and low-risk groups. It was found that the low-risk group had better overall survival (OS) than those of the high-risk group. Then, the nomogram model including age, tumor stage, TNM stage and risk score was established. The evaluation index (C-index: 0.78, 3-year OS AUC: 0.813 and 5-year OS AUC: 0.785) showed that the nomogram had excellent predictive power. Subgroup analysis showed there were difference in OS between high-risk and low-risk patients in different subgroups (stage I-II, ER positive, Her-2 negative and non-TNBC subgroups; all P < 0.05). According to the results of gene set enrichment analysis, these lncRNAs were involved in the regulation of multicellular organismal macromolecule metabolic process in multicellular organisms, nucleotide excision repair, oxidative phosphorylation, and TGF-β signaling pathway. Conclusions: We identified 18 autophagy-related lncRNAs with prognostic value in breast cancer, which may regulate tumor growth and progression in multiple ways.
Collapse
Affiliation(s)
- Xiaoping Li
- Department of Gastrointestinal Surgery, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Jishang Chen
- Department of Breast Surgery, Yangjiang People's Hospital, Yangjiang, China
| | - Qihe Yu
- Department of Oncology, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Hui Huang
- Department of Breast Surgery, Jiangmen Maternity & Chile Health Care Hospital, Jiangmen, China
| | - Zhuangsheng Liu
- Department of Radiology, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Chengxing Wang
- Department of Gastrointestinal Surgery, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Yaoming He
- Department of Gastrointestinal Surgery, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Xin Zhang
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Weiwen Li
- Department of Breast and Thyroid Surgery, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Chao Li
- Department of Gastrointestinal Surgery, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Jinglin Zhao
- Department of Gastrointestinal Surgery, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Wansheng Long
- Department of Radiology, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| |
Collapse
|
53
|
Li H, Wang J, Yi Z, Li C, Wang H, Zhang J, Wang T, Nan P, Lin F, Xu D, Qian H, Ma F. CDK12 inhibition enhances sensitivity of HER2+ breast cancers to HER2-tyrosine kinase inhibitor via suppressing PI3K/AKT. Eur J Cancer 2021; 145:92-108. [PMID: 33429148 DOI: 10.1016/j.ejca.2020.11.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUND Alhtough anti-HER2 tyrosine kinase inhibitors (TKIs) have radically prolonged survival and improved prognosis in HER2-positive breast cancer patients, resistance to these therapies is a constant obstacle leading to TKIs treatment failure and tumour progression. METHODS To develop new strategies to enhance TKIs efficiency by combining synergistic gene targets, we performed panel library screening using the CRISPR/Cas9 knockout technique based on data mining across TCGA data sets and verified the candidate target in preclinical models and breast cancer high-throughput sequencing data sets. RESULTS We identified that CDK12, co-amplified with HER2 in a high frequency, is powerful to sensitise or resensitise HER2-positive breast cancer to anti-HER2 TKIs lapatinib, evidenced by patient-derived organoids in vitro and cell-derived xenograft or patient-derived xenograft in vivo. Exploring mechanisms, we found that inhibition of CDK12 attenuated PI3K/AKT signal, which usually serves as an oncogenic driver and is reactivated when HER2-positive breast cancers develop resistance to lapatinib. Combining CDK12 inhibition exerted additional suppression on p-AKT activation induced by anti-HER2 TKIs lapatinib treatment. Clinically, via DNA sequencing data for tumour tissue and peripheral blood ctDNA, we found that HER2-positive breast cancer patients with CDK12 amplification responded more insensitively to anti-HER2 treatment than those without accompanying CDK12 amplification by harbouring a markedly shortened progression-free survival (PFS) (median PFS: 4.3 months versus 6.9 months; hazards ratio [HR] = 2.26 [95% confidence interval [CI] = 1.32-3.86]; P = 0.0028). CONCLUSIONS Dual inhibition of HER2/CDK12 will prominently benefit the outcomes of patients with HER2-positive breast cancer by sensitising or resensitising the tumours to anti-HER2 TKIs treatment.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Breast Neoplasms/drug therapy
- Breast Neoplasms/enzymology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Cyclic N-Oxides/pharmacology
- Cyclin-Dependent Kinases/antagonists & inhibitors
- Cyclin-Dependent Kinases/genetics
- Cyclin-Dependent Kinases/metabolism
- Databases, Genetic
- Drug Resistance, Neoplasm
- Female
- Gene Amplification
- Gene Expression Regulation, Neoplastic
- Humans
- Indolizines/pharmacology
- Lapatinib/pharmacology
- Mice, Inbred BALB C
- Mice, Nude
- Phosphatidylinositol 3-Kinase/metabolism
- Phosphorylation
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins c-akt/metabolism
- Pyridinium Compounds/pharmacology
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Signal Transduction
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jinsong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zongbi Yi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiao Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Haijuan Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jingyao Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ting Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Peng Nan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Feng Lin
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dongkui Xu
- Department of VIP, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Fei Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
54
|
Lamtha T, Tabtimmai L, Bangphoomi K, Kiriwan D, Malik AA, Chaicumpa W, van Bergen En Henegouwen PMP, Choowongkomon K. Generation of a nanobody against HER2 tyrosine kinase using phage display library screening for HER2-positive breast cancer therapy development. Protein Eng Des Sel 2021; 34:6462358. [PMID: 34908139 DOI: 10.1093/protein/gzab030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 11/08/2021] [Indexed: 01/03/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) protein overexpression is found in ~30% of invasive breast carcinomas and in a high proportion of noninvasive ductal carcinomas in situ. Targeted cancer therapy is based on monoclonal antibodies and kinase inhibitors and reflects a new era of cancer therapy. However, delivery to tumor cells in vivo is hampered by the large size (150 kDa) of conventional antibodies. Furthermore, there are many disadvantages with the current anti-HER2 drug, including drug resistance and adverse effects. Nanobodies (15 kDa), single-domain antibody (sdAb) fragments, can overcome these limitations. This study produced the recombinant sdAb against the HER2-tyrosine kinase (HER2-TK) domain using phage display technology. Three specific anti-HER2-TK sdAbs were selected for further characterization. Hallmark VHH residue identification and amino acid sequence analysis revealed that clone numbers 4 and 22 were VH antibodies, whereas clone number 17 was a VH H antibody (nanobody). The half-maximal inhibitory concentration of VHH17 exhibited significantly greater HER2 kinase-inhibition activity than the other clones. Consistent with these results, several charges and polar residues of the HER2-TK activation loop that were predicted based on mimotope analysis also appeared in the docking result and interacted via the CDR1, CDR2 and CDR3 loops of VHH17. Furthermore, the cell-penetrable VHH17 (R9 VHH17) showed cell-penetrability and significantly decreased HER2-positive cancer cell viability. Thus, the VH H17 could be developed as an effective therapeutic agent to treat HER2-positive breast cancer.
Collapse
Affiliation(s)
- Thomanai Lamtha
- Department of Biochemistry, Faculty of Sciences, Kasetsart University, Laboratory of Protein Engineering and Bioinformatics, Chatuchak, Bangkok 10900, Thailand
| | - Lueacha Tabtimmai
- Department of Biotechnology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bang Sue, Bangkok 10800, Thailand
| | - Kunan Bangphoomi
- Department of Biochemistry, Faculty of Sciences, Kasetsart University, Laboratory of Protein Engineering and Bioinformatics, Chatuchak, Bangkok 10900, Thailand
| | - Duangnapa Kiriwan
- Department of Biochemistry, Faculty of Sciences, Kasetsart University, Laboratory of Protein Engineering and Bioinformatics, Chatuchak, Bangkok 10900, Thailand
| | - Aijaz A Malik
- Center of Data Mining and Biomedical Informatics, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Laboratory for Research and Technology Development, Bangkok Noi, Bangkok 10700, Thailand
| | - Paul M P van Bergen En Henegouwen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, the Netherlands
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Sciences, Kasetsart University, Laboratory of Protein Engineering and Bioinformatics, Chatuchak, Bangkok 10900, Thailand.,Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
55
|
Eyermann CE, Haley JD, Alexandrova EM. The HSP-RTK-Akt axis mediates acquired resistance to Ganetespib in HER2-positive breast cancer. Cell Death Dis 2021; 12:126. [PMID: 33500390 PMCID: PMC7838268 DOI: 10.1038/s41419-021-03414-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023]
Abstract
Breast cancer is the leading cause of cancer-related death in women worldwide. Human epidermal growth factor receptor 2 (HER2)-positive subtype comprises 20% of sporadic breast cancers and is an aggressive disease. While targeted therapies have greatly improved its management, primary and acquired resistance remain a major roadblock to making it a curable malignancy. Ganetespib, an Hsp90 (Heat shock protein 90) small molecule inhibitor, shows preferential efficacy in HER2-positive breast cancer, including therapy-refractory cases, and has an excellent safety profile in ongoing clinical trials (38 in total, six on breast cancer). However, Ganetespib itself evokes acquired resistance, which is a significant obstacle to its clinical advancement. Here, we show that Ganetespib potently, albeit temporarily, suppresses HER2-positive breast cancer in genetic mouse models, but the animals eventually succumb via acquired resistance. We found that Ganetespib-resistant tumors upregulate several compensatory HSPs, as well as a wide network of phospho-activated receptor tyrosine kinases (RTKs), many of which are HSP clients. Downstream of p-RTKs, the MAPK pathway remains suppressed in the resistant tumors, as is HER2 itself. In contrast, the p-RTK effector Akt is stabilized and phospho-activated. Notably, pharmacological inhibition of Akt significantly delays acquired Ganetespib resistance, by 50%. These data establish Akt as a unifying actionable node downstream of the broadly upregulated HSP/p-RTK resistance program and suggests that Akt co-targeting with Ganetespib may be a superior therapeutic strategy in the clinic.
Collapse
Affiliation(s)
| | - John D Haley
- Department of Pathology, Stony Brook University, Stony Brook, NY, 11794-8691, USA
| | | |
Collapse
|
56
|
Shams A, Binothman N, Boudreault J, Wang N, Shams F, Hamam D, Tian J, Moamer A, Dai M, Lebrun JJ, Ali S. Prolactin receptor-driven combined luminal and epithelial differentiation in breast cancer restricts plasticity, stemness, tumorigenesis and metastasis. Oncogenesis 2021; 10:10. [PMID: 33446633 PMCID: PMC7809050 DOI: 10.1038/s41389-020-00297-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Dedifferentiation increased cellular plasticity and stemness are established derivers of tumor heterogeneity, metastasis and therapeutic failure resulting in incurable cancers. Therefore, it is essential to decipher pro/forward-differentiation mechanisms in cancer that may serve as therapeutic targets. We found that interfering with expression of the receptor for the lactogenic hormone prolactin (PRLR) in breast cancer cells representative of the luminal and epithelial breast cancer subtypes (hormone receptor positive (HR+) and HER2-enriched (HER2-E) resulted in loss of their differentiation state, enriched for stem-like cell subpopulations, and increased their tumorigenic capacity in a subtype-specific manner. Loss of PRLR expression in HR+ breast cancer cells caused their dedifferentiation generating a mesenchymal-basal-like phenotype enriched in CD44+ breast cancer stem-like cells (BCSCs) showing high tumorigenic and metastatic capacities and resistance to anti-hormonal therapy. Whereas loss of PRLR expression in HER2-E breast cancer cells resulted in loss of their luminal differentiation yet enriched for epithelial ALDH+ BCSC population showing elevated HER2-driven tumorigenic, multi-organ metastatic spread, and resistance to anti-HER2 therapy. Collectively, this study defines PRLR as a driver of precise luminal and epithelial differentiation limiting cellular plasticity, stemness, and tumorigenesis and emphasizing the function of pro/forward-differentiation pathways as a foundation for the discovery of anti-cancer therapeutic targets.
Collapse
Affiliation(s)
- Anwar Shams
- grid.63984.300000 0000 9064 4811Department of Medicine, Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC Canada ,grid.412895.30000 0004 0419 5255Present Address: Department of Pharmacology, Faculty of Medicine, Taif University, Taif, Saudi Arabia
| | - Najat Binothman
- grid.63984.300000 0000 9064 4811Department of Medicine, Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC Canada ,grid.412125.10000 0001 0619 1117Present Address: Department of Chemistry, College of Science and Arts, King Abdulaziz University, P.O. Box 344, Rabigh, 21911 Saudi Arabia
| | - Julien Boudreault
- grid.63984.300000 0000 9064 4811Department of Medicine, Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC Canada
| | - Ni Wang
- grid.63984.300000 0000 9064 4811Department of Medicine, Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC Canada
| | - Fuad Shams
- grid.415252.5Department of Pathology and Laboratory Medicine, King Abdulaziz Hospital, Mecca, Saudi Arabia
| | - Dana Hamam
- grid.63984.300000 0000 9064 4811Department of Medicine, Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC Canada
| | - Jun Tian
- grid.63984.300000 0000 9064 4811Department of Medicine, Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC Canada
| | - Alaa Moamer
- grid.63984.300000 0000 9064 4811Department of Medicine, Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC Canada
| | - Meiou Dai
- grid.63984.300000 0000 9064 4811Department of Medicine, Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC Canada
| | - Jean-Jacques Lebrun
- grid.63984.300000 0000 9064 4811Department of Medicine, Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC Canada
| | - Suhad Ali
- grid.63984.300000 0000 9064 4811Department of Medicine, Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC Canada
| |
Collapse
|
57
|
Kobayashi PE, Lainetti PF, Leis-Filho AF, Delella FK, Carvalho M, Cury SS, Carvalho RF, Fonseca-Alves CE, Laufer-Amorim R. Transcriptome of Two Canine Prostate Cancer Cells Treated With Toceranib Phosphate Reveals Distinct Antitumor Profiles Associated With the PDGFR Pathway. Front Vet Sci 2020; 7:561212. [PMID: 33324695 PMCID: PMC7726326 DOI: 10.3389/fvets.2020.561212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/30/2020] [Indexed: 01/17/2023] Open
Abstract
Canine prostate cancer (PC) presents a poor antitumor response, usually late diagnosis and prognosis. Toceranib phosphate (TP) is a nonspecific inhibitor of receptor tyrosine kinases (RTKs), including vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), and c-KIT. This study aimed to evaluate VEGFR2, PDGFR-β, and c-KIT protein expression in two established canine PC cell lines (PC1 and PC2) and the transcriptome profile of the cells after treatment with TP. Immunofluorescence (IF) analysis revealed VEGFR2 and PDGFR-β protein expression and the absence of c-KIT protein expression in both cell lines. After TP treatment, only the viability of PC1 cells decreased in a dose-dependent manner. Transcriptome and enrichment analyses of treated PC1 cells revealed 181 upregulated genes, which were related to decreased angiogenesis and cell proliferation. In addition, we found upregulated PDGFR-A, PDGFR-β, and PDGF-D expression in PC1 cells, and the upregulation of PDGFR-β was also observed in treated PC1 cells by qPCR. PC2 cells had fewer protein-protein interactions (PPIs), with 18 upregulated and 22 downregulated genes; the upregulated genes were involved in the regulation of parallel pathways and mechanisms related to proliferation, which could be associated with the resistance observed after treatment. The canine PC1 cell line but not the PC2 cell line showed decreased viability after treatment with TP, although both cell lines expressed PDGFR and VEGFR receptors. Further studies could explain the mechanism of resistance in PC2 cells and provide a basis for personalized treatment for dogs with PC.
Collapse
Affiliation(s)
- Priscila E Kobayashi
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University-UNESP, Botucatu, Brazil
| | - Patrícia F Lainetti
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, São Paulo State University-UNESP, Botucatu, Brazil
| | - Antonio F Leis-Filho
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University-UNESP, Botucatu, Brazil
| | - Flávia K Delella
- Department of Morphology, Institute of Biosciences, São Paulo State University-UNESP, Botucatu, Brazil
| | - Marcio Carvalho
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University-UNESP, Botucatu, Brazil
| | - Sarah Santiloni Cury
- Department of Morphology, Institute of Biosciences, São Paulo State University-UNESP, Botucatu, Brazil
| | - Robson Francisco Carvalho
- Department of Morphology, Institute of Biosciences, São Paulo State University-UNESP, Botucatu, Brazil
| | - Carlos E Fonseca-Alves
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, São Paulo State University-UNESP, Botucatu, Brazil.,Institute of Health Sciences, Paulista University-UNIP, Bauru, Brazil
| | - Renée Laufer-Amorim
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University-UNESP, Botucatu, Brazil
| |
Collapse
|
58
|
Dingerdissen HM, Bastian F, Vijay-Shanker K, Robinson-Rechavi M, Bell A, Gogate N, Gupta S, Holmes E, Kahsay R, Keeney J, Kincaid H, King CH, Liu D, Crichton DJ, Mazumder R. OncoMX: A Knowledgebase for Exploring Cancer Biomarkers in the Context of Related Cancer and Healthy Data. JCO Clin Cancer Inform 2020; 4:210-220. [PMID: 32142370 PMCID: PMC7101249 DOI: 10.1200/cci.19.00117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE The purpose of OncoMX1 knowledgebase development was to integrate cancer biomarker and relevant data types into a meta-portal, enabling the research of cancer biomarkers side by side with other pertinent multidimensional data types. METHODS Cancer mutation, cancer differential expression, cancer expression specificity, healthy gene expression from human and mouse, literature mining for cancer mutation and cancer expression, and biomarker data were integrated, unified by relevant biomedical ontologies, and subjected to rule-based automated quality control before ingestion into the database. RESULTS OncoMX provides integrated data encompassing more than 1,000 unique biomarker entries (939 from the Early Detection Research Network [EDRN] and 96 from the US Food and Drug Administration) mapped to 20,576 genes that have either mutation or differential expression in cancer. Sentences reporting mutation or differential expression in cancer were extracted from more than 40,000 publications, and healthy gene expression data with samples mapped to organs are available for both human genes and their mouse orthologs. CONCLUSION OncoMX has prioritized user feedback as a means of guiding development priorities. By mapping to and integrating data from several cancer genomics resources, it is hoped that OncoMX will foster a dynamic engagement between bioinformaticians and cancer biomarker researchers. This engagement should culminate in a community resource that substantially improves the ability and efficiency of exploring cancer biomarker data and related multidimensional data.
Collapse
Affiliation(s)
| | - Frederic Bastian
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | | - Marc Robinson-Rechavi
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Amanda Bell
- The George Washington University, Washington DC
| | | | | | - Evan Holmes
- The George Washington University, Washington DC
| | | | | | | | | | - David Liu
- NASA Jet Propulsion Laboratory, Pasadena, CA
| | | | | |
Collapse
|
59
|
Cancer Metabolism: Phenotype, Signaling and Therapeutic Targets. Cells 2020; 9:cells9102308. [PMID: 33081387 PMCID: PMC7602974 DOI: 10.3390/cells9102308] [Citation(s) in RCA: 238] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Aberrant metabolism is a major hallmark of cancer. Abnormal cancer metabolism, such as aerobic glycolysis and increased anabolic pathways, has important roles in tumorigenesis, metastasis, drug resistance, and cancer stem cells. Well-known oncogenic signaling pathways, such as phosphoinositide 3-kinase (PI3K)/AKT, Myc, and Hippo pathway, mediate metabolic gene expression and increase metabolic enzyme activities. Vice versa, deregulated metabolic pathways contribute to defects in cellular signal transduction pathways, which in turn provide energy, building blocks, and redox potentials for unrestrained cancer cell proliferation. Studies and clinical trials are being performed that focus on the inhibition of metabolic enzymes by small molecules or dietary interventions (e.g., fasting, calorie restriction, and intermittent fasting). Similar to genetic heterogeneity, the metabolic phenotypes of cancers are highly heterogeneous. This heterogeneity results from diverse cues in the tumor microenvironment and genetic mutations. Hence, overcoming metabolic plasticity is an important goal of modern cancer therapeutics. This review highlights recent findings on the metabolic phenotypes of cancer and elucidates the interactions between signal transduction pathways and metabolic pathways. We also provide novel rationales for designing the next-generation cancer metabolism drugs.
Collapse
|
60
|
Bao S, Chen Y, Yang F, Sun C, Yang M, Li W, Huang X, Li J, Wu H, Yin Y. Screening and Identification of Key Biomarkers in Acquired Lapatinib-Resistant Breast Cancer. Front Pharmacol 2020; 11:577150. [PMID: 33013420 PMCID: PMC7500445 DOI: 10.3389/fphar.2020.577150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/18/2020] [Indexed: 01/04/2023] Open
Abstract
Lapatinib, targeting the human epidermal growth factor receptor family members HER1 and HER2, has been approved by the US Food and Drug Administration for use in metastatic HER2-positive breast cancer. However, resistance to lapatinib remains a common challenge to HER2-positive metastatic breast cancer. Until now, the molecular mechanisms of acquired resistance to lapatinib (ALR) have remained unclear. With no definite biomarkers currently known, we aimed to screen for key biomarkers in ALR. In this research, we identified 55 differentially expressed genes (DEGs, 20 upregulated, 35 downregulated) through bioinformatic analysis using microarray datasets GSE16179, GSE38376, and GSE51889 from the Gene Expression Omnibus (GEO) database. The related gene function was explored using the Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The protein-protein interaction (PPI) network was constructed with the Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape. The functional enrichment of the DEGs was analyzed, including negative regulation of the B cell apoptotic process, DNA replication, solute:proton symporter activity, synthesis, and degradation of ketone bodies, and metal sequestration by antimicrobial proteins. Analysis of seven hub genes revealed their concentration mainly in DNA replication and cell cycle. Survival analysis revealed that MCM10 and SPC24 may be related with poor prognosis in patients with ALR. Meanwhile, the prediction model of lapatinib sensitivity was constructed, and emerging role of the model was further analyzed using several webtools. In conclusion, hub genes are involved in the complex mechanisms underlying ALR in breast cancer and provide favorable support for treatment of ALR in future.
Collapse
Affiliation(s)
- Shengnan Bao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Yi Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Fan Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Chunxiao Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mengzhu Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Huang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Wu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
61
|
Zhang Y. The root cause of drug resistance in HER2-positive breast cancer and the therapeutic approaches to overcoming the resistance. Pharmacol Ther 2020; 218:107677. [PMID: 32898548 DOI: 10.1016/j.pharmthera.2020.107677] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022]
Abstract
HER2 is a well-known oncogenic receptor tyrosine kinase. HER2 gene amplification occurs in about 20% of breast cancer (BC), which leads to overexpression of HER2 protein, known as HER2-positive BC. Inhibitors of HER2 have significantly improved the prognosis of patients with this subset of BC. Since 1998, seven HER2 inhibitors have been developed to treat this disease. However, drug resistance is common and remains a major unresolved clinical problem. Patients typically show disease progression after some time on treatment. This review discusses the complexity and diversified nature of HER2 signaling, the mechanisms of actions and therapeutic activities of all HER2 inhibitors, the roles of HER2 and other signaling proteins in HER2-positive BC resistant to the inhibitors, the non-cell-autonomous mechanisms of drug resistance, and the heterogeneity of tumor HER2 expression. The review presents the concept that drug resistance in HER2-positive BC results primarily from the inability of HER2 inhibitors to deplete HER2. Emerging therapeutics that are promising for overcoming drug resistance are also discussed.
Collapse
Affiliation(s)
- Yuesheng Zhang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, USA.
| |
Collapse
|
62
|
Crizotinib induced antitumor activity and synergized with chemotherapy and hormonal drugs in breast cancer cells via downregulating MET and estrogen receptor levels. Invest New Drugs 2020; 39:77-88. [PMID: 32833135 DOI: 10.1007/s10637-020-00989-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/16/2020] [Indexed: 02/07/2023]
Abstract
MET is a receptor tyrosine kinase known to drive neoplastic transformation and aggressive tumor phenotypes. Crizotinib is an oral multi-targeted tyrosine kinase inhibitor of MET, ALK, RON, and ROS1 kinases. In this study, the anticancer effects of crizotinib on breast cancer cells were investigated in vitro along with the molecular mechanisms associated with these effects. Besides, the antiproliferative effects of crizotinib in combination with chemotherapy, hormonal drugs, and targeted agents were examined. Results showed that crizotinib produced dose-dependent antiproliferative effects in BT-474 and SK-BR-3 breast cancer cells with IC50 values of 1.7 μM and 5.2 μM, respectively. Crizotinib inhibited colony formation of BT-474 cells at low micromolar concentrations (1-5 μM). Immunofluorescence and Western blotting indicated that crizotinib reduced total levels of MET and estrogen receptor (ERα) in BT-474 cells. Also, crizotinib reduced the levels of phosphorylated (active) MET and HER2 in BT-474 cells. The combined treatment of crizotinib with doxorubicin and paclitaxel resulted in synergistic growth inhibition of BT-474 cells with combination index values of 0.46 and 0.35, respectively. Synergy was also observed with the combination of crizotinib with the hormonal drugs 4-hydroxytamoxifen and fulvestrant in BT-474 cells. Alternatively, the combination of crizotinib with lapatinib produced antagonistic antiproliferative effects in both BT-474 and SK-BR-3 cells. Collectively, these findings demonstrate the anticancer effects of crizotinib in breast cancer cells and reveal ERα as a potential therapeutic target of the drug apart from its classical kinase inhibitory activity. Crizotinib could be an appealing option in combination with chemotherapy or hormonal drugs for the management of breast cancer.
Collapse
|
63
|
Geneste A, Duong MN, Molina L, Conilh L, Beaumel S, Cleret A, Chettab K, Lachat M, Jordheim LP, Matera EL, Dumontet C. Adipocyte-conditioned medium induces resistance of breast cancer cells to lapatinib. BMC Pharmacol Toxicol 2020; 21:61. [PMID: 32795383 PMCID: PMC7427918 DOI: 10.1186/s40360-020-00436-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 07/27/2020] [Indexed: 12/22/2022] Open
Abstract
Background The existence of a cross-talk between peritumoral adipocytes and cancer cells has been increasingly investigated. Several studies have shown that these adipocytes protect tumor cells from the effect of anticancer agents. Methods To investigate a potential protective effect of adipocyte-conditioned medium on HER2 positive breast cancer cells exposed to tyrosine kinase inhibitors (TKI) such as lapatinib, we analyzed the sensitivity of HER2 positive breast cancer models in vitro and in vivo on SCID mice in the presence or absence of adipocytes or adipocyte-conditioned medium. Results Conditioned medium from differentiated adipocytes reduced the in vitro sensitivity of the HER2+ cell lines BT474 and SKBR3 to TKI. Particularly, conditioned medium abrogated P27 induction in tumor cells by lapatinib but this was observed only when conditioned medium was present during exposure to lapatinib. In addition, resistance was induced with adipocytes derived from murine NIH3T3 or human hMAD cells but not with fibroblasts or preadipocytes. In vivo studies demonstrated that the contact of the tumors with adipose tissue reduced sensitivity to lapatinib. Soluble factors involved in this resistance were found to be thermolabile. Pharmacological modulation of lipolysis in adipocytes during preparation of conditioned media showed that various lipolysis inhibitors abolished the protective effect of conditioned media on tumor cells, suggesting a role for adipocyte lipolysis in the induction of resistance of tumor cells to TKI. Conclusions Overall, our results suggest that contact of tumor cells with proximal adipose tissue induces resistance to anti HER2 small molecule inhibitors through the production of soluble thermolabile factors, and that this effect can be abrogated using lipolysis inhibitors.
Collapse
Affiliation(s)
- A Geneste
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM UMR 1052, CNRS 5286, 8 Avenue Rockefeller, 69008, Lyon, France
| | - M N Duong
- Department of Oncology, Lausanne University Hospital Center (CHUV) and University of Lausanne, Epalinges, Switzerland
| | - L Molina
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM UMR 1052, CNRS 5286, 8 Avenue Rockefeller, 69008, Lyon, France
| | - L Conilh
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM UMR 1052, CNRS 5286, 8 Avenue Rockefeller, 69008, Lyon, France.
| | - S Beaumel
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM UMR 1052, CNRS 5286, 8 Avenue Rockefeller, 69008, Lyon, France
| | - A Cleret
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM UMR 1052, CNRS 5286, 8 Avenue Rockefeller, 69008, Lyon, France
| | - K Chettab
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM UMR 1052, CNRS 5286, 8 Avenue Rockefeller, 69008, Lyon, France
| | - M Lachat
- Hospices Civils de Lyon, Banque de tissus et cellules, 5 place d'Arsonval, 69003, Lyon, France
| | - L P Jordheim
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM UMR 1052, CNRS 5286, 8 Avenue Rockefeller, 69008, Lyon, France
| | - E L Matera
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM UMR 1052, CNRS 5286, 8 Avenue Rockefeller, 69008, Lyon, France
| | - C Dumontet
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM UMR 1052, CNRS 5286, 8 Avenue Rockefeller, 69008, Lyon, France.,Hospices Civils de Lyon, Services d'Hématologie, 165 Chemin du Grand Revoyet, 69310, Pierre-Bénite, France
| |
Collapse
|
64
|
Wu XX, Yue GGL, Dong JR, Lam CWK, Wong CK, Qiu MH, Lau CBS. Actein Inhibits Tumor Growth and Metastasis in HER2-Positive Breast Tumor Bearing Mice via Suppressing AKT/mTOR and Ras/Raf/MAPK Signaling Pathways. Front Oncol 2020; 10:854. [PMID: 32547952 PMCID: PMC7269144 DOI: 10.3389/fonc.2020.00854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
HER2-positive breast cancer accounts for 15–20% in breast cancer and 50% of the metastatic HER2-positive breast cancer patients died of central nervous system progression. The present study investigated the effects of actein (a natural cycloartane triterpene) on cells adhesion, migration, proliferation and matrix degradation, and its underlying mechanism in HER2-positive breast cancer cells. The in vivo effect of actein on tumor growth and metastasis in MDA-MB-361 tumor-bearing mice as well as the anti-brain metastasis in tail vein injection mice model were also investigated. Our results showed that actein inhibited HER2-positive breast cancer cells viability, proliferation and migration. Actein also induced MDA-MB-361 cells G1 phase arrest and inhibited the expressions of cyclins and cyclin-dependent kinases. For intracellular mechanisms, actein inhibited the expressions of molecules in AKT/mTOR and Ras/Raf/MAPK signaling pathways. Furthermore, actein (15 mg/kg) was shown to exhibit anti-tumor and anti-metastatic activities in MDA-MB-361 breast tumor-bearing mice, and reduced brain metastasis in tail vein injection mice model. All these findings strongly suggested that actein is a potential anti-metastatic agent for HER2-positive breast cancer.
Collapse
Affiliation(s)
- Xiao-Xiao Wu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Grace Gar-Lee Yue
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Jin-Run Dong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Christopher Wai-Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Chun-Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China.,Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Clara Bik-San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China.,Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
65
|
Adjibade P, Simoneau B, Ledoux N, Gauthier WN, Nkurunziza M, Khandjian EW, Mazroui R. Treatment of cancer cells with Lapatinib negatively regulates general translation and induces stress granules formation. PLoS One 2020; 15:e0231894. [PMID: 32365111 PMCID: PMC7197775 DOI: 10.1371/journal.pone.0231894] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/02/2020] [Indexed: 12/22/2022] Open
Abstract
Stress granules (SG) are cytoplasmic RNA granules that form during various types of stress known to inhibit general translation, including oxidative stress, hypoxia, endoplasmic reticulum stress (ER), ionizing radiations or viral infection. Induction of these SG promotes cell survival in part through sequestration of proapoptotic molecules, resulting in the inactivation of cell death pathways. SG also form in cancer cells, but studies investigating their formation upon treatment with chemotherapeutics are very limited. Here we identified Lapatinib (Tykerb / Tyverb®), a tyrosine kinase inhibitor used for the treatment of breast cancers as a new inducer of SG in breast cancer cells. Lapatinib-induced SG formation correlates with the inhibition of general translation initiation which involves the phosphorylation of the translation initiation factor eIF2α through the kinase PERK. Disrupting PERK-SG formation by PERK depletion experiments sensitizes resistant breast cancer cells to Lapatinib. This study further supports the assumption that treatment with anticancer drugs activates the SG pathway, which may constitute an intrinsic stress response used by cancer cells to resist treatment.
Collapse
Affiliation(s)
- Pauline Adjibade
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Centre de Recherche en Cancérologie, Centre de Recherche du CHU de Québec, Faculté de Médecine, Université Laval, Québec, Parti Québécois, Canada
| | - Bryan Simoneau
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Centre de Recherche en Cancérologie, Centre de Recherche du CHU de Québec, Faculté de Médecine, Université Laval, Québec, Parti Québécois, Canada
| | - Nassim Ledoux
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Centre de Recherche en Cancérologie, Centre de Recherche du CHU de Québec, Faculté de Médecine, Université Laval, Québec, Parti Québécois, Canada
| | - William-Naud Gauthier
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Centre de Recherche en Cancérologie, Centre de Recherche du CHU de Québec, Faculté de Médecine, Université Laval, Québec, Parti Québécois, Canada
| | - Melisse Nkurunziza
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Centre de Recherche en Cancérologie, Centre de Recherche du CHU de Québec, Faculté de Médecine, Université Laval, Québec, Parti Québécois, Canada
| | - Edouard W. Khandjian
- Département de Psychiatrie et de Neurosciences, Centre de Recherche, Institut Universitaire en Santé mentale de Québec, Faculté de Médecine, Université Laval, Québec, Parti Québécois, Canada
| | - Rachid Mazroui
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Centre de Recherche en Cancérologie, Centre de Recherche du CHU de Québec, Faculté de Médecine, Université Laval, Québec, Parti Québécois, Canada
- * E-mail:
| |
Collapse
|
66
|
Terkelsen T, Krogh A, Papaleo E. CAncer bioMarker Prediction Pipeline (CAMPP)-A standardized framework for the analysis of quantitative biological data. PLoS Comput Biol 2020; 16:e1007665. [PMID: 32176694 PMCID: PMC7108742 DOI: 10.1371/journal.pcbi.1007665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 03/31/2020] [Accepted: 01/18/2020] [Indexed: 01/21/2023] Open
Abstract
With the improvement of -omics and next-generation sequencing (NGS) methodologies, along with the lowered cost of generating these types of data, the analysis of high-throughput biological data has become standard both for forming and testing biomedical hypotheses. Our knowledge of how to normalize datasets to remove latent undesirable variances has grown extensively, making for standardized data that are easily compared between studies. Here we present the CAncer bioMarker Prediction Pipeline (CAMPP), an open-source R-based wrapper (https://github.com/ELELAB/CAncer-bioMarker-Prediction-Pipeline -CAMPP) intended to aid bioinformatic software-users with data analyses. CAMPP is called from a terminal command line and is supported by a user-friendly manual. The pipeline may be run on a local computer and requires little or no knowledge of programming. To avoid issues relating to R-package updates, a renv .lock file is provided to ensure R-package stability. Data-management includes missing value imputation, data normalization, and distributional checks. CAMPP performs (I) k-means clustering, (II) differential expression/abundance analysis, (III) elastic-net regression, (IV) correlation and co-expression network analyses, (V) survival analysis, and (VI) protein-protein/miRNA-gene interaction networks. The pipeline returns tabular files and graphical representations of the results. We hope that CAMPP will assist in streamlining bioinformatic analysis of quantitative biological data, whilst ensuring an appropriate bio-statistical framework.
Collapse
Affiliation(s)
- Thilde Terkelsen
- Computational Biology Laboratory, Danish Cancer Society Research Center and Center for Autophagy, Recycling and Disease, Copenhagen, Denmark
| | - Anders Krogh
- Unit of Computational and RNA biology, Department of Biology, University of Copenhagen, Copenhagen Denmark
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center and Center for Autophagy, Recycling and Disease, Copenhagen, Denmark
- Translational Disease System Biology, Faculty of Health and Medical Science, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
67
|
Wahdan-Alaswad R, Liu B, Thor AD. Targeted lapatinib anti-HER2/ErbB2 therapy resistance in breast cancer: opportunities to overcome a difficult problem. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:179-198. [PMID: 35582612 PMCID: PMC9090587 DOI: 10.20517/cdr.2019.92] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/09/2020] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
Abstract
Approximately 20% of invasive breast cancers have upregulation/gene amplification of the oncogene human epidermal growth factor receptor-2 (HER2/ErbB2). Of these, some also express steroid receptors (the so-called Luminal B subtype), whereas others do not (the HER2 subtype). HER2 abnormal breast cancers are associated with a worse prognosis, chemotherapy resistance, and sensitivity to selected anti-HER2 targeted therapeutics. Transcriptional data from over 3000 invasive breast cancers suggest that this approach is overly simplistic; rather, the upregulation of HER2 expression resulting from gene amplification is a driver event that causes major transcriptional changes involving numerous genes and pathways in breast cancer cells. Most notably, this includes a shift from estrogenic dependence to regulatory controls driven by other nuclear receptors, particularly the androgen receptor. We discuss members of the HER receptor tyrosine kinase family, heterodimer formation, and downstream signaling, with a focus on HER2 associated pathology in breast carcinogenesis. The development and application of anti-HER2 drugs, including selected clinical trials, are discussed. In light of the many excellent reviews in the clinical literature, our emphasis is on recently developed and successful strategies to overcome targeted therapy resistance. These include combining anti-HER2 agents with programmed cell death-1 ligand or cyclin-dependent kinase 4/6 inhibitors, targeting crosstalk between HER2 and other nuclear receptors, lipid/cholesterol synthesis to inhibit receptor tyrosine kinase activation, and metformin, a broadly inhibitory drug. We seek to facilitate a better understanding of new approaches to overcome anti-HER2 drug resistance and encourage exploration of two other therapeutic interventions that may be clinically useful for HER+ invasive breast cancer patients.
Collapse
Affiliation(s)
- Reema Wahdan-Alaswad
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora CO 80014, USA
| | - Bolin Liu
- Department of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Ann D Thor
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora CO 80014, USA
| |
Collapse
|
68
|
Nasrazadani A, Brufsky A. Neratinib: the emergence of a new player in the management of HER2+ breast cancer brain metastasis. Future Oncol 2020; 16:247-254. [PMID: 32057254 DOI: 10.2217/fon-2019-0719] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
HER2-positive (HER2+) breast cancer has become an effectively treatable disease in the era of targeted therapies, and outcomes have improved such that prognosis of this subtype is demonstrated to be superior to HER2-negative disease. Despite these advances, durable responses in HER2+ metastatic disease are challenged by the increased risk for brain metastasis. Neratinib is an irreversible pan-HER kinase inhibitor that has emerged as an effective agent when combined with capecitabine for the management of HER2+ metastatic breast cancer patients with brain metastasis. The randomized, Phase III, NALA trial compares neratinib plus capecitabine to a currently prevailing regimen of lapatinib plus capecitabine and is provided herein. Analysis of NALA portends meaningful changes on the horizon for the management of HER2+ metastatic breast cancer.
Collapse
Affiliation(s)
- Azadeh Nasrazadani
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
| | - Adam Brufsky
- UPMC Hillman Cancer Center, Magee Women's Hospital, Suite 4628, 300 Halket Street, Pittsburgh, PA 15213, USA
| |
Collapse
|
69
|
Zhang Y, Wu S, Zhuang X, Weng G, Fan J, Yang X, Xu Y, Pan L, Hou T, Zhou Z, Chen S. Identification of an Activating Mutation in the Extracellular Domain of HER2 Conferring Resistance to Pertuzumab. Onco Targets Ther 2019; 12:11597-11608. [PMID: 31920346 PMCID: PMC6941612 DOI: 10.2147/ott.s232912] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/12/2019] [Indexed: 12/22/2022] Open
Abstract
Background The aberrant expression of HER2 is highly associated with tumour occurrence and metastasis, therefore HER2 is extensively targeted for tumour immunotherapy. For example, trastuzumab and pertuzumab are FDA-approved monoclonal antibodies that target HER2-positive tumour cells. Despite their advances in clinical applications, emerging resistance to these two HER2-targeting antibodies has hindered their further application. Somatic mutations in HER2 receptor have been identified as one of the major reasons for resistance to anti-HER2 antibodies. Methods We analysed the frequency of somatic mutations in various tumour types based on TCGA and COSMIC databases. Then, the effect of the most frequent mutation (S310F) on the interaction between pertuzumab and HER2 was analysed by molecular modelling analysis. The effect of the S310F mutation was further evaluated through multiple in vitro binding experiments and antitumour activity assays. Results We found through bioinformatics analysis that S310F, an activating mutation in the HER2 extracellular domain, was the most frequent mutation in HER2. The S310F mutation was shown to confer resistance of HER2-positive tumour cells to pertuzumab treatment. With molecular modelling analysis, we confirmed the possibility that the S310F mutation might disrupt the interaction between pertuzumab and HER2 as a result of a significant change in the critical residue S310. Further functional analyses revealed that the S310F mutation completely abolished pertuzumab binding to HER2 receptor and inhibited pertuzumab antitumour efficacy. Conclusion We demonstrated the loss-of-function mechanism underlying pertuzumab resistance in HER2-positive tumour cells bearing the S310F mutation.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Shanshan Wu
- Precision Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, People's Republic of China
| | - Xinlei Zhuang
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Gaoqi Weng
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jiansheng Fan
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaoyue Yang
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yingchun Xu
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Liqiang Pan
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Tingjun Hou
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.,State Key Laboratory of Computer Aided Design and Computer Graphics (CAD&CG), Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Zhan Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Shuqing Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
70
|
Li G, Xie Q, Yang Z, Wang L, Zhang X, Zuo B, Zhang S, Yang A, Jia L. Sp1-mediated epigenetic dysregulation dictates HDAC inhibitor susceptibility of HER2-overexpressing breast cancer. Int J Cancer 2019; 145:3285-3298. [PMID: 31111958 DOI: 10.1002/ijc.32425] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/23/2019] [Accepted: 05/13/2019] [Indexed: 12/17/2023]
Abstract
Human epidermal growth factor receptor 2 (HER2/erbB2) is a key driver and therapeutic target for breast cancer. The treatment of HER2-positive breast cancer remains a clinical challenge largely due to the limited understanding of HER2-driving oncogenic signaling and the frequent resistance to simply HER2-targeted therapy. Here, we show that the histone deacetylase inhibitor, trichostatin A (TSA), suppresses HER2-overexpressing breast cancer via upregulation of miR-146a and the resultant repression of its oncogenic targets, interleukin-1 receptor-associated kinase 1 and the chemokine receptor CXCR4. Mechanistically, histone H3K56 acetylation and deacetylation on the MIR146A promoter are catalyzed respectively by the acetyltransferase p300 and histone deacetylase 1 (HDAC1), both of which are recruited to the genomic loci by the transcription factor specificity protein 1 (Sp1). HER2 signaling phosphorylates Sp1 and induces its predominant association with HDAC1, but not p300, leading to histone hypoacetylation and silencing of MIR146A. In addition, the death receptor Fas is similarly downregulated by the aforementioned epigenetic paradigm, indicating its wide involvement in impairing tumor suppressor gene expression. Consequently, TSA synergizes with lapatinib, a tyrosine kinase inhibitor of HER2, to suppress breast cancer in vitro and in rodent models. These findings demonstrate a novel mechanism of HER2-driven carcinogenesis and suggest the applicability of combined HER2 and HDAC targeting in breast cancer therapy.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Cell Line, Tumor
- Down-Regulation/drug effects
- Down-Regulation/genetics
- Epigenesis, Genetic/genetics
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/genetics
- Histone Deacetylase 1/genetics
- Histone Deacetylase Inhibitors/pharmacology
- Histone Deacetylases/genetics
- Humans
- MCF-7 Cells
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/genetics
- Receptor, ErbB-2/genetics
- Sp1 Transcription Factor/genetics
- Transcription, Genetic/drug effects
- Transcription, Genetic/genetics
- Transcriptional Activation/drug effects
- Transcriptional Activation/genetics
- Up-Regulation/drug effects
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Guoyin Li
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Qiaosheng Xie
- Department of Immunology, Fourth Military Medical University, Xi'an, China
- Department of Radiation Oncology, China-Japan Friendship Hospital, Beijing, China
| | - Zhiwei Yang
- Department of Applied Physics, School of Science, Xi'an Jiaotong University, Xi'an, China
| | - Lei Wang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Xiang Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Baile Zuo
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Shengli Zhang
- Department of Applied Physics, School of Science, Xi'an Jiaotong University, Xi'an, China
| | - Angang Yang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Lintao Jia
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
71
|
Ma F, Ouyang Q, Li W, Jiang Z, Tong Z, Liu Y, Li H, Yu S, Feng J, Wang S, Hu X, Zou J, Zhu X, Xu B. Pyrotinib or Lapatinib Combined With Capecitabine in HER2-Positive Metastatic Breast Cancer With Prior Taxanes, Anthracyclines, and/or Trastuzumab: A Randomized, Phase II Study. J Clin Oncol 2019; 37:2610-2619. [PMID: 31430226 DOI: 10.1200/jco.19.00108] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Pyrotinib, an irreversible pan-ErbB inhibitor, showed promising antitumor activity and acceptable tolerability in a phase I trial. We assessed the efficacy and tolerability of pyrotinib versus lapatinib, both in combination with capecitabine, in women with human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer in an open-label, multicenter, randomized phase II study. PATIENTS AND METHODS Chinese patients with HER2-positive relapsed or metastatic breast cancer previously treated with taxanes, anthracyclines, and/or trastuzumab were assigned (1:1) to receive 400 mg pyrotinib or lapatinib 1,250 mg orally once per day for 21-day cycles in combination with capecitabine (1,000 mg/m2 orally twice per day on days 1 to 14). The primary end point was investigator-assessed overall response rate per Response Evaluation Criteria in Solid Tumors (RECIST), version 1.1. RESULTS Between May 29, 2015, and March 15, 2016, 128 eligible patients were randomly assigned to the pyrotinib (n = 65) or lapatinib (n = 63) treatment groups. The overall response rate was 78.5% (95% CI, 68.5% to 88.5%) with pyrotinib and 57.1% (95% CI, 44.9% to 69.4%) with lapatinib (treatment difference, 21.3%; 95% CI, 4.0% to 38.7%; P = .01). The median progression-free survival was 18.1 months (95% CI, 13.9 months to not reached) with pyrotinib and 7.0 months (95% CI, 5.6 to 9.8 months) with lapatinib (adjusted hazard ratio, 0.36; 95% CI, 0.23 to 0.58; P < .001). The most frequent grade 3 to 4 adverse events were hand-foot syndrome in 16 of 65 patients (24.6%) in the pyrotinib group versus 13 of 63 (20.6%) in the lapatinib group; diarrhea in 10 patients (15.4%) versus three patients (4.8%), respectively; and decreased neutrophil count in six patients (9.2%) versus two patients (3.2%), respectively. CONCLUSION In women with HER2-positive metastatic breast cancer previously treated with taxanes, anthracyclines, and/or trastuzumab, pyrotinib plus capecitabine yielded statistically significant better overall response rate and progression-free survival than lapatinib plus capecitabine in this randomized phase II trial.
Collapse
Affiliation(s)
- Fei Ma
- National Cancer Center, State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Quchang Ouyang
- Hunan Cancer Hospital, Changsha, People's Republic of China
| | - Wei Li
- First Affiliated Hospital, Jilin University, Changchun, People's Republic of China
| | - Zefei Jiang
- The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Zhongsheng Tong
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Yunjiang Liu
- Cancer Center of Hebei Province and The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Huiping Li
- Peking University Cancer Hospital and Institute, Beijing, People's Republic of China
| | - Shiying Yu
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jifeng Feng
- Jiangsu Cancer Hospital, Nanjing, People's Republic of China
| | - Shusen Wang
- Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Xichun Hu
- Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Jianjun Zou
- Jiangsu Hengrui Medicine, Shanghai, People's Republic of China
| | - Xiaoyu Zhu
- Jiangsu Hengrui Medicine, Shanghai, People's Republic of China
| | - Binghe Xu
- National Cancer Center, State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
72
|
Schroeder R, Sfondouris M, Goyal N, Komati R, Weerathunga A, Gettridge C, Stevens CLK, Jones FE, Sridhar J. Identification of New Mono/Dihydroxynaphthoquinone as Lead Agents That Inhibit the Growth of Refractive and Triple-Negative Breast Cancer Cell Lines. ACS OMEGA 2019; 4:10610-10619. [PMID: 31460159 PMCID: PMC6648266 DOI: 10.1021/acsomega.9b00929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/15/2019] [Indexed: 06/10/2023]
Abstract
Human epidermal growth factor receptor 2 (HER2) is overexpressed in nearly 20-30% of breast cancers and is associated with metastasis resulting in poor patient survival and high recurrence. The dual EGFR/HER2 kinase inhibitor lapatinib has shown promising clinical results, but its limitations have also led to the resistance and activation of tumor survival pathways. Following our previous investigation of quinones as HER2 kinase inhibitors, we synthesized several naphthoquinone derivatives that significantly inhibited breast tumor cells expressing HER2 and trastuzumab-resistant HER2 oncogenic isoform, HER2Δ16. Two of these compounds were shown to be more effective than lapatinib at the inhibition of HER2 autophosphorylation of Y1248. Compounds 7 (5,8-dihydroxy-2-methylnaphthalene-1,4-dione) and 9 (2-(bromomethyl)-5,8-dihydroxynaphthalene-1,4-dione) inhibited HER2-expressing MCF-7 cells (IC50 0.29 and 1.76 μM, respectively) and HER2Δ16-expressing MCF-7 cells (IC50 0.51 and 1.76 μM, respectively). Compound 7 was also shown to promote cell death in multiple refractory breast cancer cell lines with IC50 values ranging from 0.12 to 2.92 μM. These compounds can function as lead compounds for the design of a new series of nonquinonoid structural compounds that can maintain a similar inhibition profile.
Collapse
Affiliation(s)
- Richard Schroeder
- Department
of Chemistry, Xavier University of Louisiana, 1, Drexel Dr., New Orleans, Louisiana 70125, United States
| | - Mary Sfondouris
- Department
of Cell and Molecular Biology, Tulane University, 6400 Freret Street, 2000 Percival
Stern Hall, New Orleans, Louisiana 70118, United States
| | - Navneet Goyal
- Department
of Chemistry, Xavier University of Louisiana, 1, Drexel Dr., New Orleans, Louisiana 70125, United States
| | - Rajesh Komati
- Department
of Chemistry, Nicholls State University, 129 Beauregard Hall, 906 E. 1st
Street, Thibodaux, Louisiana 70301, United States
| | - Achira Weerathunga
- Department
of Chemistry, Xavier University of Louisiana, 1, Drexel Dr., New Orleans, Louisiana 70125, United States
| | - Cory Gettridge
- Department
of Chemistry, Xavier University of Louisiana, 1, Drexel Dr., New Orleans, Louisiana 70125, United States
| | - Cheryl L. Klein Stevens
- Ogden
College of Science and Engineering, Western
Kentucky University, 1906 College Heights Boulevard #11075, Bowling
Green, Kentucky 42101-1075, United States
| | - Frank E. Jones
- Department
of Cell and Molecular Biology, Tulane University, 6400 Freret Street, 2000 Percival
Stern Hall, New Orleans, Louisiana 70118, United States
| | - Jayalakshmi Sridhar
- Department
of Chemistry, Xavier University of Louisiana, 1, Drexel Dr., New Orleans, Louisiana 70125, United States
| |
Collapse
|
73
|
Keshavarz M, Asadi MH, Riahi-Madvar A. Upregulation of pluripotent long noncoding RNA ES3 in HER2-positive breast cancer. J Cell Biochem 2019; 120:18398-18405. [PMID: 31211468 DOI: 10.1002/jcb.29152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 01/16/2023]
Abstract
Breast cancer is the second most common cancer and estimates to be responsible for 20% of all cancer patients. Breast cancer has several subtypes including luminal A, luminal B, normal breast-like, basal-like, and human epidermal growth factor receptor 2 (HER2)-enriched. HER2-positive breast cancer cells have higher HER2 expression than other breast cancer subtypes. This subtype is the most aggressive breast cancer subtype and has more ability to metastasis than other breast cancer subtypes. HER2 is a growth-promoting protein that is overexpressed in approximately 20 to 30% of breast cancers and its overexpression is strongly related to poor prognosis. New studies suggested that HER2 expression is correlated with cancer stem cell (CSC) markers in breast cancer. ES3 transcript as a pluripotency long noncoding RNA (lncRNA) is linked to pluripotency transcriptional networks in human embryonic stem cells, but its function in breast cancer is not clarified. In the current research, we found ES3 upregulation in breast cancer and its diagnostic value in breast cancer diagnosis. Furthermore, our findings revealed that ES3 transcript has a high expression in high-grade and high-stage breast tumors. In addition, our data demonstrated that ES3 expression downregulated during neural differentiation. Therefore, its expression may be correlated to breast tumor differentiation status. Notably, a high expression level of ES3 in HER2-positive breast tumor tissues motivated us to investigate the effect of HER2 on ES3 expression by blocking HER2 activity with lapatinib. The results showed that ES3 expression suppressed when HER2 activity was blocked. In summary, for the first time, we found that lncRNA ES3 was significantly upregulated in HER2-positive breast tumors and may contribute to breast cancer proliferation as a downstream target of HER2.
Collapse
Affiliation(s)
- Mostafa Keshavarz
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Malek Hossein Asadi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Ali Riahi-Madvar
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
74
|
Basu A, Ramamoorthi G, Jia Y, Faughn J, Wiener D, Awshah S, Kodumudi K, Czerniecki BJ. Immunotherapy in breast cancer: Current status and future directions. Adv Cancer Res 2019; 143:295-349. [PMID: 31202361 DOI: 10.1016/bs.acr.2019.03.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Breast cancer, one of the leading causes of death in women in the United States, challenges therapeutic success in patients due to tumor heterogeneity, treatment resistance, metastasis and disease recurrence. Knowledge of immune system involvement in normal breast development and breast cancer has led to extensive research into the immune landscape of breast cancer and multiple immunotherapy clinical trials in breast cancer patients. However, poor immunogenicity and T-cell infiltration along with heightened immunosuppression in the tumor microenvironment have been identified as potential challenges to the success of immunotherapy in breast cancer. Oncodrivers, owing to their enhanced expression and stimulation of tumor cell proliferation and survival, present an excellent choice for targeted immunotherapy development in breast cancer. Loss of anti-tumor immune response specific to oncodrivers has been reported in breast cancer patients as well. Dendritic cell vaccines have been tested for their efficacy in generating anti-tumor T-cell response against specific tumor-associated antigens and oncodrivers and have shown improved survival outcome in patients. Here, we review the current status of immunotherapy in breast cancer, focusing on dendritic cell vaccines and their therapeutic application in breast cancer. We further discuss future directions of breast cancer immunotherapy and potential combination strategies involving dendritic cell vaccines and existing chemotherapeutics for improved efficacy and better survival outcome in breast cancer.
Collapse
Affiliation(s)
- Amrita Basu
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States
| | | | - Yongsheng Jia
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States; Department of Breast Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Jon Faughn
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States
| | - Doris Wiener
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States
| | - Sabrina Awshah
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States; University of South Florida, Tampa, FL, United States
| | - Krithika Kodumudi
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States; University of South Florida, Tampa, FL, United States.
| | - Brian J Czerniecki
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States; Department of Breast Oncology, Moffitt Cancer Center, Tampa, FL, United States; University of South Florida, Tampa, FL, United States.
| |
Collapse
|
75
|
Lima ZS, Ghadamzadeh M, Arashloo FT, Amjad G, Ebadi MR, Younesi L. Recent advances of therapeutic targets based on the molecular signature in breast cancer: genetic mutations and implications for current treatment paradigms. J Hematol Oncol 2019; 12:38. [PMID: 30975222 PMCID: PMC6460547 DOI: 10.1186/s13045-019-0725-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/27/2019] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common malignancy in women all over the world. Genetic background of women contributes to her risk of having breast cancer. Certain inherited DNA mutations can dramatically increase the risk of developing certain cancers and are responsible for many of the cancers that run in some families. Regarding the widespread multigene panels, whole exome sequencing is capable of providing the evaluation of genetic function mutations for development novel strategy in clinical trials. Targeting the mutant proteins involved in breast cancer can be an effective therapeutic approach for developing novel drugs. This systematic review discusses gene mutations linked to breast cancer, focusing on signaling pathways that are being targeted with investigational therapeutic strategies, where clinical trials could be potentially initiated in the future are being highlighted.
Collapse
Affiliation(s)
- Zeinab Safarpour Lima
- Shahid Akbar Abadi Clinical Research Development Unit (ShCRDU), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mostafa Ghadamzadeh
- Departement of Radiology, Hasheminejad Kidney Centre (HKC), Iran University of Medical Sciences, Tehran, Iran
| | | | - Ghazaleh Amjad
- Shahid Akbar Abadi Clinical Research Development Unit (ShCRDU), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mohammad Reza Ebadi
- Shohadaye Haft-e-tir Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ladan Younesi
- Shahid Akbar Abadi Clinical Research Development Unit (ShCRDU), Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
76
|
Seebacher NA, Stacy AE, Porter GM, Merlot AM. Clinical development of targeted and immune based anti-cancer therapies. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:156. [PMID: 30975211 PMCID: PMC6460662 DOI: 10.1186/s13046-019-1094-2] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 02/07/2019] [Indexed: 02/08/2023]
Abstract
Cancer is currently the second leading cause of death globally and is expected to be responsible for approximately 9.6 million deaths in 2018. With an unprecedented understanding of the molecular pathways that drive the development and progression of human cancers, novel targeted therapies have become an exciting new development for anti-cancer medicine. These targeted therapies, also known as biologic therapies, have become a major modality of medical treatment, by acting to block the growth of cancer cells by specifically targeting molecules required for cell growth and tumorigenesis. Due to their specificity, these new therapies are expected to have better efficacy and limited adverse side effects when compared with other treatment options, including hormonal and cytotoxic therapies. In this review, we explore the clinical development, successes and challenges facing targeted anti-cancer therapies, including both small molecule inhibitors and antibody targeted therapies. Herein, we introduce targeted therapies to epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF), human epidermal growth factor receptor 2 (HER2), anaplastic lymphoma kinase (ALK), BRAF, and the inhibitors of the T-cell mediated immune response, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein-1 (PD-1)/ PD-1 ligand (PD-1 L).
Collapse
Affiliation(s)
- N A Seebacher
- Faculty of Medicine, The University of Sydney, Camperdown, New South Wales, 2006, Australia
| | - A E Stacy
- Faculty of Medicine, The University of Notre Dame, Darlinghurst, New South Wales, 2010, Australia
| | - G M Porter
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Kensington, New South Wales, 2031, Australia
| | - A M Merlot
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Kensington, New South Wales, 2031, Australia. .,School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, 2031, Australia. .,UNSW Centre for Childhood Cancer Research, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, 2031, Australia.
| |
Collapse
|
77
|
Park KS, Hong YS, Choi J, Yoon S, Kang J, Kim D, Lee KP, Im HS, Lee CH, Seo S, Kim SW, Lee DH, Park SR. HSP90 inhibitor, AUY922, debilitates intrinsic and acquired lapatinib-resistant HER2-positive gastric cancer cells. BMB Rep 2019. [PMID: 30591093 PMCID: PMC6330940 DOI: 10.5483/bmbrep.2018.51.12.259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) inhibitors, such as trastuzumab and lapatinib are used to treat HER2-positive breast and gastric cancers. However, as with other targeted therapies, intrinsic or acquired resistance to HER2 inhibitors presents unresolved therapeutic problems for HER2-positive gastric cancer. The present study describes investigations with AUY922, a heat shock protein 90 (HSP90) inhibitor, in primary lapatinib-resistant (ESO26 and OE33) and lapatinib-sensitive gastric cancer cells (OE19, N87, and SNU-216) harboring HER2 amplification/over-expression. In order to investigate whether AUY922 could overcome intrinsic and acquired resistance to HER2 inhibitors in HER2-positive gastric cancer, we generated lapatinib-resistant gastric cancer cell lines (OE19/LR and N87/LR) by continuous exposure to lapatinib in vitro. We found that activation of HER2 and protein kinase B (AKT) were key factors in inducing intrinsic and acquired lapatinib-resistant gastric cancer cell lines, and that AUY922 effectively suppressed activation of both HER2 and AKT in acquired lapatinib-resistant gastric cancer cell lines. In conclusion, AUY922 showed a synergistic anti-cancer effect with lapatinib and sensitized gastric cancer cells with intrinsic resistance to lapatinib. Dual inhibition of the HSP90 and HER2 signaling pathways could represent a potent therapeutic strategy to treat HER2-positive gastric cancer with intrinsic and acquired resistance to lapatinib.
Collapse
Affiliation(s)
- Kang-Seo Park
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505; Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Yong Sang Hong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Junyoung Choi
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Shinkyo Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jihoon Kang
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; Division of Hematology/Oncology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Korea
| | - Deokhoon Kim
- Asan Institute for Life Science, Department of Pathology, Asan Medical Center, Seoul 05505, Korea
| | - Kang-Pa Lee
- Asan Institute for Life Science, Department of Pathology, Asan Medical Center, Seoul 05505, Korea
| | - Hyeon-Su Im
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Chang Hoon Lee
- Bio & Drug Discovery Division, Center for Drug Discovery Technology, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Seyoung Seo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Sang-We Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Dae Ho Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Sook Ryun Park
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
78
|
Xiang Z, Song S, Zhu Z, Sun W, Gifts JE, Sun S, Li QS, Yu Y, Li KK. LncRNAs GIHCG and SPINT1-AS1 Are Crucial Factors for Pan-Cancer Cells Sensitivity to Lapatinib. Front Genet 2019; 10:25. [PMID: 30842786 PMCID: PMC6391897 DOI: 10.3389/fgene.2019.00025] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/16/2019] [Indexed: 12/29/2022] Open
Abstract
Lapatinib is a small molecule inhibitor of EGFR (HER1) and ERBB2 (HER2) receptors, which is used for treatment of advanced or metastatic breast cancer. To find the drug resistance mechanisms of treatment for EGFR/ERBB2 positive tumors, we analyzed the possible effects of lncRNAs. In this study, using CCLE (Cancer Cell Line Encyclopedia) database, we explored the relationship between the lncRNAs and Lapatinib sensitivity/resistance, and then validated those findings through in vitro experiments. We found that the expression of EGFR/ERBB2 and activation of ERBB pathway was significantly related to Lapatinib sensitivity. GO (Gene Oncology) analysis of top 10 pathways showed that the sensitivity of Lapatinib was positively correlated with cell keratin, epithelial differentiation, and cell-cell junction, while negatively correlated with signatures of extracellular matrix. Forty-four differentially expressed lncRNAs were found between the Lapatinib sensitive and resistant groups (fold-change > 1.5, P < 0.01). Gene set variation analysis (GSVA) was performed based on 44 lncRNAs and genes in the top 10 pathways. Five lncRNAs were identified as hub molecules. Co-expression network was constructed by more than five lncRNAs and 199 genes in the top 10 pathways, and three lncRNAs (GIHCG, SPINT1-AS1, and MAGI2-AS3) and 47 genes were identified as close-related molecules. The three lncRNAs in epithelium-derived cancers were differentially expressed between sensitive and resistant groups, but no significance was found in non-epithelium-derived cancer cells. Correlation analysis showed that SPINT1-AS1 (R = −0.715, P < 0.001) and GIHCG (R = 0.557, P = 0.013) were correlated with the IC50 of epithelium-derived cancer cells. In further experiments, GIHCG knockdown enhanced cancer cell susceptibility to Lapatinib, while high level of SPINT1-AS1 was a sensitive biomarker of NCI-N87 and MCF7 cancer cells to Lapatinib. In conclusions, lncRNAs GIHCG and SPINT1-AS1 were involved in regulating Lapatinib sensitivity. Up-regulation of GIHCG was a drug-resistant biomarker, while up-regulation of SPINT1-AS1 was a sensitive indicator.
Collapse
Affiliation(s)
- Zhen Xiang
- Department of Surgery of Ruijin Hospital, and Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuzheng Song
- Department of Surgery of Ruijin Hospital, and Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenggang Zhu
- Department of Surgery of Ruijin Hospital, and Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenhong Sun
- Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials, Research Center for Optoelectronic Materials and Devices, School of Physical Science Technology, Guangxi University, Nanning, China
| | - Jaron E Gifts
- Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials, Research Center for Optoelectronic Materials and Devices, School of Physical Science Technology, Guangxi University, Nanning, China
| | - Sam Sun
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States
| | - Qiushi Shauna Li
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States
| | - Yingyan Yu
- Department of Surgery of Ruijin Hospital, and Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Keqin Kathy Li
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
79
|
Showalter LE, Oechsle C, Ghimirey N, Steele C, Czerniecki BJ, Koski GK. Th1 cytokines sensitize HER-expressing breast cancer cells to lapatinib. PLoS One 2019; 14:e0210209. [PMID: 30657766 PMCID: PMC6338365 DOI: 10.1371/journal.pone.0210209] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/18/2018] [Indexed: 11/19/2022] Open
Abstract
The HER family of receptor tyrosine kinases has been linked to deregulation of growth and proliferation for multiple types of cancer. Members have therefore become thefocus of many drug and immune-based therapy innovations. The targeted anti-cancer agent, lapatinib, is a small molecule inhibitor that directly interferes with EGFR (HER-1)and HER-2 signaling, and indirectly reduces HER-3 signaling, thus suppressing important downstream events. A recently-developed dendritic cell-based vaccine against early breast cancer (ductal carcinoma in situ; DCIS) that generates strong Th1-dominated immunity against HER-2 has induced pathologic complete response in about one-third of immunized individuals. In vitro studies suggested cytokines secreted by Th1 cells could be major contributors to the vaccine effects including induction of apoptosis and suppression of HER expression. With a view toward improving complete response rates, we investigated whether the principle Th1 cytokines (IFN-γ and TNF-α) could act in concert with lapatinib to suppress activity of breast cancer lines in vitro. Lapatinib-sensitive SKBR3, MDA-MB-468 and BT474 cells were incubated with Th1 cytokines, lapatinib, or both. It was found that combined treatment maximized metabolic suppression(Alamar Blue assay), as well as cell death (Trypan Blue) and apoptosis(Annexin V/Propidium Iodide and TMRE staining). Combined drug plus cytokine treatment also maximized suppression of both total and phosphorylated forms of HER-2 and HER-3. Interestingly, when lapatinib resistant lines MDA-MB-453 and JIMT-1 were tested, it was found that the presence of Th1 cytokines appeared to enhance sensitivity for lapatinib-induced metabolic suppression and induction of apoptotic cell death, nearly abrogating drug resistance. These studies provide pre-clinical data suggesting the possibility that targeted drug therapy may be combined with vaccination to enhance anti-cancer effects, and furthermore that robust immunity in the form of secreted Th1 cytokines may have the capacity to mitigate resistance to targeted drugs.
Collapse
Affiliation(s)
- Loral E. Showalter
- Department of Biological Sciences, Kent State University, Kent, OH, United States of America
| | - Crystal Oechsle
- Department of Biological Sciences, Kent State University, Kent, OH, United States of America
| | - Nirmala Ghimirey
- Department of Biological Sciences, Kent State University, Kent, OH, United States of America
| | - Chase Steele
- Department of Biological Sciences, Kent State University, Kent, OH, United States of America
| | - Brian J. Czerniecki
- Department of Breast Oncology, Moffitt Cancer Center, Tampa, FL, United States of America
| | - Gary K. Koski
- Department of Biological Sciences, Kent State University, Kent, OH, United States of America
| |
Collapse
|
80
|
Zambrano JN, Williams CJ, Williams CB, Hedgepeth L, Burger P, Dilday T, Eblen ST, Armeson K, Hill EG, Yeh ES. Staurosporine, an inhibitor of hormonally up-regulated neu-associated kinase. Oncotarget 2018; 9:35962-35973. [PMID: 30542510 PMCID: PMC6267597 DOI: 10.18632/oncotarget.26311] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/21/2018] [Indexed: 01/27/2023] Open
Abstract
HUNK is a protein kinase that is implicated in HER2-positive (HER2+) breast cancer progression and resistance to HER2 inhibitors. Though prior studies suggest there is therapeutic potential for targeting HUNK in HER2+ breast cancer, pharmacological agents that target HUNK are yet to be identified. A recent study showed that the broad-spectrum kinase inhibitor staurosporine binds to the HUNK catalytic domain, but the effect of staurosporine on HUNK enzymatic activity was not tested. We now show that staurosporine inhibits the kinase activity of a full length HUNK protein. Our findings further suggest that inhibiting HUNK with staurosporine has a strong effect on suppressing cell viability of HER2/neu mammary and breast cancer cells, which express high levels of HUNK protein and are dependent on HUNK for survival. Significantly, we use in vitro and in vivo methods to show that staurosporine synergizes with the HER2 inhibitor lapatinib to restore sensitivity toward HER2 inhibition in a HER2 inhibitor resistant breast cancer model. Collectively, these studies indicate that pharmacological inhibition of HUNK kinase activity has therapeutic potential for HER2+ breast cancers, including HER2+ breast cancers that have developed drug resistance.
Collapse
Affiliation(s)
- Joelle N Zambrano
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Christina J Williams
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Carly Bess Williams
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lonzie Hedgepeth
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Pieter Burger
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Tinslee Dilday
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Scott T Eblen
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kent Armeson
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Elizabeth G Hill
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Elizabeth S Yeh
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
81
|
Zaal EA, Berkers CR. The Influence of Metabolism on Drug Response in Cancer. Front Oncol 2018; 8:500. [PMID: 30456204 PMCID: PMC6230982 DOI: 10.3389/fonc.2018.00500] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/15/2018] [Indexed: 12/23/2022] Open
Abstract
Resistance to therapeutic agents, either intrinsic or acquired, is currently a major problem in the treatment of cancers and occurs in virtually every type of anti-cancer therapy. Therefore, understanding how resistance can be prevented, targeted and predicted becomes increasingly important to improve cancer therapy. In the last decade, it has become apparent that alterations in cellular metabolism are a hallmark of cancer cells and that a rewired metabolism is essential for rapid tumor growth and proliferation. Recently, metabolic alterations have been shown to play a role in the sensitivity of cancer cells to widely-used first-line chemotherapeutics. This suggests that metabolic pathways are important mediators of resistance toward anticancer agents. In this review, we highlight the metabolic alterations associated with resistance toward different anticancer agents and discuss how metabolism may be exploited to overcome drug resistance to classical chemotherapy.
Collapse
Affiliation(s)
- Esther A. Zaal
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Celia R. Berkers
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
82
|
Phase I study of alpelisib (BYL-719) and trastuzumab emtansine (T-DM1) in HER2-positive metastatic breast cancer (MBC) after trastuzumab and taxane therapy. Breast Cancer Res Treat 2018; 171:371-381. [DOI: 10.1007/s10549-018-4792-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 01/17/2023]
|
83
|
Yallowitz A, Ghaleb A, Garcia L, Alexandrova EM, Marchenko N. Heat shock factor 1 confers resistance to lapatinib in ERBB2-positive breast cancer cells. Cell Death Dis 2018; 9:621. [PMID: 29799521 PMCID: PMC5967334 DOI: 10.1038/s41419-018-0691-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/06/2018] [Accepted: 05/07/2018] [Indexed: 02/01/2023]
Abstract
Despite success of ERBB2-targeted therapies such as lapatinib, resistance remains a major clinical concern. Multiple compensatory receptor tyrosine kinase (RTK) pathways are known to contribute to lapatinib resistance. The heterogeneity of these adaptive responses is a significant hurdle for finding most effective combinatorial treatments. The goal of this study was to identify a unifying molecular mechanism whose targeting could help prevent and/or overcome lapatinib resistance. Using the MMTV-ERBB2;mutant p53 (R175H) in vivo mouse model of ERBB2-positive breast cancer, together with mouse and human cell lines, we compared lapatinib-resistant vs. lapatinib-sensitive tumor cells biochemically and by kinome arrays and evaluated their viability in response to a variety of compounds affecting heat shock response. We found that multiple adaptive RTKs are activated in lapatinib-resistant cells in vivo, some of which have been previously described (Axl, MET) and some were novel (PDGFRα, PDGFRβ, VEGFR1, MUSK, NFGR). Strikingly, all lapatinib-resistant cells show chronically activated HSF1 and its transcriptional targets, heat shock proteins (HSPs), and, as a result, superior tolerance to proteotoxic stress. Importantly, lapatinib-resistant tumors and cells retained sensitivity to Hsp90 and HSF1 inhibitors, both in vitro and in vivo, thus providing a unifying and actionable therapeutic node. Indeed, HSF1 inhibition simultaneously downregulated ERBB2, adaptive RTKs and mutant p53, and its combination with lapatinib prevented development of lapatinib resistance in vitro. Thus, the kinome adaptation in lapatinib-resistant ERBB2-positive breast cancer cells is governed, at least in part, by HSF1-mediated heat shock pathway, providing a novel potential intervention strategy to combat resistance.
Collapse
Affiliation(s)
- Alisha Yallowitz
- Department of Pathology, Stony Brook University, Stony Brook, NY, 11794-8691, USA.,Weill Cornell Medicine, 1300 York Avenue, LC-902, New York, NY, 10065, USA
| | - Amr Ghaleb
- Department of Pathology, Stony Brook University, Stony Brook, NY, 11794-8691, USA
| | - Lucas Garcia
- Department of Pathology, Stony Brook University, Stony Brook, NY, 11794-8691, USA
| | | | - Natalia Marchenko
- Department of Pathology, Stony Brook University, Stony Brook, NY, 11794-8691, USA.
| |
Collapse
|
84
|
Jiao XD, Ding C, Zang YS, Yu G. Rapid symptomatic relief of HER2-positive gastric cancer leptomeningeal carcinomatosis with lapatinib, trastuzumab and capecitabine: a case report. BMC Cancer 2018; 18:206. [PMID: 29463236 PMCID: PMC5819655 DOI: 10.1186/s12885-018-4116-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/09/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Gastric cancer patients with widespread metastasis, especially meningeal metastases, have an extremely prognosis and limited therapeutic choices. CASE PRESENTATION We reported the case of a 39-year-old male patient with HER2-positive gastric cancer with bone and meningeal metastases. He presented with multiple bone metastases and received 3 cycles of docetaxel plus S1. However, he complained with headache and imaging examinations revealed leptomeningeal carcinomatosis. FISH revealed that tumor cells in the cerebrospinal fluid were HER-positive. Herceptin was added to the regimen, but the symptoms were not relieved, the patient suffered from dizziness and nausea. The chemotherapy regimen was switched d to lapatinib (orally at 1250 mg/day, every day), capecitabine (orally at 1000 mg/m2, bid for 2 weeks, followed by a 1-week rest interval, as 1 cycle) and Herceptin (390 mg/3 weeks). After 3 weeks of the new treatment, all the symptoms relieved. The clinical complete response was maintained for 3 months. CONCLUSIONS Lapatinib/Capecitabine combination therapy is an alternative treatment strategy for leptomeningeal carcinomatosis of HER2-positive gastric cancer in which trastuzumab and/or chemotherapy essentially has no effect.
Collapse
Affiliation(s)
- Xiao-Dong Jiao
- Department of Medical Oncology, Changzheng Hospital, Shanghai, China
| | - Chunming Ding
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, China
| | - Yuan-Sheng Zang
- Department of Medical Oncology, Changzheng Hospital, Shanghai, China.
| | - Guanzhen Yu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, China. .,Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
85
|
Jiao Q, Bi L, Ren Y, Song S, Wang Q, Wang YS. Advances in studies of tyrosine kinase inhibitors and their acquired resistance. Mol Cancer 2018; 17:36. [PMID: 29455664 PMCID: PMC5817861 DOI: 10.1186/s12943-018-0801-5] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/01/2018] [Indexed: 12/19/2022] Open
Abstract
Protein tyrosine kinase (PTK) is one of the major signaling enzymes in the process of cell signal transduction, which catalyzes the transfer of ATP-γ-phosphate to the tyrosine residues of the substrate protein, making it phosphorylation, regulating cell growth, differentiation, death and a series of physiological and biochemical processes. Abnormal expression of PTK usually leads to cell proliferation disorders, and is closely related to tumor invasion, metastasis and tumor angiogenesis. At present, a variety of PTKs have been used as targets in the screening of anti-tumor drugs. Tyrosine kinase inhibitors (TKIs) compete with ATP for the ATP binding site of PTK and reduce tyrosine kinase phosphorylation, thereby inhibiting cancer cell proliferation. TKI has made great progress in the treatment of cancer, but the attendant acquired acquired resistance is still inevitable, restricting the treatment of cancer. In this paper, we summarize the role of PTK in cancer, TKI treatment of tumor pathways and TKI acquired resistance mechanisms, which provide some reference for further research on TKI treatment of tumors.
Collapse
Affiliation(s)
- Qinlian Jiao
- International Biotechnology R&D Center, Shandong University School of Ocean, 180 Wenhua Xi Road, Weihai, Shandong, 264209, China
| | - Lei Bi
- School of Preclinical Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yidan Ren
- International Biotechnology R&D Center, Shandong University School of Ocean, 180 Wenhua Xi Road, Weihai, Shandong, 264209, China
| | - Shuliang Song
- International Biotechnology R&D Center, Shandong University School of Ocean, 180 Wenhua Xi Road, Weihai, Shandong, 264209, China
| | - Qin Wang
- Department of Anesthesiology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, China.
| | - Yun-Shan Wang
- International Biotechnology R&D Center, Shandong University School of Ocean, 180 Wenhua Xi Road, Weihai, Shandong, 264209, China.
| |
Collapse
|
86
|
Yang L, Li Y, Bhattacharya A, Zhang Y. Dual inhibition of ErbB1 and ErbB2 in cancer by recombinant human prolidase mutant hPEPD-G278D. Oncotarget 2018; 7:42340-42352. [PMID: 27286447 PMCID: PMC5173139 DOI: 10.18632/oncotarget.9851] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/20/2016] [Indexed: 01/14/2023] Open
Abstract
ErbB1 and ErbB2 are oncogenic cell surface receptor tyrosine kinases, linked to many forms of human cancer, and are major cancer therapeutic targets. Many lines of evidence indicate that targeting ErbB1 and ErbB2 is an important cancer therapeutic approach. We recently found that a recombinant enzymatically-inactive mutant of human prolidase, i.e., hPEPD-G278D, is an inhibitory ligand of ErbB2 and strongly inhibits ErbB2-overexpressing cells in vitro and in vivo. hPEPD-G278D also binds to ErbB1. Here, we show that hPEPD-G278D binds to ErbB1 with high affinity, initially activating ErbB1 but later silencing it, and that deletion of subdomain 2 in ErbB1 extracellular domain abolishes the binding. The proliferation of ErbB1-overexpressing cells is strongly inhibited by hPEPD-G278D, regardless of ErbB2 expression or cell type, whereas cells lacking ErbB1 and ErbB2 are insensitive to it. In contrast, EGF, another ErbB1 ligand, either stimulates or mildly inhibits cell proliferation. Moreover, hPEPD-G278D treatment of mice bearing ErbB1-overexpressing tumors leads to tumor regression, which is accompanied by down regulation and decreased phosphorylation of ErbB1 and ErbB2 as well as decreased phosphorylation of downstream signaling molecules and activation of apoptosis in the tumor tissues. We conclude that hPEPD-G278D is a dual inhibitor of ErbB1 and ErbB2 and selectively targets cancer cells overexpressing ErbB1 and/or ErbB2. Moreover, our finding that both receptors are silenced in cancer cells by hPEPD-G278D highlights an unusual consequence of ligand-receptor interaction.
Collapse
Affiliation(s)
- Lu Yang
- Departments of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Yun Li
- Departments of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA.,Urology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Arup Bhattacharya
- Departments of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Yuesheng Zhang
- Departments of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA.,Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
87
|
FAM83 proteins: Fostering new interactions to drive oncogenic signaling and therapeutic resistance. Oncotarget 2018; 7:52597-52612. [PMID: 27221039 PMCID: PMC5239576 DOI: 10.18632/oncotarget.9544] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 05/11/2016] [Indexed: 12/14/2022] Open
Abstract
The FAM83 proteins were recently identified as novel transforming oncogenes that function as intermediaries in EGFR/RAS signaling. Using two distinct forward genetics screens, the Bissell and Jackson laboratories uncovered the importance of the FAM83 proteins in promoting resistance to EGFR tyrosine kinase inhibitors and therapies targeting downstream EGFR signaling effectors. The discovery of this novel oncogene family using distinct genetic screens provides compelling evidence that the FAM83 proteins are key oncogenic players in cancer-associated signaling when they are overexpressed or dysregulated. Consistent with a role in oncogenic transformation, the FAM83 genes are frequently overexpressed in diverse human cancer specimens. Importantly, ablation of numerous FAM83 members results in a marked suppression of cancer-associated signaling and loss of tumorigenic potential. Here, we review the current knowledge of the FAM83 proteins’ involvement in cancer signaling and discuss the potential mechanisms by which they contribute to tumorigenesis. Both redundant activities shared by all 8 FAM83 members and non-redundant activities unique to each member are highlighted. We discuss the promise and challenges of the FAM83 proteins as novel points of attack for future cancer therapies.
Collapse
|
88
|
Khodadust F, Ahmadpour S, Aligholikhamseh N, Abedi SM, Hosseinimehr SJ. An improved 99mTc-HYNIC-(Ser) 3-LTVSPWY peptide with EDDA/tricine as co-ligands for targeting and imaging of HER2 overexpression tumor. Eur J Med Chem 2017; 144:767-773. [PMID: 29291444 DOI: 10.1016/j.ejmech.2017.12.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/10/2017] [Accepted: 12/12/2017] [Indexed: 01/12/2023]
Abstract
Overexpression of human epidermal receptor 2 (HER2) has given the opportunity for targeting and delivering of imaging radiotracers. The aim of this study was to evaluate the 99mTc-HYNIC-(EDDA/tricine)-(Ser)3-LTVSPWY peptide for tumor targeting and imaging of tumor with overexpression of HER2. The HYNIC-(Ser)3-LTVSPWY was labeled with 99mTc in presence of EDDA/tricine mixture as co-ligands. The in vitro and in vivo studies of this radiolabeled peptide were performed for cellular specific binding and tumor targeting. The high radiochemical purity of 99mTc-HYNIC (EDDA/tricine)-(Ser)3-LTVSPWY was obtained to be 99%. It exhibited high stability in normal saline and human serum. In HER2 binding affinity study, a significant reduction in uptake of radiolabeled peptide (7.7 fold) was observed by blocking SKOV-3 cells receptors with unlabeled peptide. The KD and Bmax values for this radiolabeled peptide were determined as 3.3 ± 1.0 nM and 2.9 ± 0.3 × 106 CPM/pMol, respectively. Biodistribution study revealed tumor to blood and tumor to muscle ratios about 6.9 and 4 respectively after 4 h. Tumor imaging by gamma camera demonstrated considerable high contrast tumor uptake. This developed 99mTc-HYNIC-(Ser)3-LTVSPWY peptide selectively targeted on HER2 tumor and exhibited a high target uptake combined with acceptable low background activity for tumor imaging in mice. The results of this study and its comparison with another study showed that 99mTc-HYNIC-(EDDA/tricine)-(Ser)3-LTVSPWY is much better than previously reported radiolabeled peptide as 99mTc-CSSS-LTVSPWY for HER2 overexpression tumor targeting and imaging.
Collapse
Affiliation(s)
- Fatemeh Khodadust
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sajjad Ahmadpour
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nazan Aligholikhamseh
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mohammad Abedi
- Department of Radiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
89
|
Duchnowska R, Sperinde J, Czartoryska-Arłukowicz B, Myśliwiec P, Winslow J, Radecka B, Petropoulos C, Demlova R, Orlikowska M, Kowalczyk A, Lang I, Ziółkowska B, Dębska-Szmich S, Merdalska M, Grela-Wojewoda A, Żawrocki A, Biernat W, Huang W, Jassem J. Predictive value of quantitative HER2, HER3 and p95HER2 levels in HER2-positive advanced breast cancer patients treated with lapatinib following progression on trastuzumab. Oncotarget 2017; 8:104149-104159. [PMID: 29262628 PMCID: PMC5732794 DOI: 10.18632/oncotarget.22027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 09/21/2017] [Indexed: 12/27/2022] Open
Abstract
Lapatinib is a HER1 and HER2 tyrosine kinase inhibitor (TKI) approved in second line treatment of advanced or metastatic breast cancer following progression on trastuzumab-containing therapy. Biomarkers for activity of lapatinib and other TKIs are lacking. Formalin-fixed, paraffin-embedded primary tumor samples were obtained from 189 HER2-positive patients treated with lapatinib plus capecitabine following progression on trastuzumab. The HERmark® Breast Cancer Assay was used to quantify HER2 protein expression. HER3 and p95HER2 protein expression was quantified using the VeraTag® technology. Overall survival (OS) was inversely correlated with HER2 (HR = 1.9/log; P = 0.009) for patients with tumors above the cut-off positivity level by the HERmark assay. OS was significantly shorter for those with above median HER2 levels (HR = 1.7; P = 0.015) and trended shorter for those below the cut-off level of positivity by the HERmark assay (HR = 1.7; P = 0.057) compared to cases with moderate HER2 overexpression. The relationship between HER2 protein expression and OS was best captured with a U-shaped parabolic function (P = 0.004), with the best prognosis at moderate levels of HER2 protein overexpression. In a multivariate model including HER2, increasing p95HER2 expression was associated with longer OS (HR = 0.35/log; P = 0.027). Continuous HER3 did not significantly correlate with OS. Patients with moderately overexpressed HER2 levels and high p95HER2 expression may have best outcomes while receiving lapatinib following progression on trastuzumab. Further study is warranted to explore the predictive utility of quantitative HER2 and p95HER2 in guiding HER2-directed therapies.
Collapse
Affiliation(s)
| | - Jeff Sperinde
- Monogram Biosciences, Integrated Oncology, Laboratory Corporation of America Holdings, South San Francisco, CA, USA
| | | | | | - John Winslow
- Monogram Biosciences, Integrated Oncology, Laboratory Corporation of America Holdings, South San Francisco, CA, USA
| | | | - Christos Petropoulos
- Monogram Biosciences, Integrated Oncology, Laboratory Corporation of America Holdings, South San Francisco, CA, USA
| | | | | | | | - Istvan Lang
- National Institute of Oncology, Budapest, Hungary
| | | | | | | | | | | | | | - Weidong Huang
- Monogram Biosciences, Integrated Oncology, Laboratory Corporation of America Holdings, South San Francisco, CA, USA
| | | |
Collapse
|
90
|
Angus SP, Zawistowski JS, Johnson GL. Epigenetic Mechanisms Regulating Adaptive Responses to Targeted Kinase Inhibitors in Cancer. Annu Rev Pharmacol Toxicol 2017; 58:209-229. [PMID: 28934561 DOI: 10.1146/annurev-pharmtox-010617-052954] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although targeted inhibition of oncogenic kinase drivers has achieved remarkable patient responses in many cancers, the development of resistance has remained a significant challenge. Numerous mechanisms have been identified, including the acquisition of gatekeeper mutations, activating pathway mutations, and copy number loss or gain of the driver or alternate nodes. These changes have prompted the development of kinase inhibitors with increased selectivity, use of second-line therapeutics to overcome primary resistance, and combination treatment to forestall resistance. In addition to genomic resistance mechanisms, adaptive transcriptional and signaling responses seen in tumors are gaining appreciation as alterations that lead to a phenotypic state change-often observed as an epithelial-to-mesenchymal shift or reversion to a cancer stem cell-like phenotype underpinned by remodeling of the epigenetic landscape. This epigenomic modulation driving cell state change is multifaceted and includes modulation of repressive and activating histone modifications, DNA methylation, enhancer remodeling, and noncoding RNA species. Consequently, the combination of kinase inhibitors with drugs targeting components of the transcriptional machinery and histone-modifying enzymes has shown promise in preclinical and clinical studies. Here, we review mechanisms of resistance to kinase inhibition in cancer, with special emphasis on the rewired kinome and transcriptional signaling networks and the potential vulnerabilities that may be exploited to overcome these adaptive signaling changes.
Collapse
Affiliation(s)
- Steven P Angus
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA; , ,
| | - Jon S Zawistowski
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA; , ,
| | - Gary L Johnson
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA; , ,
| |
Collapse
|
91
|
Beretta GL, Cassinelli G, Pennati M, Zuco V, Gatti L. Overcoming ABC transporter-mediated multidrug resistance: The dual role of tyrosine kinase inhibitors as multitargeting agents. Eur J Med Chem 2017; 142:271-289. [PMID: 28851502 DOI: 10.1016/j.ejmech.2017.07.062] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 12/14/2022]
Abstract
Resistance to conventional and target specific antitumor drugs still remains one of the major cause of treatment failure and patience death. This condition often involves ATP-binding cassette (ABC) transporters that, by pumping the drugs outside from cancer cells, attenuate the potency of chemotherapeutics and negatively impact on the fate of anticancer therapy. In recent years, several tyrosine kinase inhibitors (TKIs) (e.g., imatinib, nilotinib, dasatinib, ponatinib, gefitinib, erlotinib, lapatinib, vandetanib, sunitinib, sorafenib) have been reported to interact with ABC transporters (e.g., ABCB1, ABCC1, ABCG2, ABCC10). This finding disclosed a very complex scenario in which TKIs may behave as substrates or inhibitors depending on the expression of specific pumps, drug concentration, affinity for transporters and types of co-administered agents. In this context, in-depth investigation on TKI chemosensitizing functions might provide a strong rationale for combining TKIs and conventional therapeutics in specific malignancies. The reposition of TKIs as antagonists of ABC transporters opens a new way towards anticancer therapy and clinical strategies aimed at counteracting drug resistance. This review will focus on some paradigmatic examples of the complex and not yet fully elucidated interaction between clinical available TKIs (e.g. BCR-ABL, EGFR, VEGFR inhibitors) with the main ABC transporters implicated in multidrug resistance.
Collapse
Affiliation(s)
- Giovanni Luca Beretta
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano, Italy.
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano, Italy.
| | - Marzia Pennati
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano, Italy.
| | - Valentina Zuco
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano, Italy.
| | - Laura Gatti
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano, Italy.
| |
Collapse
|
92
|
Zhao M, Howard EW, Parris AB, Guo Z, Zhao Q, Ma Z, Xing Y, Liu B, Edgerton SM, Thor AD, Yang X. Activation of cancerous inhibitor of PP2A (CIP2A) contributes to lapatinib resistance through induction of CIP2A-Akt feedback loop in ErbB2-positive breast cancer cells. Oncotarget 2017; 8:58847-58864. [PMID: 28938602 PMCID: PMC5601698 DOI: 10.18632/oncotarget.19375] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 07/11/2017] [Indexed: 11/25/2022] Open
Abstract
Lapatinib, a small molecule ErbB2/EGFR inhibitor, is FDA-approved for the treatment of metastatic ErbB2-overexpressing breast cancer; however, lapatinib resistance is an emerging clinical challenge. Understanding the molecular mechanisms of lapatinib-mediated anti-cancer activities and identifying relevant resistance factors are of pivotal significance. Cancerous inhibitor of protein phosphatase 2A (CIP2A) is a recently identified oncoprotein that is overexpressed in breast cancer. Our study investigated the role of CIP2A in the anti-cancer efficacy of lapatinib in ErbB2-overexpressing breast cancer cells. We found that lapatinib concurrently downregulated CIP2A and receptor tyrosine kinase signaling in ErbB2-overexpressing SKBR3 and 78617 cells; however, these effects were attenuated in lapatinib-resistant (LR) cells. CIP2A overexpression rendered SKBR3 and 78617 cells resistant to lapatinib-induced apoptosis and growth inhibition. Conversely, CIP2A knockdown via lentiviral shRNA enhanced cell sensitivity to lapatinib-induced growth inhibition and apoptosis. Results also suggested that lapatinib downregulated CIP2A through regulation of protein stability. We further demonstrated that lapatinib-induced CIP2A downregulation can be recapitulated by LY294002, suggesting that Akt mediates CIP2A upregulation. Importantly, lapatinib induced differential CIP2A downregulation between parental BT474 and BT474/LR cell lines. Moreover, CIP2A shRNA knockdown significantly sensitized the BT474/LR cells to lapatinib. Collectively, our results demonstrate that CIP2A is a molecular target and resistance factor of lapatinib with a critical role in lapatinib-induced cellular responses, including the inhibition of the CIP2A-Akt feedback loop. Further investigation of lapatinib-mediated CIP2A regulation will advance our understanding of lapatinib-associated anti-tumor activities and drug resistance.
Collapse
Affiliation(s)
- Ming Zhao
- Julius L. Chambers Biomedical/Biotechnology Research Institute and Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, North Carolina, USA
| | - Erin W Howard
- Julius L. Chambers Biomedical/Biotechnology Research Institute and Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, North Carolina, USA
| | - Amanda B Parris
- Julius L. Chambers Biomedical/Biotechnology Research Institute and Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, North Carolina, USA
| | - Zhiying Guo
- Julius L. Chambers Biomedical/Biotechnology Research Institute and Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, North Carolina, USA
| | - Qingxia Zhao
- Julius L. Chambers Biomedical/Biotechnology Research Institute and Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, North Carolina, USA.,Basic Medical College of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Zhikun Ma
- Julius L. Chambers Biomedical/Biotechnology Research Institute and Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, North Carolina, USA
| | - Ying Xing
- Basic Medical College of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Bolin Liu
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Susan M Edgerton
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ann D Thor
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xiaohe Yang
- Julius L. Chambers Biomedical/Biotechnology Research Institute and Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, North Carolina, USA.,College of Medicine, Henan University of Sciences and Technology, Luoyang, Henan, P.R. China
| |
Collapse
|
93
|
Sui M, Jiao A, Zhai H, Wang Y, Wang Y, Sun D, Li P. Upregulation of miR-125b is associated with poor prognosis and trastuzumab resistance in HER2-positive gastric cancer. Exp Ther Med 2017; 14:657-663. [PMID: 28672982 PMCID: PMC5488498 DOI: 10.3892/etm.2017.4548] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/10/2017] [Indexed: 12/18/2022] Open
Abstract
Gastric cancer is one of the most common types of human cancer associated with a poor prognosis. MicroRNAs (miRs), a class of non-coding RNAs that are 18–25 nucleotides in length, act as key regulators in gene expression, and have been implicated in various human cancer types. miR-125b has been implicated in the malignant progression of gastric cancer. However, the association between miR-125b expression, clinicopathological characteristics and trastuzumab resistance in human epidermal growth factor receptor 2 (HER2)-positive gastric cancer remains unclear. In the current study, in situ hybridization data demonstrated that 81.8% (108/132) of gastric cancer tissues exhibited positive expression of miR-125b, while only 26.3% (10/38) of non-tumor gastric tissues were miR-125b-positive. Reverse transcription-quantitative polymerase chain reaction data indicated that the expression level of miR-125b was markedly increased in gastric cancer tissues compared with non-cancerous gastric tissues. Furthermore, the miR-125b level was significantly associated with tumor (T) stage, lymph node metastasis, distant metastasis and TNM stage of gastric cancer (P<0.05). Increased miR-125b expression predicated poor prognosis in patients with gastric cancer. For HER2-positive gastric cancer, the upregulation of miR-125b expression was significantly associated with advanced malignant progression, as well as a poor prognosis (P<0.05). Furthermore, data from the present study indicated that the increased miR-125b level was significantly associated with trastuzumab resistance in HER2-positive gastric cancer (P<0.05). Therefore, the current study suggests that miR-125b may become a potential biomarker for predicting prognoses and clinical outcomes in patients with HER2-positive gastric cancer that receive trastuzumab treatment.
Collapse
Affiliation(s)
- Minghua Sui
- Department of Oncology, Yuhuangding Hospital, Yantai, Shandong 264001, P.R. China
| | - Aihong Jiao
- Department of Oncology, Yuhuangding Hospital, Yantai, Shandong 264001, P.R. China
| | - Huiyuan Zhai
- Department of Gastrointestinal Surgery, Yuhuangding Hospital, Yantai, Shandong 264001, P.R. China
| | - Yan Wang
- Department of Hematology, Yuhuangding Hospital, Yantai, Shandong 264001, P.R. China
| | - Yong Wang
- Department of General Surgery, General Hospital of Ping Coal Group, Pingdingshan, Henan 467000, P.R. China
| | - Dengjun Sun
- Department of Oncology, Yuhuangding Hospital, Yantai, Shandong 264001, P.R. China
| | - Peng Li
- Department of Oncology, Yuhuangding Hospital, Yantai, Shandong 264001, P.R. China
| |
Collapse
|
94
|
Santra T, Roche S, Conlon N, O’Donovan N, Crown J, O’Connor R, Kolch W. Identification of potential new treatment response markers and therapeutic targets using a Gaussian process-based method in lapatinib insensitive breast cancer models. PLoS One 2017; 12:e0177058. [PMID: 28481952 PMCID: PMC5421758 DOI: 10.1371/journal.pone.0177058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 04/23/2017] [Indexed: 12/15/2022] Open
Abstract
Molecularly targeted therapeutics hold promise of revolutionizing treatments of advanced malignancies. However, a large number of patients do not respond to these treatments. Here, we take a systems biology approach to understand the molecular mechanisms that prevent breast cancer (BC) cells from responding to lapatinib, a dual kinase inhibitor that targets human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR). To this end, we analysed temporal gene expression profiles of four BC cell lines, two of which respond and the remaining two do not respond to lapatinib. For this analysis, we developed a Gaussian process based algorithm which can accurately find differentially expressed genes by analysing time course gene expression profiles at a fraction of the computational cost of other state-of-the-art algorithms. Our analysis identified 519 potential genes which are characteristic of lapatinib non-responsiveness in the tested cell lines. Data from the Genomics of Drug Sensitivity in Cancer (GDSC) database suggested that the basal expressions 120 of the above genes correlate with the response of BC cells to HER2 and/or EGFR targeted therapies. We selected 27 genes from the larger panel of 519 genes for experimental verification and 16 of these were successfully validated. Further bioinformatics analysis identified vitamin D receptor (VDR) as a potential target of interest for lapatinib non-responsive BC cells. Experimentally, calcitriol, a commonly used reagent for VDR targeted therapy, in combination with lapatinib additively inhibited proliferation in two HER2 positive cell lines, lapatinib insensitive MDA-MB-453 and lapatinib resistant HCC 1954-L cells.
Collapse
Affiliation(s)
- Tapesh Santra
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
- * E-mail:
| | - Sandra Roche
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Neil Conlon
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Norma O’Donovan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - John Crown
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
- Department of Medical Oncology, St Vincent’s University Hospital, Dublin, Elm Park, Ireland
| | - Robert O’Connor
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
95
|
Zhou L, Yuan C, Zhang C, Zhang L, Gao Z, Wang C, Liu H, Wu Y, Guo H. Enantioselective Synthesis of Quinazoline-Based Heterocycles through Phosphine-Catalyzed Asymmetric [3+3] Annulation of Morita−Baylis−Hillman Carbonates with Azomethine Imines. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201601434] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Leijie Zhou
- Department of Applied Chemistry; China Agricultural University; 2 West Yuanmingyuan Road Beijing 100193 People's Republic of China
| | - Chunhao Yuan
- Department of Applied Chemistry; China Agricultural University; 2 West Yuanmingyuan Road Beijing 100193 People's Republic of China
| | - Cheng Zhang
- Department of Applied Chemistry; China Agricultural University; 2 West Yuanmingyuan Road Beijing 100193 People's Republic of China
| | - Lei Zhang
- Department of Applied Chemistry; China Agricultural University; 2 West Yuanmingyuan Road Beijing 100193 People's Republic of China
| | - Zhenzhen Gao
- Department of Applied Chemistry; China Agricultural University; 2 West Yuanmingyuan Road Beijing 100193 People's Republic of China
| | - Chang Wang
- Department of Applied Chemistry; China Agricultural University; 2 West Yuanmingyuan Road Beijing 100193 People's Republic of China
| | - Honglei Liu
- Department of Applied Chemistry; China Agricultural University; 2 West Yuanmingyuan Road Beijing 100193 People's Republic of China
| | - Yang Wu
- Department of Applied Chemistry; China Agricultural University; 2 West Yuanmingyuan Road Beijing 100193 People's Republic of China
| | - Hongchao Guo
- Department of Applied Chemistry; China Agricultural University; 2 West Yuanmingyuan Road Beijing 100193 People's Republic of China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering; Ministry of Education; Guizhou University; Guiyang 550025 People's Republic of China
| |
Collapse
|
96
|
Masoud V, Pagès G. Targeted therapies in breast cancer: New challenges to fight against resistance. World J Clin Oncol 2017; 8:120-134. [PMID: 28439493 PMCID: PMC5385433 DOI: 10.5306/wjco.v8.i2.120] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/16/2016] [Accepted: 10/17/2016] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the most common type of cancer found in women and today represents a significant challenge to public health. With the latest breakthroughs in molecular biology and immunotherapy, very specific targeted therapies have been tailored to the specific pathophysiology of different types of breast cancers. These recent developments have contributed to a more efficient and specific treatment protocol in breast cancer patients. However, the main challenge to be further investigated still remains the emergence of therapeutic resistance mechanisms, which develop soon after the onset of therapy and need urgent attention and further elucidation. What are the recent emerging molecular resistance mechanisms in breast cancer targeted therapy and what are the best strategies to apply in order to circumvent this important obstacle? The main scope of this review is to provide a thorough update of recent developments in the field and discuss future prospects for preventing resistance mechanisms in the quest to increase overall survival of patients suffering from the disease.
Collapse
|
97
|
Zheng YG, Su J, Gao CY, Jiang P, An L, Xue YS, Gao J, Liu Y. Design, synthesis, and biological evaluation of novel 4-anilinoquinazoline derivatives bearing amino acid moiety as potential EGFR kinase inhibitors. Eur J Med Chem 2017; 130:393-405. [DOI: 10.1016/j.ejmech.2017.02.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 11/24/2022]
|
98
|
Wang YW, Zhang HY, Li JS, Wang XW. Integrated Exploitation of the Structural Diversity Space of Chemotherapy Drugs to Selectively Inhibit HER2 T798M Mutant in Lung Cancer. Chem Biodivers 2017; 14. [PMID: 27696725 DOI: 10.1002/cbdv.201600301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/28/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Ya-Wei Wang
- Department of Chemotherapy; Cancer Center; Qilu Hospital; Shandong University; Jinan 250012 P. R. China
| | - Hai-Yan Zhang
- Department of Otorhinolaryngology Head and Neck Surgery; Provincial Hospital affiliated to Shandong University; Jinan 250021 P. R. China
| | - Ji-Sheng Li
- Department of Chemotherapy; Cancer Center; Qilu Hospital; Shandong University; Jinan 250012 P. R. China
| | - Xiu-Wen Wang
- Department of Chemotherapy; Cancer Center; Qilu Hospital; Shandong University; Jinan 250012 P. R. China
| |
Collapse
|
99
|
Chamberlin MD, Bernhardt EB, Miller TW. Clinical Implementation of Novel Targeted Therapeutics in Advanced Breast Cancer. J Cell Biochem 2016; 117:2454-63. [PMID: 27146558 PMCID: PMC6010350 DOI: 10.1002/jcb.25590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 12/19/2022]
Abstract
The majority of advanced breast cancers have genetic alterations that are potentially targetable with drugs. Through initiatives such as The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC), data can be mined to provide context for next-generation sequencing (NGS) results in the landscape of advanced breast cancer. Therapies for targets other than estrogen receptor alpha (ER) and HER2, such as cyclin-dependent kinases CDK4 and CDK6, were recently approved based on efficacy in patient subpopulations, but no predictive biomarkers have been found, leaving clinicians to continue a trial-and-error approach with each patient. Next-generation sequencing identifies potentially actionable alterations in genes thought to be drivers in the cancerous process including phosphatidylinositol 3-kinase (PI3K), AKT, fibroblast growth factor receptors (FGFRs), and mutant HER2. Epigenetically directed and immunologic therapies have also shown promise for the treatment of breast cancer via histone deacetylases (HDAC) 1 and 3, programmed T cell death 1 (PD-1), and programmed T cell death ligand 1 (PD-L1). Identifying biomarkers to predict primary resistance in breast cancer will ultimately affect clinical decisions regarding adjuvant therapy in the first-line setting. However, the bulk of medical decision-making is currently made in the secondary resistance setting. Herein, we review the clinical potential of PI3K, AKT, FGFRs, mutant HER2, HDAC1/3, PD-1, and PD-L1 as therapeutic targets in breast cancer, focusing on the rationale for therapeutic development and the status of clinical testing. J. Cell. Biochem. 117: 2454-2463, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mary D Chamberlin
- Department of Medicine, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire.
- Department of Hematology-Oncology, One Medical Center Dr., Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire.
- Comprehensive Breast Program, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire.
| | - Erica B Bernhardt
- Department of Medicine, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Todd W Miller
- Comprehensive Breast Program, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| |
Collapse
|
100
|
Fischer PM. Approved and Experimental Small-Molecule Oncology Kinase Inhibitor Drugs: A Mid-2016 Overview. Med Res Rev 2016; 37:314-367. [DOI: 10.1002/med.21409] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/04/2016] [Accepted: 08/09/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Peter M. Fischer
- School of Pharmacy and Centre for Biomolecular Sciences; University of Nottingham; Nottingham NG7 2RD UK
| |
Collapse
|