51
|
Chen JV, Megraw TL. Spermitin: a novel mitochondrial protein in Drosophila spermatids. PLoS One 2014; 9:e108802. [PMID: 25265054 PMCID: PMC4181656 DOI: 10.1371/journal.pone.0108802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 09/03/2014] [Indexed: 11/18/2022] Open
Abstract
Mitochondria, important energy centers in the cell, also control sperm cell morphogenesis. Drosophila spermatids have a remarkably large mitochondrial formation called the nebenkern. Immediately following meiosis during sperm development, the mitochondria in the spermatid fuse together into two large aggregates which then wrap around one another to produce the spherical nebenkern: a giant mitochondrion about 6 micrometers in diameter. The fused mitochondria play an important role in sperm tail elongation by providing a structural platform to support the elongation of sperm cells. We have identified a novel testis-specific protein, Spermitin (Sprn), a protein with a Pleckstrin homology-like (PH) domain related to Ran-binding protein 1 at its C-terminus. Fluorescence microscopy showed that Sprn localizes at mitochondria in transfected Kc167 cells, and in the nebenkern throughout spermatid morphogenesis. The role of Sprn is unclear, as sprn mutant males are fertile, and have sperm tail length comparable to the wild-type.
Collapse
Affiliation(s)
- Jieyan V. Chen
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Timothy L. Megraw
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
- * E-mail:
| |
Collapse
|
52
|
Smith RJ, Matzke-Karasz R, Kamiya T, De Deckker P. Sperm lengths of non-marine cypridoidean ostracods (Crustacea). ACTA ZOOL-STOCKHOLM 2014. [DOI: 10.1111/azo.12099] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Robin J. Smith
- Lake Biwa Museum; 1091 Oroshimo Kusatsu Shiga 525-0001 Japan
| | - Renate Matzke-Karasz
- Department of Earth and Environmental Sciences, Palaeontology; Ludwig-Maximilian-Universität München; GeoBio-CenterLMU; Richard-Wagner-Str. 10 80333 Munich Germany
| | - Takahiro Kamiya
- College of Science and Engineering; School of Natural System; University of Kanazawa, Kakuma; Kanazawa 920-1192 Japan
| | - Patrick De Deckker
- The Australian National University; Research School of Earth Sciences; Canberra ACT 0200 Australia
| |
Collapse
|
53
|
Banerjee S, Chinthapalli B. A proteomic screen with Drosophila Opa1-like identifies Hsc70-5/Mortalin as a regulator of mitochondrial morphology and cellular homeostasis. Int J Biochem Cell Biol 2014; 54:36-48. [PMID: 24998521 DOI: 10.1016/j.biocel.2014.05.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 04/05/2014] [Accepted: 05/14/2014] [Indexed: 01/13/2023]
Abstract
Mitochondrial morphology is regulated by conserved proteins involved in fusion and fission processes. The mammalian Optic atrophy 1 (OPA1) that functions in mitochondrial fusion is associated with Optic Atrophy and has been implicated in inner membrane cristae remodeling during cell death. Here, we show Drosophila Optic atrophy 1-like (Opa1-like) influences mitochondrial morphology through interaction with 'mitochondria-shaping' proteins like Mitochondrial assembly regulatory factor (Marf) and Drosophila Mitofilin (dMitofilin). To gain an insight into Opa1-like's network, we delineated bonafide interactors like dMitofilin, Marf, Serine protease High temperature requirement protein A2 (HTRA2), Rhomboid-7 (Rho-7) along with novel interactors such as Mortalin ortholog (Hsc70-5) from Drosophila mitochondrial extract. Interestingly, RNAi mediated down-regulation of hsc70-5 in Drosophila wing imaginal disc's peripodial cells resulted in fragmented mitochondria with reduced membrane potential leading to proteolysis of Opa1-like. Increased ecdysone activity induced dysfunctional fragmented mitochondria for clearance through lysosomes, an effect enhanced in hsc70-5 RNAi leading to increased cell death. Over-expression of Opa1-like rescues mitochondrial morphology and cell death in prepupal tissues expressing hsc70-5 RNAi. Taken together, we have identified a novel interaction between Hsc70-5/Mortalin and Opa1-like that influences cellular homeostasis through mitochondrial fusion.
Collapse
Affiliation(s)
- Shamik Banerjee
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India; National Center for Biological Sciences, TIFR, GKVK Campus, Bellary Road, Bangalore 560065, India; SASTRA University, Tirumalaisamudram, Thanjavur 613402, India.
| | - Balaji Chinthapalli
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
| |
Collapse
|
54
|
Chen YC, Umanah GKE, Dephoure N, Andrabi SA, Gygi SP, Dawson TM, Dawson VL, Rutter J. Msp1/ATAD1 maintains mitochondrial function by facilitating the degradation of mislocalized tail-anchored proteins. EMBO J 2014; 33:1548-64. [PMID: 24843043 DOI: 10.15252/embj.201487943] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The majority of ER-targeted tail-anchored (TA) proteins are inserted into membranes by the Guided Entry of Tail-anchored protein (GET) system. Disruption of this system causes a subset of TA proteins to mislocalize to mitochondria. We show that the AAA+ ATPase Msp1 limits the accumulation of mislocalized TA proteins on mitochondria. Deletion of MSP1 causes the Pex15 and Gos1 TA proteins to accumulate on mitochondria when the GET system is impaired. Likely as a result of failing to extract mislocalized TA proteins, yeast with combined mutation of the MSP1 gene and the GET system exhibit strong synergistic growth defects and severe mitochondrial damage, including loss of mitochondrial DNA and protein and aberrant mitochondrial morphology. Like yeast Msp1, human ATAD1 limits the mitochondrial mislocalization of PEX26 and GOS28, orthologs of Pex15 and Gos1, respectively. GOS28 protein level is also increased in ATAD1(-/-) mouse tissues. Therefore, we propose that yeast Msp1 and mammalian ATAD1 are conserved members of the mitochondrial protein quality control system that might promote the extraction and degradation of mislocalized TA proteins to maintain mitochondrial integrity.
Collapse
Affiliation(s)
- Yu-Chan Chen
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City UT, USA
| | - George K E Umanah
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Noah Dephoure
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Shaida A Andrabi
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA Departments of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jared Rutter
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City UT, USA
| |
Collapse
|
55
|
Wolff JN, Sutovsky P, Ballard JWO. Mitochondrial DNA content of mature spermatozoa and oocytes in the genetic model Drosophila. Cell Tissue Res 2013; 353:195-200. [PMID: 23686567 DOI: 10.1007/s00441-013-1628-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/05/2013] [Indexed: 01/09/2023]
Abstract
Although crucial to the success of fertilization and embryogenesis, little is known about the mitochondrial DNA (mtDNA) content of mature spermatozoa and oocytes across taxa and across different fertilization systems. Oocytes are assumed to hold a large population of mtDNAs that populate emerging cells during early embryogenesis, whereas spermatozoa harbor only a limited pool of mtDNAs that is believed to sustain functionality but fails to contribute paternal mtDNA to the zygote. Recent work suggests that mature sperm of the genetic model Drosophila melanogaster lack mtDNA, questioning the significance of zygotic mechanisms for the selective elimination of paternal mtDNA and their necessity for fertilization success. This finding further contradicts previous observations of the inheritance of paternal mtDNA in drosophilids. Using quantitative polymerase chain reaction, we estimate the mtDNA content of several laboratory strains of D. melanogaster and D. simulans to shed light on this discrepancy and to describe the mitochondrial/mtDNA load of gametes within this system. These measurements led to an average estimate of 22.91±4.61 mtDNA molecules/copies per spermatozoon across both species and to 1.07E+07±2.71E+06 molecules/copies per oocyte for D. simulans. As a consequence, the ratio of paternal and maternal mtDNA in the zygote was estimated at 1:4.65E+05.
Collapse
Affiliation(s)
- Jonci Nikolai Wolff
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.
| | | | | |
Collapse
|
56
|
Branco AT, Tao Y, Hartl DL, Lemos B. Natural variation of the Y chromosome suppresses sex ratio distortion and modulates testis-specific gene expression in Drosophila simulans. Heredity (Edinb) 2013; 111:8-15. [PMID: 23591516 DOI: 10.1038/hdy.2013.5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
X-linked sex-ratio distorters that disrupt spermatogenesis can cause a deficiency in functional Y-bearing sperm and a female-biased sex ratio. Y-linked modifiers that restore a normal sex ratio might be abundant and favored when a X-linked distorter is present. Here we investigated natural variation of Y-linked suppressors of sex-ratio in the Winters systems and the ability of these chromosomes to modulate gene expression in Drosophila simulans. Seventy-eight Y chromosomes of worldwide origin were assayed for their resistance to the X-linked sex-ratio distorter gene Dox. Y chromosome diversity caused males to sire ∼63% to ∼98% female progeny. Genome-wide gene expression analysis revealed hundreds of genes differentially expressed between isogenic males with sensitive (high sex ratio) and resistant (low sex ratio) Y chromosomes from the same population. Although the expression of about 75% of all testis-specific genes remained unchanged across Y chromosomes, a subset of post-meiotic genes was upregulated by resistant Y chromosomes. Conversely, a set of accessory gland-specific genes and mitochondrial genes were downregulated in males with resistant Y chromosomes. The D. simulans Y chromosome also modulated gene expression in XXY females in which the Y-linked protein-coding genes are not transcribed. The data suggest that the Y chromosome might exert its regulatory functions through epigenetic mechanisms that do not require the expression of protein-coding genes. The gene network that modulates sex ratio distortion by the Y chromosome is poorly understood, other than that it might include interactions with mitochondria and enriched for genes expressed in post-meiotic stages of spermatogenesis.
Collapse
Affiliation(s)
- A T Branco
- Molecular and Integrative Physiological Sciences, Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | | | | | | |
Collapse
|
57
|
Dorogova NV, Bolobolova EU, Akhmetova KA, Fedorova SA. Drosophila male-sterile mutation emmenthal specifically affects the mitochondrial morphogenesis. PROTOPLASMA 2013; 250:515-520. [PMID: 22833120 DOI: 10.1007/s00709-012-0434-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 07/11/2012] [Indexed: 06/01/2023]
Abstract
Proper mitochondrial morphogenesis is crucial for successful development of motile sperm. It was known that recessive Drosophila melanogaster mutation emm caused anomalies in the formation of a mitochondrial derivative--nebenkern and led to male sterility. Here we identified primary mutation effect and showed that emm is required for the formation and maintenance of inner mitochondrial structure starting from early spermatocytes. Abnormal mitochondria structure affects subsequent cellular processes in spermatogenesis such as meiotic cytokinesis and spermatid elongation.
Collapse
Affiliation(s)
- N V Dorogova
- Institute of the Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russia.
| | | | | | | |
Collapse
|
58
|
Watanabe S, De Zan T, Ishizaki T, Narumiya S. Citron kinase mediates transition from constriction to abscission through its coiled-coil domain. J Cell Sci 2013; 126:1773-84. [PMID: 23444367 DOI: 10.1242/jcs.116608] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cytokinesis is initiated by constriction of the cleavage furrow, and completed with separation of the two daughter cells by abscission. Control of transition from constriction to abscission is therefore crucial for cytokinesis. However, the underlying mechanism is largely unknown. Here, we analyze the role of Citron kinase (Citron-K) that localizes at the cleavage furrow and the midbody, and dissect its action mechanisms during this transition. Citron-K forms a stable ring-like structure at the midbody and its depletion affects the maintenance of the intercellular bridge, resulting in fusion of two daughter cells after the cleavage furrow ingression. RNA interference (RNAi) targeting Citron-K reduced accumulation of RhoA, Anillin, and septins at the intercellular bridge in mid telophase, and impaired concentration and maintenance of KIF14 and PRC1 at the midbody in late telophase. RNAi rescue experiments revealed that these functions of Citron-K are mediated by its coiled-coil (CC) domain, and not by its kinase domain. The C-terminal part of CC contains a Rho-binding domain and a cluster-forming region and is important for concentrating Citron-K from the cleavage furrow to the midbody. The N-terminal part of CC directly binds to KIF14, and this interaction is required for timely transfer of Citron-K to the midbody after furrow ingression. We propose that the CC-domain-mediated translocation and actions of Citron-K ensure proper stabilization of the midbody structure during the transition from constriction to abscission.
Collapse
Affiliation(s)
- Sadanori Watanabe
- Department of Pharmacology, Kyoto University Faculty of Medicine, Kyoto 606-8501, Japan.
| | | | | | | |
Collapse
|
59
|
Fujioka H, Tandler B, Haldar SM, Jain MK, Hoppel CL. String mitochondria in mouse soleus muscle. Microsc Res Tech 2012; 76:237-41. [PMID: 23174930 DOI: 10.1002/jemt.22158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/02/2012] [Indexed: 11/06/2022]
Abstract
Red myofibers in mouse soleus muscle have two spatially distinct populations of mitochondria: one where these organelles are disposed in large clusters just inside the sarcolemma and the other situated between the myofibrils. In most cases, the interfibrillar mitochondria (IFM), which are much smaller than the subsarcolemmal ones (SSM), are arranged as pairs, with each member on opposite sides of the Z-line. In some myofibers, the IFM have fused end-to-end to form greatly elongated organelles, which we call "string mitochondria." Although narrow, these can be many sarcomeres in length. The SSM do not form string mitochondria. Most of the string mitochondria exhibit many instances of "pinching," a process involved in mitochondrial division. Elements of sarcoplasmic reticulum are intimately involved with each mitochondrial membrane invagination. It appears as if the fusion:fission balance of IFM in the soleus muscle is slightly out of kilter, with end-to-end fusion predominating over fission.
Collapse
Affiliation(s)
- Hisashi Fujioka
- Electron Microscopy Facility, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | | | | | |
Collapse
|
60
|
Debattisti V, Scorrano L. D. melanogaster, mitochondria and neurodegeneration: small model organism, big discoveries. Mol Cell Neurosci 2012; 55:77-86. [PMID: 22940086 DOI: 10.1016/j.mcn.2012.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 08/10/2012] [Accepted: 08/15/2012] [Indexed: 10/28/2022] Open
Abstract
In developed countries, increased life expectancy is accompanied by an increased prevalence of age-related disorders like cancer and neurodegenerative diseases. Albeit the molecular mechanisms behind the clinically, pathologically and etiologically heterogeneous forms of neurodegeneration are often unclear, impairment of mitochondrial fusion-fission and dynamics emerged in recent years as a feature of neuronal dysfunction and death, pinpointing the need for animal models to investigate the relationship between mitochondrial shape and neurodegeneration. While research on mammalian models is slowed down by the complexity of the organisms and their genomes, the long latency of the symptoms and by the difficulty to generate and analyze large cohorts, the lower metazoan Drosophila melanogaster overcomes these problems, proving to be a suitable model to study neurodegenerative diseases and mitochondria-shaping proteins. Here we will summarize our current knowledge on the link between mitochondrial shape and models of neurodegeneration in the fruitfly. This article is part of a Special Issue entitled 'Mitochondrial function and dysfunction in neurodegeneration'.
Collapse
Affiliation(s)
- Valentina Debattisti
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, Via Orus 2 35129 Padova, Italy
| | | |
Collapse
|
61
|
Abstract
Drosophila melanogaster spermatids undergo dramatic morphological changes as they differentiate from small round cells approximately 12 μm in diameter into highly polarized, 1.8 mm long, motile sperm capable of participating in fertilization. During spermiogenesis, syncytial cysts of 64 haploid spermatids undergo synchronous differentiation. Numerous changes occur at a subcellular level, including remodeling of existing organelles (mitochondria, nuclei), formation of new organelles (flagellar axonemes, acrosomes), polarization of elongating cysts and plasma membrane addition. At the end of spermatid morphogenesis, organelles, mitochondrial DNA and cytoplasmic components not needed in mature sperm are stripped away in a caspase-dependent process called individualization that results in formation of individual sperm. Here, we review the stages of Drosophila spermiogenesis and examine our current understanding of the cellular and molecular mechanisms involved in shaping male germ cell-specific organelles and forming mature, fertile sperm.
Collapse
Affiliation(s)
- Lacramioara Fabian
- Cell Biology Program; The Hospital for Sick Children (SickKids); Toronto, ON Canada
| | - Julie A. Brill
- Cell Biology Program; The Hospital for Sick Children (SickKids); Toronto, ON Canada
- Department of Molecular Genetics; University of Toronto; Toronto, ON Canada
| |
Collapse
|
62
|
Enjolras C, Thomas J, Chhin B, Cortier E, Duteyrat JL, Soulavie F, Kernan MJ, Laurençon A, Durand B. Drosophila chibby is required for basal body formation and ciliogenesis but not for Wg signaling. ACTA ACUST UNITED AC 2012; 197:313-25. [PMID: 22508513 PMCID: PMC3328381 DOI: 10.1083/jcb.201109148] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In contrast to vertebrate CBY, which functions in WNT signaling, Drosophila CBY is essential for normal basal body structure and function but dispensable for Wg signaling. Centriole-to–basal body conversion, a complex process essential for ciliogenesis, involves the progressive addition of specific proteins to centrioles. CHIBBY (CBY) is a coiled-coil domain protein first described as interacting with β-catenin and involved in Wg-Int (WNT) signaling. We found that, in Drosophila melanogaster, CBY was exclusively expressed in cells that require functional basal bodies, i.e., sensory neurons and male germ cells. CBY was associated with the basal body transition zone (TZ) in these two cell types. Inactivation of cby led to defects in sensory transduction and in spermatogenesis. Loss of CBY resulted in altered ciliary trafficking into neuronal cilia, irregular deposition of proteins on spermatocyte basal bodies, and, consequently, distorted axonemal assembly. Importantly, cby1/1 flies did not show Wingless signaling defects. Hence, CBY is essential for normal basal body structure and function in Drosophila, potentially through effects on the TZ. The function of CBY in WNT signaling in vertebrates has either been acquired during vertebrate evolution or lost in Drosophila.
Collapse
Affiliation(s)
- Camille Enjolras
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR 5534, Université Claude Bernard Lyon 1, Villeurbanne, Lyon F69622, France
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Adolphsen K, Amell A, Havko N, Kevorkian S, Mears K, Neher H, Schwarz D, Schulze SR. Type-I prenyl protease function is required in the male germline of Drosophila melanogaster. G3 (BETHESDA, MD.) 2012; 2:629-42. [PMID: 22690372 PMCID: PMC3362292 DOI: 10.1534/g3.112.002188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 03/20/2012] [Indexed: 12/23/2022]
Abstract
Many proteins require the addition of a hydrophobic prenyl anchor (prenylation) for proper trafficking and localization in the cell. Prenyl proteases play critical roles in modifying proteins for membrane anchorage. The type I prenyl protease has a defined function in yeast (Ste24p/Afc1p) where it modifies a mating pheromone, and in humans (Zmpste24) where it has been implicated in a disease of premature aging. Despite these apparently very different biological processes, the type I prenyl protease gene is highly conserved, encoded by a single gene in a wide range of animal and plant groups. A notable exception is Drosophila melanogaster, where the gene encoding the type I prenyl protease has undergone an unprecedented series of duplications in the genome, resulting in five distinct paralogs, three of which are organized in a tandem array, and demonstrate high conservation, particularly in the vicinity of the active site of the enzyme. We have undertaken targeted deletion to remove the three tandem paralogs from the genome. The result is a male fertility defect, manifesting late in spermatogenesis. Our results also show that the ancestral type I prenyl protease gene in Drosophila is under strong purifying selection, while the more recent replicates are evolving rapidly. Our rescue data support a role for the rapidly evolving tandem paralogs in the male germline. We propose that potential targets for the male-specific type I prenyl proteases include proteins involved in the very dramatic cytoskeletal remodeling events required for spermatid maturation.
Collapse
Affiliation(s)
- Katie Adolphsen
- Biology Department, Western Washington University, Bellingham, Washington 98225
| | | | | | | | | | | | | | | |
Collapse
|
64
|
DeLuca SZ, O'Farrell PH. Barriers to male transmission of mitochondrial DNA in sperm development. Dev Cell 2012; 22:660-8. [PMID: 22421049 DOI: 10.1016/j.devcel.2011.12.021] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 11/09/2011] [Accepted: 12/25/2011] [Indexed: 11/19/2022]
Abstract
Across the eukaryotic phylogeny, offspring usually inherit their mitochondrial genome from only one of two parents: in animals, the female. Although mechanisms that eliminate paternally derived mitochondria from the zygote have been sought, the developmental stage at which paternal transmission of mitochondrial DNA is restricted is unknown in most animals. Here, we show that the mitochondria of mature Drosophila sperm lack DNA, and we uncover two processes that eliminate mitochondrial DNA during spermatogenesis. Visualization of mitochondrial DNA nucleoids revealed their abrupt disappearance from developing spermatids in a process requiring the mitochondrial nuclease, Endonuclease G. In Endonuclease G mutants, persisting nucleoids are swept out of spermatids by a cellular remodeling process that trims and shapes spermatid tails. Our results show that mitochondrial DNA is eliminated during spermatogenesis, thereby removing the capacity of sperm to transmit the mitochondrial genome to the next generation.
Collapse
Affiliation(s)
- Steven Z DeLuca
- Department of Biochemistry, UCSF, San Francisco, CA 94110, USA
| | | |
Collapse
|
65
|
Noguchi T, Koizumi M, Hayashi S. Mitochondria-driven cell elongation mechanism for competing sperms. Fly (Austin) 2012; 6:113-6. [PMID: 22634483 PMCID: PMC3397921 DOI: 10.4161/fly.19862] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Sexual competition has selected a number of extreme phenotypes like the tail ornament of peacock male. Sperm tail of Drosophilidae elongate up to 6 cm as a result of evolutionary selection for reproductive fitness among competing sperms. Sperm elongation takes place post meiotically and can proceed in the absence of an axoneme. Here, we used primary cultures of elongating spermatids of D. melanogaster to demonstrate that sperm elongation is driven by interdependent extension of giant mitochondria and microtubule array that is formed around the mitochondrial surface. This work established that, in addition to functioning as an energy source, mitochondria can serve as internal skeleton for shaping cell morphology.
Collapse
Affiliation(s)
- Tatsuhiko Noguchi
- Laboratory for Morphogenetic Signaling, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | | | | |
Collapse
|
66
|
Lattao R, Bonaccorsi S, Gatti M. Giant meiotic spindles in males from Drosophila species with giant sperm tails. J Cell Sci 2012; 125:584-8. [DOI: 10.1242/jcs.101469] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The spindle is a highly dynamic molecular machine that mediates precise chromosome segregation during cell division. Spindle size can vary dramatically, not only between species but also between different cells of the same organism. However, the reasons for spindle size variability are largely unknown. Here we show that variations in spindle size can be linked to a precise developmental requirement. Drosophila species have dramatically different sperm flagella that range in length from 0.3 mm in D. persimilis to 58.3 mm in D. bifurca. We found that males of different species exhibit striking variations in meiotic spindle size, which positively correlate with sperm length, with D. bifurca showing 30-fold larger spindles than D. persimilis. This suggests that primary spermatocytes of Drosophila species manufacture and store amounts of tubulin that are proportional to the axoneme length and use these tubulin pools for spindle assembly. These findings highlight an unsuspected plasticity of the meiotic spindle in response to the selective forces controlling sperm length.
Collapse
Affiliation(s)
- Ramona Lattao
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “Charles Darwin” Sapienza, Università di Roma, 00185, Italy
| | - Silvia Bonaccorsi
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “Charles Darwin” Sapienza, Università di Roma, 00185, Italy
| | - Maurizio Gatti
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie “Charles Darwin” Sapienza, Università di Roma, 00185, Italy
| |
Collapse
|