51
|
|
52
|
Stiller JW, Huang J, Ding Q, Tian J, Goodwillie C. Are algal genes in nonphotosynthetic protists evidence of historical plastid endosymbioses? BMC Genomics 2009; 10:484. [PMID: 19843329 PMCID: PMC2770532 DOI: 10.1186/1471-2164-10-484] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 10/20/2009] [Indexed: 12/18/2022] Open
Abstract
Background How photosynthetic organelles, or plastids, were acquired by diverse eukaryotes is among the most hotly debated topics in broad scale eukaryotic evolution. The history of plastid endosymbioses commonly is interpreted under the "chromalveolate" hypothesis, which requires numerous plastid losses from certain heterotrophic groups that now are entirely aplastidic. In this context, discoveries of putatively algal genes in plastid-lacking protists have been cited as evidence of gene transfer from a photosynthetic endosymbiont that subsequently was lost completely. Here we examine this evidence, as it pertains to the chromalveolate hypothesis, through genome-level statistical analyses of similarity scores from queries with two diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana, and two aplastidic sister taxa, Phytophthora ramorum and P. sojae. Results Contingency tests of specific predictions of the chromalveolate model find no evidence for an unusual red algal contribution to Phytophthora genomes, nor that putative cyanobacterial sequences that are present entered these genomes through a red algal endosymbiosis. Examination of genes unrelated to plastid function provide extraordinarily significant support for both of these predictions in diatoms, the control group where a red endosymbiosis is known to have occurred, but none of that support is present in genes specifically conserved between diatoms and oomycetes. In addition, we uncovered a strong association between overall sequence similarities among taxa and relative sizes of genomic data sets in numbers of genes. Conclusion Signal from "algal" genes in oomycete genomes is inconsistent with the chromalveolate hypothesis, and better explained by alternative models of sequence and genome evolution. Combined with the numerous sources of intragenomic phylogenetic conflict characterized previously, our results underscore the potential to be mislead by a posteriori interpretations of variable phylogenetic signals contained in complex genome-level data. They argue strongly for explicit testing of the different a priori assumptions inherent in competing evolutionary hypotheses.
Collapse
Affiliation(s)
- John W Stiller
- Department of Biology, East Carolina University, Greenville, USA.
| | | | | | | | | |
Collapse
|
53
|
Le Corguillé G, Pearson G, Valente M, Viegas C, Gschloessl B, Corre E, Bailly X, Peters AF, Jubin C, Vacherie B, Cock JM, Leblanc C. Plastid genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus: further insights on the evolution of red-algal derived plastids. BMC Evol Biol 2009; 9:253. [PMID: 19835607 PMCID: PMC2765969 DOI: 10.1186/1471-2148-9-253] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 10/16/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Heterokont algae, together with cryptophytes, haptophytes and some alveolates, possess red-algal derived plastids. The chromalveolate hypothesis proposes that the red-algal derived plastids of all four groups have a monophyletic origin resulting from a single secondary endosymbiotic event. However, due to incongruence between nuclear and plastid phylogenies, this controversial hypothesis remains under debate. Large-scale genomic analyses have shown to be a powerful tool for phylogenetic reconstruction but insufficient sequence data have been available for red-algal derived plastid genomes. RESULTS The chloroplast genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus, have been fully sequenced. These species represent two distinct orders of the Phaeophyceae, which is a major group within the heterokont lineage. The sizes of the circular plastid genomes are 139,954 and 124,986 base pairs, respectively, the size difference being due principally to the presence of longer inverted repeat and intergenic regions in E. siliculosus. Gene contents of the two plastids are similar with 139-148 protein-coding genes, 28-31 tRNA genes, and 3 ribosomal RNA genes. The two genomes also exhibit very similar rearrangements compared to other sequenced plastid genomes. The tRNA-Leu gene of E. siliculosus lacks an intron, in contrast to the F. vesiculosus and other heterokont plastid homologues, suggesting its recent loss in the Ectocarpales. Most of the brown algal plastid genes are shared with other red-algal derived plastid genomes, but a few are absent from raphidophyte or diatom plastid genomes. One of these regions is most similar to an apicomplexan nuclear sequence. The phylogenetic relationship between heterokonts, cryptophytes and haptophytes (collectively referred to as chromists) plastids was investigated using several datasets of concatenated proteins from two cyanobacterial genomes and 18 plastid genomes, including most of the available red algal and chromist plastid genomes. CONCLUSION The phylogenetic studies using concatenated plastid proteins still do not resolve the question of the monophyly of all chromist plastids. However, these results support both the monophyly of heterokont plastids and that of cryptophyte and haptophyte plastids, in agreement with nuclear phylogenies.
Collapse
Affiliation(s)
- Gildas Le Corguillé
- CNRS, FR2424, Computer and Genomics Resource Centre, Station Biologique, Roscoff, France
- UPMC Univ. Paris 06, FR2424, Computer and Genomics Resource Centre, Station Biologique, Roscoff, France
| | - Gareth Pearson
- Centre of Marine Sciences, University of Algarve, Marine Ecology and Evolution, Faro, Portugal
| | - Marta Valente
- Centre of Marine Sciences, University of Algarve, Marine Ecology and Evolution, Faro, Portugal
| | - Carla Viegas
- Centre of Marine Sciences, University of Algarve, Marine Ecology and Evolution, Faro, Portugal
| | - Bernhard Gschloessl
- CNRS, UMR7139, Marine Plants and Biomolecules, Station Biologique, Roscoff, France
- UPMC Univ. Paris 06, UMR7139, Marine Plants and Biomolecules, Station Biologique, Roscoff, France
| | - Erwan Corre
- CNRS, FR2424, Computer and Genomics Resource Centre, Station Biologique, Roscoff, France
- UPMC Univ. Paris 06, FR2424, Computer and Genomics Resource Centre, Station Biologique, Roscoff, France
| | - Xavier Bailly
- CNRS, FR2424, Computer and Genomics Resource Centre, Station Biologique, Roscoff, France
- UPMC Univ. Paris 06, FR2424, Computer and Genomics Resource Centre, Station Biologique, Roscoff, France
| | - Akira F Peters
- CNRS, UMR7139, Marine Plants and Biomolecules, Station Biologique, Roscoff, France
- UPMC Univ. Paris 06, UMR7139, Marine Plants and Biomolecules, Station Biologique, Roscoff, France
| | - Claire Jubin
- CEA, DSV, Institut de Génomique, Genoscope, Evry, France
- CNRS, UMR 8030, Evry, France
- Université d'Evry, Evry, France
| | | | - J Mark Cock
- CNRS, UMR7139, Marine Plants and Biomolecules, Station Biologique, Roscoff, France
- UPMC Univ. Paris 06, UMR7139, Marine Plants and Biomolecules, Station Biologique, Roscoff, France
| | - Catherine Leblanc
- CNRS, UMR7139, Marine Plants and Biomolecules, Station Biologique, Roscoff, France
- UPMC Univ. Paris 06, UMR7139, Marine Plants and Biomolecules, Station Biologique, Roscoff, France
| |
Collapse
|
54
|
On the origin of chloroplasts, import mechanisms of chloroplast-targeted proteins, and loss of photosynthetic ability — review. Folia Microbiol (Praha) 2009; 54:303-21. [DOI: 10.1007/s12223-009-0048-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 03/31/2009] [Indexed: 10/20/2022]
|
55
|
Abstract
Phototaxis in the broadest sense means positive or negative displacement along a light gradient or vector. Prokaryotes most often use a biased random walk strategy, employing type I sensory rhodopsin photoreceptors and two-component signalling to regulate flagellar reversal. This strategy only allows phototaxis along steep light gradients, as found in microbial mats or sediments. Some filamentous cyanobacteria evolved the ability to steer towards a light vector. Even these cyanobacteria, however, can only navigate in two dimensions, gliding on a surface. In contrast, eukaryotes evolved the capacity to follow a light vector in three dimensions in open water. This strategy requires a polarized organism with a stable form, helical swimming with cilia and a shading or focusing body adjacent to a light sensor to allow for discrimination of light direction. Such arrangement and the ability of three-dimensional phototactic navigation evolved at least eight times independently in eukaryotes. The origin of three-dimensional phototaxis often followed a transition from a benthic to a pelagic lifestyle and the acquisition of chloroplasts either via primary or secondary endosymbiosis. Based on our understanding of the mechanism of phototaxis in single-celled eukaryotes and animal larvae, it is possible to define a series of elementary evolutionary steps, each of potential selective advantage, which can lead to pelagic phototactic navigation. We can conclude that it is relatively easy to evolve phototaxis once cell polarity, ciliary swimming and a stable cell shape are present.
Collapse
Affiliation(s)
- Gáspár Jékely
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany.
| |
Collapse
|
56
|
Okamoto N, Chantangsi C, Horák A, Leander BS, Keeling PJ. Molecular phylogeny and description of the novel katablepharid Roombia truncata gen. et sp. nov., and establishment of the Hacrobia taxon nov. PLoS One 2009; 4:e7080. [PMID: 19759916 PMCID: PMC2741603 DOI: 10.1371/journal.pone.0007080] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 08/10/2009] [Indexed: 11/18/2022] Open
Abstract
Background Photosynthetic eukaryotes with a secondary plastid of red algal origin (cryptophytes, haptophytes, stramenopiles, dinoflagellates, and apicomplexans) are hypothesized to share a single origin of plastid acquisition according to Chromalveolate hypothesis. Recent phylogenomic analyses suggest that photosynthetic “chromalveolates” form a large clade with inclusion of several non-photosynthetic protist lineages. Katablepharids are one such non-photosynthetic lineage closely related to cryptophytes. Despite their evolutionary and ecological importance, katablepharids are poorly investigated. Methodology/Principal Findings Here, we report a newly discovered flagellate, Roombia truncata gen. et sp. nov., that is related to katablepharids, but is morphologically distinct from othermembers of the group in the following ways: (1) two flagella emerge from a papilla-like subapical protrusion, (2) conspicuous ejectisomes are aligned in multiple (5–11) rows, (3) each ejectisome increases in size towards the posterior end of the rows, and (4) upon feeding, a part of cytoplasm elastically stretch to engulf whole prey cell. Molecular phylogenies inferred from Hsp90, SSU rDNA, and LSU rDNA sequences consistently and strongly show R. truncata as the sister lineage to all other katablepharids, including lineages known only from environmental sequence surveys. A close association between katablepharids and cryptophytes was also recovered in most analyses. Katablepharids and cryptophytes are together part of a larger, more inclusive, group that also contains haptophytes, telonemids, centrohelids and perhaps biliphytes. The monophyly of this group is supported by several different molecular phylogenetic datasets and one shared lateral gene transfer; therefore, we formally establish this diverse clade as the “Hacrobia.” Conclusions/Significance Our discovery of R. truncata not only expands our knowledge in the less studied flagellate group, but provide a better understanding of phylogenetic relationship and evolutionary view of plastid acquisition/losses of Hacrobia. Being an ancestral to all katablepharids, and readily cultivable, R. truncata is a good candidate for multiple gene analyses that will contribute to future phylogenetic studies of Hacrobia.
Collapse
Affiliation(s)
- Noriko Okamoto
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chitchai Chantangsi
- Departments of Botany and Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aleš Horák
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian S. Leander
- Departments of Botany and Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick J. Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
57
|
Nozaki H, Maruyama S, Matsuzaki M, Nakada T, Kato S, Misawa K. Phylogenetic positions of Glaucophyta, green plants (Archaeplastida) and Haptophyta (Chromalveolata) as deduced from slowly evolving nuclear genes. Mol Phylogenet Evol 2009; 53:872-80. [PMID: 19698794 DOI: 10.1016/j.ympev.2009.08.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 06/15/2009] [Accepted: 08/13/2009] [Indexed: 11/16/2022]
Abstract
The phylogenetic positions of the primary photosynthetic eukaryotes, or Archaeplastida (green plants, red algae, and glaucophytes) and the secondary photosynthetic chromalveolates, Haptophyta, vary depending on the data matrices used in the previous nuclear multigene phylogenetic studies. Here, we deduced the phylogeny of three groups of Archaeplastida and Haptophyta on the basis of sequences of the multiple slowly evolving nuclear genes and reduced the gaps or missing data, especially in glaucophyte operational taxonomic units (OTUs). The present multigene phylogenetic analyses resolved that Haptophyta and two other groups of Chromalveolata, stramenopiles and Alveolata, form a monophyletic group that is sister to the green plants and that the glaucophytes and red algae are basal to the clade composed of green plants and Chromalveolata. The bootstrap values supporting these phylogenetic relationships increased with the exclusion of long-branched OTUs. The close relationship between green plants and Chromalveolata is further supported by the common replacement in two plastid-targeted genes.
Collapse
Affiliation(s)
- Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | | | | | |
Collapse
|
58
|
Maruyama S, Matsuzaki M, Misawa K, Nozaki H. Cyanobacterial contribution to the genomes of the plastid-lacking protists. BMC Evol Biol 2009; 9:197. [PMID: 19664294 PMCID: PMC3087521 DOI: 10.1186/1471-2148-9-197] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 08/11/2009] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Eukaryotic genes with cyanobacterial ancestry in plastid-lacking protists have been regarded as important evolutionary markers implicating the presence of plastids in the early evolution of eukaryotes. Although recent genomic surveys demonstrated the presence of cyanobacterial and algal ancestry genes in the genomes of plastid-lacking protists, comparative analyses on the origin and distribution of those genes are still limited. RESULTS We identified 12 gene families with cyanobacterial ancestry in the genomes of a taxonomically wide range of plastid-lacking eukaryotes (Phytophthora [Chromalveolata], Naegleria [Excavata], Dictyostelium [Amoebozoa], Saccharomyces and Monosiga [Opisthokonta]) using a novel phylogenetic pipeline. The eukaryotic gene clades with cyanobacterial ancestry were mostly composed of genes from bikonts (Archaeplastida, Chromalveolata, Rhizaria and Excavata). We failed to find genes with cyanobacterial ancestry in Saccharomyces and Dictyostelium, except for a photorespiratory enzyme conserved among fungi. Meanwhile, we found several Monosiga genes with cyanobacterial ancestry, which were unrelated to other Opisthokonta genes. CONCLUSION Our data demonstrate that a considerable number of genes with cyanobacterial ancestry have contributed to the genome composition of the plastid-lacking protists, especially bikonts. The origins of those genes might be due to lateral gene transfer events, or an ancient primary or secondary endosymbiosis before the diversification of bikonts. Our data also show that all genes identified in this study constitute multi-gene families with punctate distribution among eukaryotes, suggesting that the transferred genes could have survived through rounds of gene family expansion and differential reduction.
Collapse
Affiliation(s)
- Shinichiro Maruyama
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Motomichi Matsuzaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
- Current address: Department of Biomedical Chemistry, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
- Current address: Research Program for Computational Science, Riken, 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan
| | - Kazuharu Misawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
- Current address: Research Program for Computational Science, Riken, 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
59
|
Burki F, Inagaki Y, Bråte J, Archibald JM, Keeling PJ, Cavalier-Smith T, Sakaguchi M, Hashimoto T, Horak A, Kumar S, Klaveness D, Jakobsen KS, Pawlowski J, Shalchian-Tabrizi K. Large-scale phylogenomic analyses reveal that two enigmatic protist lineages, telonemia and centroheliozoa, are related to photosynthetic chromalveolates. Genome Biol Evol 2009; 1:231-8. [PMID: 20333193 PMCID: PMC2817417 DOI: 10.1093/gbe/evp022] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2009] [Indexed: 12/03/2022] Open
Abstract
Understanding the early evolution and diversification of eukaryotes relies on a fully resolved phylogenetic tree. In recent years, most eukaryotic diversity has been assigned to six putative supergroups, but the evolutionary origin of a few major “orphan” lineages remains elusive. Two ecologically important orphan groups are the heterotrophic Telonemia and Centroheliozoa. Telonemids have been proposed to be related to the photosynthetic cryptomonads or stramenopiles and centrohelids to haptophytes, but molecular phylogenies have failed to provide strong support for any phylogenetic hypothesis. Here, we investigate the origins of Telonema subtilis (a telonemid) and Raphidiophrys contractilis (a centrohelid) by large-scale 454 pyrosequencing of cDNA libraries and including new genomic data from two cryptomonads (Guillardia theta and Plagioselmis nannoplanctica) and a haptophyte (Imantonia rotunda). We demonstrate that 454 sequencing of cDNA libraries is a powerful and fast method of sampling a high proportion of protist genes, which can yield ample information for phylogenomic studies. Our phylogenetic analyses of 127 genes from 72 species indicate that telonemids and centrohelids are members of an emerging major group of eukaryotes also comprising cryptomonads and haptophytes. Furthermore, this group is possibly closely related to the SAR clade comprising stramenopiles (heterokonts), alveolates, and Rhizaria. Our results link two additional heterotrophic lineages to the predominantly photosynthetic chromalveolate supergroup, providing a new framework for interpreting the evolution of eukaryotic cell structures and the diversification of plastids.
Collapse
|
60
|
Morris PF, Schlosser LR, Onasch KD, Wittenschlaeger T, Austin R, Provart N. Multiple horizontal gene transfer events and domain fusions have created novel regulatory and metabolic networks in the oomycete genome. PLoS One 2009; 4:e6133. [PMID: 19582169 PMCID: PMC2705460 DOI: 10.1371/journal.pone.0006133] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 06/03/2009] [Indexed: 12/19/2022] Open
Abstract
Complex enzymes with multiple catalytic activities are hypothesized to have evolved from more primitive precursors. Global analysis of the Phytophthora sojae genome using conservative criteria for evaluation of complex proteins identified 273 novel multifunctional proteins that were also conserved in P. ramorum. Each of these proteins contains combinations of protein motifs that are not present in bacterial, plant, animal, or fungal genomes. A subset of these proteins were also identified in the two diatom genomes, but the majority of these proteins have formed after the split between diatoms and oomycetes. Documentation of multiple cases of domain fusions that are common to both oomycetes and diatom genomes lends additional support for the hypothesis that oomycetes and diatoms are monophyletic. Bifunctional proteins that catalyze two steps in a metabolic pathway can be used to infer the interaction of orthologous proteins that exist as separate entities in other genomes. We postulated that the novel multifunctional proteins of oomycetes could function as potential Rosetta Stones to identify interacting proteins of conserved metabolic and regulatory networks in other eukaryotic genomes. However ortholog analysis of each domain within our set of 273 multifunctional proteins against 39 sequenced bacterial and eukaryotic genomes, identified only 18 candidate Rosetta Stone proteins. Thus the majority of multifunctional proteins are not Rosetta Stones, but they may nonetheless be useful in identifying novel metabolic and regulatory networks in oomycetes. Phylogenetic analysis of all the enzymes in three pathways with one or more novel multifunctional proteins was conducted to determine the probable origins of individual enzymes. These analyses revealed multiple examples of horizontal transfer from both bacterial genomes and the photosynthetic endosymbiont in the ancestral genome of Stramenopiles. The complexity of the phylogenetic origins of these metabolic pathways and the paucity of Rosetta Stones relative to the total number of multifunctional proteins suggests that the proteome of oomycetes has few features in common with other Kingdoms.
Collapse
Affiliation(s)
- Paul Francis Morris
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, USA.
| | | | | | | | | | | |
Collapse
|
61
|
Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, Bhattacharya D. Genomic Footprints of a Cryptic Plastid Endosymbiosis in Diatoms. Science 2009; 324:1724-6. [DOI: 10.1126/science.1172983] [Citation(s) in RCA: 330] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
62
|
Abstract
The establishment of a new plastid organelle by secondary endosymbiosis represents a series of events of massive complexity, and yet we know it has taken place multiple times because both green and red algae have been taken up by other eukaryotic lineages. Exactly how many times these events have succeeded, however, has been a matter of debate that significantly impacts how we view plastid evolution, protein targeting, and eukaryotic relationships. On the green side it is now largely accepted that two independent events led to plastids of euglenids and chlorarachniophytes. How many times red algae have been taken up is less clear, because there are many more lineages with red alga-derived plastids (cryptomonads, haptophytes, heterokonts, dinoflagellates and apicomplexa) and the relationships between these lineages are less clear. Ten years ago, Cavalier-Smith proposed that these plastids were all derived from a single endosymbiosis, an idea that was dubbed the chromalveolate hypothesis. No one observation has yet supported the chromalveolate hypothesis as a whole, but molecular data from plastid-encoded and plastid-targeted proteins have provided strong support for several components of the overall hypothesis, and evidence for cryptic plastids and new photosynthetic lineages (e.g. Chromera) have transformed our view of plastid distribution within the group. Collectively, these data are most easily reconciled with a single origin of the chromalveolate plastids, although the phylogeny of chromalveolate host lineages (and potentially Rhizaria) remain to be reconciled with this plastid data.
Collapse
Affiliation(s)
- Patrick J Keeling
- Department of Botany, Canadian Institute for Advanced Research, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
63
|
Bolte K, Bullmann L, Hempel F, Bozarth A, Zauner S, Maier UG. Protein targeting into secondary plastids. J Eukaryot Microbiol 2009; 56:9-15. [PMID: 19335770 DOI: 10.1111/j.1550-7408.2008.00370.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Most of the coding capacity of primary plastids is reserved for expressing some central components of the photosynthesis machinery and the translation apparatus. Thus, for the bulk of biochemical and cell biological reactions performed within the primary plastids, many nucleus-encoded components have to be transported posttranslationally into the organelle. The same is true for plastids surrounded by more than two membranes, where additional cellular compartments have to be supplied with nucleus-encoded proteins, leading to a corresponding increase in complexity of topogenic signals, transport and sorting machineries. In this review, we summarize recent progress in elucidating protein transport across up to five plastid membranes in plastids evolved in secondary endosymbiosis. Current data indicate that the mechanisms for protein transport across multiple membranes have evolved by altering pre-existing ones to new requirements in secondary plastids.
Collapse
Affiliation(s)
- Kathrin Bolte
- Laboratory for Cell Biology, Philipps-University of Marburg, Karl-von-Frisch Strasse 8, D-35032 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
64
|
Morris PF, Phuntumart V. Inventory and Comparative Evolution of the ABC Superfamily in the Genomes of Phytophthora ramorum and Phytophthora sojae. J Mol Evol 2009; 68:563-75. [DOI: 10.1007/s00239-009-9231-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 04/02/2009] [Accepted: 04/03/2009] [Indexed: 12/27/2022]
|
65
|
Abstract
A comprehensive understanding of the origin and spread of plastids remains an important yet elusive goal in the field of eukaryotic evolution. Combined with the discovery of new photosynthetic and non-photosynthetic protist lineages, the results of recent taxonomically broad phylogenomic studies suggest that a re-shuffling of higher-level eukaryote systematics is in order. Consequently, new models of plastid evolution involving ancient secondary and tertiary endosymbioses are needed to explain the full spectrum of photosynthetic eukaryotes.
Collapse
Affiliation(s)
- John M Archibald
- The Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 1X5, Canada.
| |
Collapse
|
66
|
Takishita K, Yamaguchi H, Maruyama T, Inagaki Y. A hypothesis for the evolution of nuclear-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase genes in "chromalveolate" members. PLoS One 2009; 4:e4737. [PMID: 19270733 PMCID: PMC2649427 DOI: 10.1371/journal.pone.0004737] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 02/05/2009] [Indexed: 11/18/2022] Open
Abstract
Eukaryotes bearing red alga-derived plastids — photosynthetic alveolates (dinoflagellates plus the apicomplexan Toxoplasma gondii plus the chromerid Chromera velia), photosynthetic stramenopiles, haptophytes, and cryptophytes — possess unique plastid-targeted glyceraldehyde-3-phosphate dehydrogenases (henceforth designated as “GapC1”). Pioneering phylogenetic studies have indicated a single origin of the GapC1 enzymes in eukaryotic evolution, but there are two potential idiosyncrasies in the GapC1 phylogeny: Firstly, the GapC1 tree topology is apparently inconsistent with the organismal relationship among the “GapC1-containing” groups. Secondly, four stramenopile GapC1 homologues are consistently paraphyletic in previously published studies, although these organisms have been widely accepted as monophyletic. For a closer examination of the above issues, in this study GapC1 gene sampling was improved by determining/identifying nine stramenopile and two cryptophyte genes. Phylogenetic analyses of our GapC1 dataset, which is particularly rich in the stramenopile homologues, prompt us to propose a new scenario that assumes multiple, lateral GapC1 gene transfer events to explain the incongruity between the GapC1 phylogeny and the organismal relationships amongst the “GapC1-containing” groups. Under our new scenario, GapC1 genes uniquely found in photosynthetic alveolates, photosynthetic stramenopiles, haptophytes, and cryptopyhytes are not necessarily a character vertically inherited from a common ancestor.
Collapse
Affiliation(s)
- Kiyotaka Takishita
- Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan.
| | | | | | | |
Collapse
|
67
|
Photobiological Aspects of the Mutualistic Association Between Paramecium bursaria and Chlorella. ENDOSYMBIONTS IN PARAMECIUM 2009. [DOI: 10.1007/978-3-540-92677-1_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
68
|
NEDELCU AM, MILES IH, FAGIR AM, KAROL K. Adaptive eukaryote-to-eukaryote lateral gene transfer: stress-related genes of algal origin in the closest unicellular relatives of animals. J Evol Biol 2008; 21:1852-60. [DOI: 10.1111/j.1420-9101.2008.01605.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
69
|
|