51
|
Vandermosten M, Correia J, Vanderauwera J, Wouters J, Ghesquière P, Bonte M. Brain activity patterns of phonemic representations are atypical in beginning readers with family risk for dyslexia. Dev Sci 2019; 23:e12857. [PMID: 31090993 DOI: 10.1111/desc.12857] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/03/2019] [Accepted: 04/29/2019] [Indexed: 12/13/2022]
Abstract
There is an ongoing debate whether phonological deficits in dyslexics should be attributed to (a) less specified representations of speech sounds, like suggested by studies in young children with a familial risk for dyslexia, or (b) to an impaired access to these phonemic representations, as suggested by studies in adults with dyslexia. These conflicting findings are rooted in between study differences in sample characteristics and/or testing techniques. The current study uses the same multivariate functional MRI (fMRI) approach as previously used in adults with dyslexia to investigate phonemic representations in 30 beginning readers with a familial risk and 24 beginning readers without a familial risk of dyslexia, of whom 20 were later retrospectively classified as dyslexic. Based on fMRI response patterns evoked by listening to different utterances of /bA/ and /dA/ sounds, multivoxel analyses indicate that the underlying activation patterns of the two phonemes were distinct in children with a low family risk but not in children with high family risk. However, no group differences were observed between children that were later classified as typical versus dyslexic readers, regardless of their family risk status, indicating that poor phonemic representations constitute a risk for dyslexia but are not sufficient to result in reading problems. We hypothesize that poor phonemic representations are trait (family risk) and not state (dyslexia) dependent, and that representational deficits only lead to reading difficulties when they are present in conjunction with other neuroanatomical or-functional deficits.
Collapse
Affiliation(s)
- Maaike Vandermosten
- Research Group ExpORL, Department of Neuroscience, KU Leuven, Leuven, Belgium.,Department of Cognitive Neuroscience and Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Joao Correia
- Department of Cognitive Neuroscience and Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Basque Center on Cognition, Brain and Language, San Sebastian, Spain
| | - Jolijn Vanderauwera
- Research Group ExpORL, Department of Neuroscience, KU Leuven, Leuven, Belgium.,Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Jan Wouters
- Research Group ExpORL, Department of Neuroscience, KU Leuven, Leuven, Belgium
| | - Pol Ghesquière
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Milene Bonte
- Department of Cognitive Neuroscience and Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
52
|
The interplay of socio-economic status represented by paternal educational level, white matter structure and reading. PLoS One 2019; 14:e0215560. [PMID: 31048844 PMCID: PMC6497374 DOI: 10.1371/journal.pone.0215560] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/05/2019] [Indexed: 11/19/2022] Open
Abstract
A child’s school achievement is influenced by environmental factors. The environmental factors, when represented by socio-economic status (SES) of the family, have been demonstrated to be related to the reading skills of a child. The neural correlates of the relation between SES and reading have been less thoroughly investigated. The present study expands current research by exploring the relation between SES, quantified by paternal educational level, reading of the offspring and the structure of white matter pathways in the left hemisphere as derived from DTI-based tractography analyses. Therefore, three dorsal white matter pathways, i.e. the long, anterior and posterior segments of the arcuate fasciculus (AF), and three ventral white matter pathways, i.e. the inferior fronto-occipital fasciculus (IFOF), the inferior longitudinal fasciculus (ILF) and the uncinate fasciculus (UF), were manually dissected in the left hemisphere of 34 adolescents with a wide range of reading skills. The results demonstrated a relation between word reading, SES quantified by paternal educational level, and fractional anisotropy (FA) within the left dorsal AF segment and the left ventral UF. Thus, the present study proposes a relationship between paternal educational level and a specific white matter pathway that is important for reading, aiming to guide future research that can determine processes underlying this relationship.
Collapse
|
53
|
Neurobiological systems in dyslexia. Trends Neurosci Educ 2019; 14:11-24. [DOI: 10.1016/j.tine.2018.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 09/13/2018] [Accepted: 12/12/2018] [Indexed: 12/12/2022]
|
54
|
Borchers LR, Bruckert L, Dodson CK, Travis KE, Marchman VA, Ben-Shachar M, Feldman HM. Microstructural properties of white matter pathways in relation to subsequent reading abilities in children: a longitudinal analysis. Brain Struct Funct 2019; 224:891-905. [PMID: 30539288 PMCID: PMC6420849 DOI: 10.1007/s00429-018-1813-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 12/04/2018] [Indexed: 01/18/2023]
Abstract
Microstructural properties of white matter pathways are associated with concurrent reading abilities in children. In this longitudinal study, we asked whether properties of white matter pathways at the onset of learning to read would be associated with reading abilities at older ages. Children (N = 37) with a wide range of reading abilities completed standardized measures of language and phonological awareness and diffusion MRI at age 6 years. Mean tract-fractional anisotropy (FA) was extracted from reading-related pathways. At age 8, the same children were re-assessed using a standardized reading measure. Using linear regressions, we examined the contribution of tract-FA at age 6 to reading outcome at age 8, beyond known demographic and pre-literacy predictors of reading. Tract-FA of the left arcuate, left and right superior longitudinal fasciculus (SLF), and left inferior cerebellar peduncle (ICP) made unique contributions to reading outcome after consideration of sex and family history of reading delays. Tract-FA of the left and right SLF and left ICP made unique contributions to reading outcome after the addition of pre-literacy skills. Thus, cerebellar and bilateral cortical pathways represented a network associated with subsequent reading abilities. Early white matter properties may be associated with other neuropsychological functions that predict reading or may influence reading development, independent of reading-related abilities. Tract FA at early stages of learning to read may serve as a biomarker of later reading abilities.
Collapse
Affiliation(s)
- Lauren R Borchers
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Medical School Office Building, 1265 Welch Rd, Mail Code 5415, Stanford, 94305, CA, USA
| | - Lisa Bruckert
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Medical School Office Building, 1265 Welch Rd, Mail Code 5415, Stanford, 94305, CA, USA
| | - Cory K Dodson
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Medical School Office Building, 1265 Welch Rd, Mail Code 5415, Stanford, 94305, CA, USA
| | - Katherine E Travis
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Medical School Office Building, 1265 Welch Rd, Mail Code 5415, Stanford, 94305, CA, USA
| | | | - Michal Ben-Shachar
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, 5290002, Ramat Gan, Israel
- Department of English Literature and Linguistics, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Heidi M Feldman
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Medical School Office Building, 1265 Welch Rd, Mail Code 5415, Stanford, 94305, CA, USA.
| |
Collapse
|
55
|
Banfi C, Koschutnig K, Moll K, Schulte-Körne G, Fink A, Landerl K. White matter alterations and tract lateralization in children with dyslexia and isolated spelling deficits. Hum Brain Mapp 2018; 40:765-776. [PMID: 30267634 PMCID: PMC6492145 DOI: 10.1002/hbm.24410] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 09/12/2018] [Accepted: 09/19/2018] [Indexed: 01/18/2023] Open
Abstract
The present study investigated whether children with a typical dyslexia profile and children with isolated spelling deficits show a distinct pattern of white matter alteration compared with typically developing peers. Relevant studies on the topic are scarce, rely on small samples, and often suffer from the limitations of conventional tensor-based methods. The present Constrained Spherical Deconvolution study includes 27 children with typical reading and spelling skills, 21 children with dyslexia and 21 children with isolated spelling deficits. Group differences along major white matter tracts were quantified utilizing the Automated Fiber Quantification software and a lateralization index was calculated in order to investigate the structural asymmetry of the tracts. The two deficit groups mostly displayed different patterns of white matter alterations, located in the bilateral inferior longitudinal fasciculi, right superior longitudinal fasciculus, and cingulum for the group with dyslexia and in the left arcuate fasciculus for the group with isolated spelling deficits. The two deficit groups differed also with respect to structural asymmetry. Children with dyslexia did not show the typical leftward asymmetry of the arcuate fasciculus, whereas the group with isolated spelling deficits showed absent rightward asymmetry of the inferior fronto-occipital fasciculus. This study adds evidence to the notion that different profiles of combined or isolated reading and spelling deficits are associated with different neural signatures.
Collapse
Affiliation(s)
- Chiara Banfi
- University of Graz, Institute of Psychology, Graz, Austria
| | | | - Kristina Moll
- Department of Child and Adolescent Psychiatry, Ludwig-Maximilians-University, Munich, Germany
| | - Gerd Schulte-Körne
- Department of Child and Adolescent Psychiatry, Ludwig-Maximilians-University, Munich, Germany
| | - Andreas Fink
- University of Graz, Institute of Psychology, Graz, Austria
| | - Karin Landerl
- University of Graz, Institute of Psychology, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| |
Collapse
|
56
|
van Oers CAMM, Goldberg N, Fiorin G, van den Heuvel MP, Kappelle LJ, Wijnen FNK. No evidence for cerebellar abnormality in adults with developmental dyslexia. Exp Brain Res 2018; 236:2991-3001. [PMID: 30116863 PMCID: PMC6223834 DOI: 10.1007/s00221-018-5351-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 08/02/2018] [Indexed: 01/18/2023]
Abstract
Developmental dyslexia is commonly believed to result from a deficiency in the recognition and processing of speech sounds. According to the cerebellar deficit hypothesis, this phonological deficit is caused by deficient cerebellar function. In the current study, 26 adults with developmental dyslexia and 25 non-dyslexic participants underwent testing of reading-related skills, cerebellar functions, and MRI scanning of the brain. Anatomical assessment of the cerebellum was conducted with voxel-based morphometry. Behavioural evidence, that was indicative of impaired cerebellar function, was found to co-occur with reading impairments in the dyslexic subjects, but a causal relation between the two was not observed. No differences in local grey matter volume, nor in structure-function relationships within the cerebellum were found between the two groups. Possibly, the observed behavioural pattern is due to aberrant white matter connectivity. In conclusion, no support for the cerebellar deficit hypothesis or the presence of anatomical differences of the cerebellum in adults with developmental dyslexia was found.
Collapse
Affiliation(s)
- Casper A M M van Oers
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.
- Department of Neurology, Amphia Hospital, Breda, The Netherlands.
| | - Nadya Goldberg
- Utrecht institute of Linguistics OTS, Utrecht, The Netherlands
| | - Gaetano Fiorin
- Utrecht institute of Linguistics OTS, Utrecht, The Netherlands
| | - Martijn P van den Heuvel
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - L Jaap Kappelle
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
57
|
Vanderauwera J, De Vos A, Forkel SJ, Catani M, Wouters J, Vandermosten M, Ghesquière P. Neural organization of ventral white matter tracts parallels the initial steps of reading development: A DTI tractography study. BRAIN AND LANGUAGE 2018; 183:32-40. [PMID: 29783124 DOI: 10.1016/j.bandl.2018.05.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 02/28/2018] [Accepted: 05/11/2018] [Indexed: 05/05/2023]
Abstract
Insight in the developmental trajectory of the neuroanatomical reading correlates is important to understand related cognitive processes and disorders. In adults, a dual pathway model has been suggested encompassing a dorsal phonological and a ventral orthographic white matter system. This dichotomy seems not present in pre-readers, and the specific role of ventral white matter in reading remains unclear. Therefore, the present longitudinal study investigated the relation between ventral white matter and cognitive processes underlying reading in children with a broad range of reading skills (n = 61). Ventral pathways of the reading network were manually traced using diffusion tractography: the inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF) and uncinate fasciculus (UF). Pathways were examined pre-reading (5-6 years) and after two years of reading acquisition (7-8 years). Dimension reduction for the cognitive measures resulted in one component for pre-reading cognitive measures and a separate phonological and orthographic component for the early reading measures. Regression analyses revealed a relation between the pre-reading cognitive component and bilateral IFOF and left ILF. Interestingly, exclusively the left IFOF was related to the orthographic component, whereas none of the pathways was related to the phonological component. Hence, the left IFOF seems to serve as the lexical reading route, already in the earliest reading stages.
Collapse
Affiliation(s)
- Jolijn Vanderauwera
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium; Research Group ExpORL, Department of Neurosciences, KU Leuven, Belgium.
| | - Astrid De Vos
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium; Research Group ExpORL, Department of Neurosciences, KU Leuven, Belgium
| | - Stephanie J Forkel
- Natbrainlab, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neurosciences, King's College London, UK; Natbrainlab, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry Psychology and Neurosciences, King's College London, UK
| | - Marco Catani
- Natbrainlab, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neurosciences, King's College London, UK; Natbrainlab, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry Psychology and Neurosciences, King's College London, UK
| | - Jan Wouters
- Research Group ExpORL, Department of Neurosciences, KU Leuven, Belgium
| | - Maaike Vandermosten
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium; Research Group ExpORL, Department of Neurosciences, KU Leuven, Belgium
| | - Pol Ghesquière
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
| |
Collapse
|
58
|
Žarić G, Timmers I, Gerretsen P, Fraga González G, Tijms J, van der Molen MW, Blomert L, Bonte M. Atypical White Matter Connectivity in Dyslexic Readers of a Fairly Transparent Orthography. Front Psychol 2018; 9:1147. [PMID: 30042708 PMCID: PMC6049043 DOI: 10.3389/fpsyg.2018.01147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 06/14/2018] [Indexed: 01/18/2023] Open
Abstract
Atypical structural properties of the brain's white matter bundles have been associated with failing reading acquisition in developmental dyslexia. Because these white matter properties may show dynamic changes with age and orthographic depth, we examined fractional anisotropy (FA) along 16 white matter tracts in 8- to 11-year-old dyslexic (DR) and typically reading (TR) children learning to read in a fairly transparent orthography (Dutch). Our results showed higher FA values in the bilateral anterior thalamic radiations of DRs and FA values of the left thalamic radiation scaled with behavioral reading-related scores. Furthermore, DRs tended to have atypical FA values in the bilateral arcuate fasciculi. Children's age additionally predicted FA values along the tracts. Together, our findings suggest differential contributions of cortical and thalamo-cortical pathways to the developing reading network in dyslexic and typical readers, possibly indicating prolonged letter-by-letter reading or increased attentional and/or working memory demands in dyslexic children during reading.
Collapse
Affiliation(s)
- Gojko Žarić
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Center (M-BIC), Maastricht, Netherlands
| | - Inge Timmers
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | | | - Gorka Fraga González
- Department of Developmental Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Jurgen Tijms
- IWAL Instituut Voor Leerproblemen, Amsterdam, Netherlands
| | | | - Leo Blomert
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Center (M-BIC), Maastricht, Netherlands
| | - Milene Bonte
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Center (M-BIC), Maastricht, Netherlands
| |
Collapse
|
59
|
Rapid and widespread white matter plasticity during an intensive reading intervention. Nat Commun 2018; 9:2260. [PMID: 29884784 PMCID: PMC5993742 DOI: 10.1038/s41467-018-04627-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 05/11/2018] [Indexed: 12/31/2022] Open
Abstract
White matter tissue properties are known to correlate with performance across domains ranging from reading to math, to executive function. Here, we use a longitudinal intervention design to examine experience-dependent growth in reading skills and white matter in grade school-aged, struggling readers. Diffusion MRI data were collected at regular intervals during an 8-week, intensive reading intervention. These measurements reveal large-scale changes throughout a collection of white matter tracts, in concert with growth in reading skill. Additionally, we identify tracts whose properties predict reading skill but remain fixed throughout the intervention, suggesting that some anatomical properties stably predict the ease with which a child learns to read, while others dynamically reflect the effects of experience. These results underscore the importance of considering recent experience when interpreting cross-sectional anatomy–behavior correlations. Widespread changes throughout the white matter may be a hallmark of rapid plasticity associated with an intensive learning experience. White matter properties correlate with cognitive performance in a number of domains. Here the authors show that altering a child’s educational environment though a targeted intervention program induces rapid, large-scale changes in the white matter, and that these changes track the learning process.
Collapse
|
60
|
Phan TV, Sima DM, Beelen C, Vanderauwera J, Smeets D, Vandermosten M. Evaluation of methods for volumetric analysis of pediatric brain data: The child metrix pipeline versus adult-based approaches. NEUROIMAGE-CLINICAL 2018; 19:734-744. [PMID: 30003026 PMCID: PMC6040578 DOI: 10.1016/j.nicl.2018.05.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 05/04/2018] [Accepted: 05/22/2018] [Indexed: 12/18/2022]
Abstract
Pediatric brain volumetric analysis based on Magnetic Resonance Imaging (MRI) is of particular interest in order to understand the typical brain development and to characterize neurodevelopmental disorders at an early age. However, it has been shown that the results can be biased due to head motion, inherent to pediatric data, and due to the use of methods based on adult brain data that are not able to accurately model the anatomical disparity of pediatric brains. To overcome these issues, we proposed childmetrix, a tool developed for the analysis of pediatric neuroimaging data that uses an age-specific atlas and a probabilistic model-based approach in order to segment the gray matter (GM) and white matter (WM). The tool was extensively validated on 55 scans of children between 5 and 6 years old (including 13 children with developmental dyslexia) and 10 pairs of test-retest scans of children between 6 and 8 years old and compared with two state-of-the-art methods using an adult atlas, namely icobrain (applying a probabilistic model-based segmentation) and Freesurfer (applying a surface model-based segmentation). The results obtained with childmetrix showed a better reproducibility of GM and WM segmentations and a better robustness to head motion in the estimation of GM volume compared to Freesurfer. Evaluated on two subjects, childmetrix showed good accuracy with 82-84% overlap with manual segmentation for both GM and WM, thereby outperforming the adult-based methods (icobrain and Freesurfer), especially for the subject with poor quality data. We also demonstrated that the adult-based methods needed double the number of subjects to detect significant morphological differences between dyslexics and typical readers. Once further developed and validated, we believe that childmetrix would provide appropriate and reliable measures for the examination of children's brain.
Collapse
Affiliation(s)
- Thanh Vân Phan
- icometrix, Research and Development, Leuven, Belgium; Experimental Oto-rhino-laryngology, Department Neurosciences, KU Leuven, Leuven, Belgium.
| | - Diana M Sima
- icometrix, Research and Development, Leuven, Belgium
| | - Caroline Beelen
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Science, KU Leuven, Leuven, Belgium
| | - Jolijn Vanderauwera
- Experimental Oto-rhino-laryngology, Department Neurosciences, KU Leuven, Leuven, Belgium; Parenting and Special Education Research Unit, Faculty of Psychology and Educational Science, KU Leuven, Leuven, Belgium
| | - Dirk Smeets
- icometrix, Research and Development, Leuven, Belgium
| | - Maaike Vandermosten
- Experimental Oto-rhino-laryngology, Department Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
61
|
Abstract
Purpose of Review Developmental dyslexia is characterized by an impaired acquisition of fluent and skilled reading ability. Numerous studies have explored the neural correlates of this neurodevelopmental disorder, with most classic accounts strongly focussing on left temporoparietal regions. We will review recent findings from structural and functional MRI studies that suggest a more important role of occipitotemporal cortex abnormalities in dyslexia. Recent Findings Recent findings highlight the role of the occipitotemporal cortex which exhibits functional as well as structural abnormalities in dyslexic readers and in children at risk for dyslexia and suggest a more central role for the occipitotemporal cortex in the pathophysiology of dyslexia. Summary We demonstrate the importance of the occipitotemporal cortex in for understanding impaired reading acquisition and point out how future research might enhance our understanding of functional and structural impairments in the reading network via large-scale data analysis approaches.
Collapse
|