51
|
Jung YS, Park JI. Wnt signaling in cancer: therapeutic targeting of Wnt signaling beyond β-catenin and the destruction complex. Exp Mol Med 2020; 52:183-191. [PMID: 32037398 PMCID: PMC7062731 DOI: 10.1038/s12276-020-0380-6] [Citation(s) in RCA: 308] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 02/07/2023] Open
Abstract
Wnt/β-catenin signaling is implicated in many physiological processes, including development, tissue homeostasis, and tissue regeneration. In human cancers, Wnt/β-catenin signaling is highly activated, which has led to the development of various Wnt signaling inhibitors for cancer therapies. Nonetheless, the blockade of Wnt signaling causes side effects such as impairment of tissue homeostasis and regeneration. Recently, several studies have identified cancer-specific Wnt signaling regulators. In this review, we discuss the Wnt inhibitors currently being used in clinical trials and suggest how additional cancer-specific regulators could be utilized to treat Wnt signaling-associated cancer.
Collapse
Affiliation(s)
- Youn-Sang Jung
- 0000 0001 2291 4776grid.240145.6Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Jae-Il Park
- 0000 0001 2291 4776grid.240145.6Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA ,0000 0001 2291 4776grid.240145.6Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA ,0000 0001 2291 4776grid.240145.6Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| |
Collapse
|
52
|
Correlation of pterygium severity with IQ-domain GTPase-activating protein 1 (IQGAP1) and mast cells. Exp Eye Res 2019; 190:107896. [PMID: 31836492 DOI: 10.1016/j.exer.2019.107896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 11/23/2022]
Abstract
IQ-domain GTPase-activating protein 1 (IQGAP1) is a multidomain scaffold protein that is involved in cytoskeleton dynamics and tumor metastasis. Although the role of IQGAP1 in various cancers had been reported, the function of IQGAP1 in pterygium has not been studied. In this study, surgically excised pterygium and control conjunctival tissue from cataract patients were analysed by immunohistochemistry, confocal microscopy, and Western blot for IQGAP1 expression, mast cell counts, and microvascular count. Pterygium was clinically divided into mild and severe types according to Tan's classification and Kim's criteria based on translucency and vascularity of the tissue. Greater clinical severity of pterygium was associated with higher expression of IQGAP1 expression. Compared to normal conjunctival tissue, severe pterygium had significantly higher IQGAP1 expression (P = 0.005), which strongly correlated to the number of microvessels (P = 0.003) and mast cells (P = 0.01). Confocal microscopy revealed IQGAP1 colocalization with mast cell and CD31. IQGAP1 expression was higher in the pterygium body compared to the head. In conclusion, the level of IQGAP1 expression was found to be correlated to the clinical severity of pterygium. Mast cells were identified in pterygium and is suspected to be involved in promoting fibrovascular invasion.
Collapse
|
53
|
Bracey KM, Ho KH, Yampolsky D, Gu G, Kaverina I, Holmes WR. Microtubules Regulate Localization and Availability of Insulin Granules in Pancreatic Beta Cells. Biophys J 2019; 118:193-206. [PMID: 31839261 DOI: 10.1016/j.bpj.2019.10.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/15/2019] [Accepted: 10/21/2019] [Indexed: 11/18/2022] Open
Abstract
Two key prerequisites for glucose-stimulated insulin secretion (GSIS) in β cells are the proximity of insulin granules to the plasma membrane and their anchoring or docking to the plasma membrane (PM). Although recent evidence has indicated that both of these factors are altered in the context of diabetes, it is unclear what regulates localization of insulin granules and their interactions with the PM within single cells. Here, we demonstrate that microtubule (MT)-motor-mediated transport dynamics have a critical role in regulating both factors. Super-resolution imaging shows that whereas the MT cytoskeleton resembles a random meshwork in the cells' interior, MTs near the cell surface are preferentially aligned with the PM. Computational modeling suggests two consequences of this alignment. First, this structured MT network preferentially withdraws granules from the PM. Second, the binding and transport of insulin granules by MT motors prevents their stable anchoring to the PM. These findings suggest the MT cytoskeleton may negatively regulate GSIS by both limiting the amount of insulin proximal to the PM and preventing or breaking interactions between the PM and the remaining nearby insulin granules. These results predict that altering MT network structure in β cells can be used to tune GSIS. Thus, our study points to the potential of an alternative therapeutic strategy for diabetes by targeting specific MT regulators.
Collapse
Affiliation(s)
| | | | - Dmitry Yampolsky
- Vanderbilt University, Nashville, Tennessee; University of Massachusetts Boston, Boston, Massachusetts
| | | | | | | |
Collapse
|
54
|
Seetharaman S, Etienne-Manneville S. Microtubules at focal adhesions – a double-edged sword. J Cell Sci 2019; 132:132/19/jcs232843. [DOI: 10.1242/jcs.232843] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ABSTRACT
Cell adhesion to the extracellular matrix is essential for cellular processes, such as migration and invasion. In response to cues from the microenvironment, integrin-mediated adhesions alter cellular behaviour through cytoskeletal rearrangements. The tight association of the actin cytoskeleton with adhesive structures has been extensively studied, whereas the microtubule network in this context has gathered far less attention. In recent years, however, microtubules have emerged as key regulators of cell adhesion and migration through their participation in adhesion turnover and cellular signalling. In this Review, we focus on the interactions between microtubules and integrin-mediated adhesions, in particular, focal adhesions and podosomes. Starting with the association of microtubules with these adhesive structures, we describe the classical role of microtubules in vesicular trafficking, which is involved in the turnover of cell adhesions, before discussing how microtubules can also influence the actin–focal adhesion interplay through RhoGTPase signalling, thereby orchestrating a very crucial crosstalk between the cytoskeletal networks and adhesions.
Collapse
Affiliation(s)
- Shailaja Seetharaman
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, 75015 Paris, France
- Université Paris Descartes, Center for Research and Interdisciplinarity, Sorbonne Paris Cité, 12 Rue de l'École de Médecine, 75006 Paris, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, 75015 Paris, France
| |
Collapse
|
55
|
Puder S, Fischer T, Mierke CT. The transmembrane protein fibrocystin/polyductin regulates cell mechanics and cell motility. Phys Biol 2019; 16:066006. [PMID: 31398719 DOI: 10.1088/1478-3975/ab39fa] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polycystic kidney disease is a disorder that leads to fluid filled cysts that replace normal renal tubes. During the process of cellular development and in the progression of the diseases, fibrocystin can lead to impaired organ formation and even cause organ defects. Besides cellular polarity, mechanical properties play major roles in providing the optimal apical-basal or anterior-posterior symmetry within epithelial cells. A breakdown of the cell symmetry that is usually associated with mechanical property changes and it is known to be essential in many biological processes such as cell migration, polarity and pattern formation especially during development and diseases such as the autosomal recessive cystic kidney disease. Since the breakdown of the cell symmetry can be evoked by several proteins including fibrocystin, we hypothesized that cell mechanics are altered by fibrocystin. However, the effect of fibrocystin on cell migration and cellular mechanical properties is still unclear. In order to explore the function of fibrocystin on cell migration and mechanics, we analyzed fibrocystin knockdown epithelial cells in comparison to fibrocystin control cells. We found that invasiveness of fibrocystin knockdown cells into dense 3D matrices was increased and more efficient compared to control cells. Using optical cell stretching and atomic force microscopy, fibrocystin knockdown cells were more deformable and exhibited weaker cell-matrix as well as cell-cell adhesion forces, respectively. In summary, these findings show that fibrocystin knockdown cells displayed increased 3D matrix invasion through providing increased cellular deformability, decreased cell-matrix and reduced cell-cell adhesion forces.
Collapse
|
56
|
Chuang HC, Chang CC, Teng CF, Hsueh CH, Chiu LL, Hsu PM, Lee MC, Hsu CP, Chen YR, Liu YC, Lyu PC, Tan TH. MAP4K3/GLK Promotes Lung Cancer Metastasis by Phosphorylating and Activating IQGAP1. Cancer Res 2019; 79:4978-4993. [DOI: 10.1158/0008-5472.can-19-1402] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/04/2019] [Accepted: 08/02/2019] [Indexed: 11/16/2022]
|
57
|
Sullivan DP, Dalal PJ, Jaulin F, Sacks DB, Kreitzer G, Muller WA. Endothelial IQGAP1 regulates leukocyte transmigration by directing the LBRC to the site of diapedesis. J Exp Med 2019; 216:2582-2601. [PMID: 31395618 PMCID: PMC6829592 DOI: 10.1084/jem.20190008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/10/2019] [Accepted: 07/03/2019] [Indexed: 01/09/2023] Open
Abstract
The function of endothelial cell IQGAP1 during diapedesis requires its actin-binding domain and IQ motifs to recruit the lateral border recycling compartment. Genetic ablation of endothelial cell IQGAP1 expression in vivo causes significant disruption of diapedesis in two models of inflammation. Transendothelial migration (TEM) of leukocytes across the endothelium is critical for inflammation. In the endothelium, TEM requires the coordination of membrane movements and cytoskeletal interactions, including, prominently, recruitment of the lateral border recycling compartment (LBRC). The scaffold protein IQGAP1 was recently identified in a screen for LBRC-interacting proteins. Knockdown of endothelial IQGAP1 disrupted the directed movement of the LBRC and substantially reduced leukocyte TEM. Expression of truncated IQGAP1 constructs demonstrated that the calponin homology domain is required for IQGAP1 localization to endothelial borders and that the IQ domain, on the same IQGAP1 polypeptide, is required for its function in TEM. This is the first reported function of IQGAP1 requiring two domains to be present on the same polypeptide. Additionally, we show for the first time that IQGAP1 in the endothelium is required for efficient TEM in vivo. These findings reveal a novel function for IQGAP1 and demonstrate that IQGAP1 in endothelial cells facilitates TEM by directing the LBRC to the site of TEM.
Collapse
Affiliation(s)
- David P Sullivan
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Prarthana J Dalal
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | - David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD
| | - Geri Kreitzer
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, The City College of New York, New York, NY
| | - William A Muller
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
58
|
Logan CM, Menko AS. Microtubules: Evolving roles and critical cellular interactions. Exp Biol Med (Maywood) 2019; 244:1240-1254. [PMID: 31387376 DOI: 10.1177/1535370219867296] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microtubules are cytoskeletal elements known as drivers of directed cell migration, vesicle and organelle trafficking, and mitosis. In this review, we discuss new research in the lens that has shed light into further roles for stable microtubules in the process of development and morphogenesis. In the lens, as well as other systems, distinct roles for characteristically dynamic microtubules and stabilized populations are coming to light. Understanding the mechanisms of microtubule stabilization and the associated microtubule post-translational modifications is an evolving field of study. Appropriate cellular homeostasis relies on not only one cytoskeletal element, but also rather an interaction between cytoskeletal proteins as well as other cellular regulators. Microtubules are key integrators with actin and intermediate filaments, as well as cell–cell junctional proteins and other cellular regulators including myosin and RhoGTPases to maintain this balance.Impact statementThe role of microtubules in cellular functioning is constantly expanding. In this review, we examine new and exciting fields of discovery for microtubule’s involvement in morphogenesis, highlight our evolving understanding of differential roles for stabilized versus dynamic subpopulations, and further understanding of microtubules as a cellular integrator.
Collapse
Affiliation(s)
- Caitlin M Logan
- Pathology Anatomy and Cell Biology Department, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - A Sue Menko
- Pathology Anatomy and Cell Biology Department, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
59
|
Hermo L, Oliveira RL, Smith CE, Au CE, Bergeron JJM. Dark side of the epididymis: tails of sperm maturation. Andrology 2019; 7:566-580. [PMID: 31102346 DOI: 10.1111/andr.12641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/25/2019] [Accepted: 03/30/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND The Hermes body (HB) previously called the cytoplasmic droplet is a focal distension of the flagellar cytoplasm of epididymal spermatozoa consisting mainly of isolated flattened Golgi cisternae. OBJECTIVE To define a functional role for the HB of epididymal spermatozoa. METHODS Isolated fractions of HBs of epididymal spermatozoa were prepared and by quantitative tandem mass spectrometry revealed 1511 proteins. RESULTS The glucose transporter GLUT-3 was the most abundant protein followed by hexokinase 1, which along with the presence of all glycolytic enzymes suggested a role for the HB in glycolysis. Several TMED/p24 Golgi trafficking proteins were abundant with TMED7/p27 and TMED2/p24 defining the identity of the flattened cisternae within the HB as Golgi, along with the known Golgi proteins, GBF1, GOLPH3, Man2α1, and ManIIX. The Golgi trafficking protein TMED7/p27 via small 50-nm vesicles emanating from the Golgi cisternae was proposed to transport GLUT-3 to the plasma membrane for ATP production related to sperm motility. The internal membranes revealed abundant proteins not only of Golgi cisternae, but also of endoplasmic reticulum and endosomes. COPI and COPII coats, clathrin, SNAREs, annexins, atlastins, and GTPases were identified for vesicular trafficking and membrane fusion, in addition to ribosomes, stress proteins for protection, proteasome proteins involved in degradation, and cytoskeletal elements for migration of the HB along the flagellum. The biogenesis of the HB occurring at step 19 spermatids of the testis just prior to their release was uncovered as a key step in germ cell differentiation, where several proteins were expressed, some for the first time. CONCLUSION As epididymal spermatozoa undergo remodeling of their protein makeup through selective degradation of sperm proteins during epididymal transit, then remodeling as a consequence of new protein synthesis is not excluded by our observations.
Collapse
Affiliation(s)
- L Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - R L Oliveira
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - C E Smith
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - C E Au
- Department of Medicine, McGill University Hospital Research Institute, Montreal, QC, Canada
| | - J J M Bergeron
- Department of Medicine, McGill University Hospital Research Institute, Montreal, QC, Canada
| |
Collapse
|
60
|
Hu W, Wang Z, Zhang S, Lu X, Wu J, Yu K, Ji A, Lu W, Wang Z, Wu J, Jiang C. IQGAP1 promotes pancreatic cancer progression and epithelial-mesenchymal transition (EMT) through Wnt/β-catenin signaling. Sci Rep 2019; 9:7539. [PMID: 31101875 PMCID: PMC6525164 DOI: 10.1038/s41598-019-44048-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 05/07/2019] [Indexed: 12/24/2022] Open
Abstract
IQ motif-containing GTPase-activating protein 1 (IQGAP1) is a scaffold protein that participates in several cellular functions, including cytoskeletal regulation, cell adhesion, gene transcription and cell polarization. IQGAP1 has been implicated in the tumorigenesis and progression of several human cancers. However, the role of IQGAP1 in pancreatic ductal adenocarcinoma (PDAC) is still unknown. We found that IQGAP1 expression was an independent prognostic factor for PDAC. IQGAP1 upregulation significantly promoted cell proliferation, migration, invasion and epithelial-mesenchymal transition (EMT), whereas IQGAP1 downregulation impaired its oncogenic functions. Overexpression of IQGAP1 increased the protein level of Dishevelled2 (DVL2) and enhanced canonical Wnt signaling as evidenced by increased DVL2 level, β-catenin transcriptional activity, β-catenin nuclear translocation and expression of the direct target genes of β-catenin (cyclin D1 and c-myc). In contrast, knockdown of IQGAP1 decreased the level of DVL2 and attenuated Wnt/β-catenin signaling. In vivo results revealed that IQGAP1 promoted tumor growth and metastasis. Co-immunoprecipitation studies demonstrated that IQGAP1 interacted with both DVL2 and β-catenin. Moreover, knockdown of DVL2 reversed IQGAP1-induced EMT. Our findings thus confirmed that IQGAP1 could be used as a potential target for PDAC treatment.
Collapse
Affiliation(s)
- Wei Hu
- Department of Hepatobiliary Surgery, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222001, Jiangsu, China.,Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Zhongxia Wang
- Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Shan Zhang
- Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Xian Lu
- Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Junyi Wu
- Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Kuanyong Yu
- Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Anlai Ji
- Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Wei Lu
- Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Zhong Wang
- Department of Hepatobiliary Surgery, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222001, Jiangsu, China.
| | - Junhua Wu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.
| | - Chunping Jiang
- Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
61
|
Cho C, Wang Y, Smallwood PM, Williams J, Nathans J. Dlg1 activates beta-catenin signaling to regulate retinal angiogenesis and the blood-retina and blood-brain barriers. eLife 2019; 8:45542. [PMID: 31066677 PMCID: PMC6506210 DOI: 10.7554/elife.45542] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/14/2019] [Indexed: 12/18/2022] Open
Abstract
Beta-catenin (i.e., canonical Wnt) signaling controls CNS angiogenesis and the blood-brain and blood-retina barriers. To explore the role of the Discs large/membrane-associated guanylate kinase (Dlg/MAGUK) family of scaffolding proteins in beta-catenin signaling, we studied vascular endothelial cell (EC)-specific knockout of Dlg1/SAP97. EC-specific loss of Dlg1 produces a retinal vascular phenotype that closely matches the phenotype associated with reduced beta-catenin signaling, synergizes with genetically-directed reductions in beta-catenin signaling components, and can be rescued by stabilizing beta-catenin in ECs. In reporter cells with CRISPR/Cas9-mediated inactivation of Dlg1, transfection of Dlg1 enhances beta-catenin signaling ~4 fold. Surprisingly, Frizzled4, which contains a C-terminal PDZ-binding motif that can bind to Dlg1 PDZ domains, appears to function independently of Dlg1 in vivo. These data expand the repertoire of Dlg/MAGUK family functions to include a role in beta-catenin signaling, and they suggest that proteins other than Frizzled receptors interact with Dlg1 to enhance beta-catenin signaling.
Collapse
Affiliation(s)
- Chris Cho
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Yanshu Wang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Philip M Smallwood
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - John Williams
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
62
|
Sarkar A, Rieger H, Paul R. Search and Capture Efficiency of Dynamic Microtubules for Centrosome Relocation during IS Formation. Biophys J 2019; 116:2079-2091. [PMID: 31084903 DOI: 10.1016/j.bpj.2019.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/08/2019] [Indexed: 11/29/2022] Open
Abstract
Upon contact with antigen-presenting cells, cytotoxic T lymphocytes (T cells) establish a highly organized contact zone denoted as the immunological synapse (IS). The formation of the IS implies relocation of the microtubule organizing center (MTOC) toward the contact zone, which necessitates a proper connection between the MTOC and the IS via dynamic microtubules (MTs). The efficiency of the MTs finding the IS within the relevant timescale is, however, still illusive. We investigate how MTs search the three-dimensional constrained cellular volume for the IS and bind upon encounter to dynein anchored at the IS cortex. The search efficiency is estimated by calculating the time required for the MTs to reach the dynein-enriched region of the IS. In this study, we develop simple mathematical and numerical models incorporating relevant components of a cell and propose an optimal search strategy. Using the mathematical model, we have quantified the average search time for a wide range of model parameters and proposed an optimized set of values leading to the minimal capture time. Our results show that search times are minimal when the IS formed at the nearest or at the farthest sites on the cell surface with respect to the perinuclear MTOC. The search time increases monotonically away from these two specific sites and is maximal at an intermediate position near the equator of the cell. We observed that search time strongly depends on the number of searching MTs and distance of the MTOC from the nuclear surface.
Collapse
Affiliation(s)
- Apurba Sarkar
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal, India.
| | - Heiko Rieger
- Department of Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany.
| | - Raja Paul
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal, India.
| |
Collapse
|
63
|
Kim M, Lee Y, Yoo Y, Choi J, Kim H, Kang C, Yu J, Moon S, Kim A, Kim C. Exogenous CLASP2 protein treatment enhances wound healing
in vitro
and
in vivo. Wound Repair Regen 2019; 27:345-359. [DOI: 10.1111/wrr.12713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 11/16/2018] [Accepted: 11/27/2018] [Indexed: 12/31/2022]
Affiliation(s)
- MiJung Kim
- Division of Life SciencesCollege of Life Sciences and Biotechnology, Korea University 145 Anam‐dong, Sungbuk‐ku, Seoul 136701 South Korea
- Department of BiotechnologyCollege of Life Sciences and Biotechnology, Korea University 145 Anam‐dong, Sungbuk‐ku, Seoul 136701 South Korea
| | - You‐Sun Lee
- Department of BiotechnologyCollege of Life Sciences and Biotechnology, Korea University 145 Anam‐dong, Sungbuk‐ku, Seoul 136701 South Korea
| | - Yun‐Mi Yoo
- Department of BiotechnologyCollege of Life Sciences and Biotechnology, Korea University 145 Anam‐dong, Sungbuk‐ku, Seoul 136701 South Korea
| | - Jong‐Jin Choi
- Department of Stem Cell BiologySchool of Medicine, Konkuk University 120 Neungdong‐ro, Gwangjin‐gu, Seoul 143‐701 South Korea
| | - Ha‐Na Kim
- Department of Stem Cell BiologySchool of Medicine, Konkuk University 120 Neungdong‐ro, Gwangjin‐gu, Seoul 143‐701 South Korea
| | - Changhee Kang
- Department of Stem Cell BiologySchool of Medicine, Konkuk University 120 Neungdong‐ro, Gwangjin‐gu, Seoul 143‐701 South Korea
| | - Ji‐Min Yu
- R&D DivisionCHA Biotech Co. Ltd. 521 CHABIO Complex, 335 Pangyo‐ro, Bundang‐gu Gyeonggi‐Do South Korea
| | - Sung‐Hwan Moon
- Department of MedicineSchool of Medicine, Konkuk University 120 Neungdong‐ro, Gwangjin‐gu, Seoul 143‐701 South Korea
| | - Aeri Kim
- College of Pharmacy, CHA University 521 CHABIO Complex, 335 Pangyo‐ro, Bundang‐gu Gyeonggi‐Do South Korea
| | - Chan‐Wha Kim
- Division of Life SciencesCollege of Life Sciences and Biotechnology, Korea University 145 Anam‐dong, Sungbuk‐ku, Seoul 136701 South Korea
- Department of BiotechnologyCollege of Life Sciences and Biotechnology, Korea University 145 Anam‐dong, Sungbuk‐ku, Seoul 136701 South Korea
| |
Collapse
|
64
|
Functions of the APC tumor suppressor protein dependent and independent of canonical WNT signaling: implications for therapeutic targeting. Cancer Metastasis Rev 2019; 37:159-172. [PMID: 29318445 DOI: 10.1007/s10555-017-9725-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The acquisition of biallelic mutations in the APC gene is a rate-limiting step in the development of most colorectal cancers and occurs in the earliest lesions. APC encodes a 312-kDa protein that localizes to multiple subcellular compartments and performs diverse functions. APC participates in a cytoplasmic complex that promotes the destruction of the transcriptional licensing factor β-catenin; APC mutations that abolish this function trigger constitutive activation of the canonical WNT signaling pathway, a characteristic found in almost all colorectal cancers. By negatively regulating canonical WNT signaling, APC counteracts proliferation, promotes differentiation, facilitates apoptosis, and suppresses invasion and tumor progression. APC further antagonizes canonical WNT signaling by interacting with and counteracting β-catenin in the nucleus. APC also suppresses tumor initiation and progression in the colorectal epithelium through functions that are independent of canonical WNT signaling. APC regulates the mitotic spindle to facilitate proper chromosome segregation, localizes to the cell periphery and cell protrusions to establish cell polarity and appropriate directional migration, and inhibits DNA replication by interacting directly with DNA. Mutations in APC are often frameshifts, insertions, or deletions that introduce premature stop codons and lead to the production of truncated APC proteins that lack its normal functions and possess tumorigenic properties. Therapeutic approaches in development for the treatment of APC-deficient tumors are focused on the inhibition of canonical WNT signaling, especially through targets downstream of APC in the pathway, or on the restoration of wild-type APC expression.
Collapse
|
65
|
Vendel KJA, Tschirpke S, Shamsi F, Dogterom M, Laan L. Minimal in vitro systems shed light on cell polarity. J Cell Sci 2019; 132:132/4/jcs217554. [PMID: 30700498 DOI: 10.1242/jcs.217554] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cell polarity - the morphological and functional differentiation of cellular compartments in a directional manner - is required for processes such as orientation of cell division, directed cellular growth and motility. How the interplay of components within the complexity of a cell leads to cell polarity is still heavily debated. In this Review, we focus on one specific aspect of cell polarity: the non-uniform accumulation of proteins on the cell membrane. In cells, this is achieved through reaction-diffusion and/or cytoskeleton-based mechanisms. In reaction-diffusion systems, components are transformed into each other by chemical reactions and are moving through space by diffusion. In cytoskeleton-based processes, cellular components (i.e. proteins) are actively transported by microtubules (MTs) and actin filaments to specific locations in the cell. We examine how minimal systems - in vitro reconstitutions of a particular cellular function with a minimal number of components - are designed, how they contribute to our understanding of cell polarity (i.e. protein accumulation), and how they complement in vivo investigations. We start by discussing the Min protein system from Escherichia coli, which represents a reaction-diffusion system with a well-established minimal system. This is followed by a discussion of MT-based directed transport for cell polarity markers as an example of a cytoskeleton-based mechanism. To conclude, we discuss, as an example, the interplay of reaction-diffusion and cytoskeleton-based mechanisms during polarity establishment in budding yeast.
Collapse
Affiliation(s)
- Kim J A Vendel
- Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands
| | - Sophie Tschirpke
- Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands
| | - Fayezeh Shamsi
- Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands
| | - Marileen Dogterom
- Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands
| | - Liedewij Laan
- Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands
| |
Collapse
|
66
|
Wang P, Gong X, Guan P, Ji D, Du L, Xu D, Liu Y. Site-specific expression of IQGAP1 in human nephrons. J Mol Histol 2019; 50:119-127. [PMID: 30659402 DOI: 10.1007/s10735-019-09811-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/06/2019] [Indexed: 11/30/2022]
Abstract
IQGAP1 is a multifunctional, 190-kDa scaffolding protein that plays an important role in the regulation of cell adhesion, migration, proliferation, differentiation, polarization and cytoskeletal remodeling. IQGAP1 is ubiquitously expressed in human organs and is highly expressed in the kidney. Currently, the site-specific expression of IQGAP1 in the human nephrons is unclear. We performed Western blotting analysis, immunohistochemistry and double-immunolabeling confocal microscopic analysis of IQGAP1 with specific biomarkers of each nephron segment to study the expression and distribution of IQGAP1 in human nephrons. We found that IQGAP1 was strongly expressed in human podocytes and glomerular endothelial cells, but weakly expressed in glomerular mesangial cells. In human renal tubules, IQGAP1 was strongly expressed in the collecting duct, moderately expressed in the proximal tubule, medullary loop, distal convoluted tubule and connecting tubule. IQGAP1 staining was much stronger in the apical membrane in the proximal tubule, thick descending limb and thick ascending limb of medullary loop and collecting duct. However, the expression of IQGAP1 was mainly in the basolateral membrane of the connecting tubule, and diffusely in the thin limb of medullary loop and distal convoluted tubule. The interaction between IQGAP1 and F-actin suggested that cytoskeleton regulation may be the underlying mechanism mediating the effect of IQGAP1 in human nephrons. To the best of our knowledge, this is the first report of specific expression and differential subcellular location of IQGAP1 in human nephrons. The site-specific expression pattern of IQGAP1 suggests that IQGAP1 may play diverse roles in various human nephron segments.
Collapse
Affiliation(s)
- Ping Wang
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, No.16766, Jingshi Road, Jinan, 250014, China
| | - Xiaojie Gong
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, No.16766, Jingshi Road, Jinan, 250014, China
| | - Peizhong Guan
- Department of Nephrology, YEDA Hospital, Yantai, 264000, China
| | - Dong Ji
- Department of Dialysis, Huimin County People's Hospital, Binzhou, 251700, China
| | - Linna Du
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, No.16766, Jingshi Road, Jinan, 250014, China
| | - Dongmei Xu
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, No.16766, Jingshi Road, Jinan, 250014, China
| | - Yipeng Liu
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, No.16766, Jingshi Road, Jinan, 250014, China.
| |
Collapse
|
67
|
Lahav-Ariel L, Caspi M, Nadar-Ponniah PT, Zelikson N, Hofmann I, Hanson KK, Franke WW, Sklan EH, Avraham KB, Rosin-Arbesfeld R. Striatin is a novel modulator of cell adhesion. FASEB J 2018; 33:4729-4740. [PMID: 30592649 DOI: 10.1096/fj.201801882r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The adherens junctions (AJs) and tight junctions (TJs) provide critical adhesive contacts between neighboring epithelial cells and are crucial for epithelial adhesion, integrity, and barrier functions in a wide variety of tissues and organisms. The striatin protein family, which are part of the striatin interaction phosphatases and kinases complex, are multidomain scaffolding proteins that play important biologic roles. We have previously shown that striatin colocalizes with the tumor suppressor protein adenomatous polyposis coli in the TJs of epithelial cells. Here we show that striatin affects junction integrity and cell migration, probably through a mechanism that involves the adhesion molecule E-cadherin. Cells engaged in cell-cell adhesion expressed a high MW-modified form of striatin that forms stable associations with detergent-insoluble, membrane-bound cellular fractions. In addition, striatin has recently been suggested to be a target of the poly (ADP-ribose) polymerases Tankyrase 1, and we have found that striatin interacts with Tankyrase 1 and is subsequently poly-ADP-ribosylated. Taken together, our results suggest that striatin is a novel cell-cell junctional protein that functions to maintain correct cell adhesion and may have a role in establishing the relationship between AJs and TJs that is fundamental for epithelial cell-cell adhesion.-Lahav-Ariel, L., Caspi, M., Nadar-Ponniah, P. T., Zelikson, N., Hofmann, I., Hanson, K. K., Franke, W. W., Sklan, E. H., Avraham, K. B., Rosin-Arbesfeld, R. Striatin is a novel modulator of cell adhesion.
Collapse
Affiliation(s)
- Lital Lahav-Ariel
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal Caspi
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Prathamesh T Nadar-Ponniah
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Natalie Zelikson
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ilse Hofmann
- Division of Vascular Oncology and Metastasis, Center for Molecular Biology-German Cancer Research Center (DKFZ-ZMBH) Alliance, German Cancer Research Center, Heidelberg, Germany.,Department of Vascular Biology and Tumor Angiogenesis (CBTM), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Kirsten K Hanson
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas, USA; and
| | - Werner W Franke
- Helmholtz Group for Cell Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ella H Sklan
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
68
|
Han W, Wang Y, Fan J, Wang C. Is APC hypermethylation a diagnostic biomarker for bladder cancer? A meta-analysis. Onco Targets Ther 2018; 11:8359-8369. [PMID: 30568459 PMCID: PMC6267632 DOI: 10.2147/ott.s177601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective Numerous studies have been performed to investigate the association between APC promoter hypermethylation and bladder cancer risk. Nevertheless, the conclusion was uncertain due to small sample size, different ethnicities, and tumor subtype. Hence, to accurately assess the effect of APC promoter hypermethylation on the risk of bladder cancer, we performed the meta-analysis. Materials and methods We retrieved the relevant literatures from electronic databases such as PubMed, Web of Science, Wanfang, Vapp, and CNKI (Chinese National Knowledge Infrastructure). 95% CI and OR were calculated to evaluate the associations of APC promoter hypermethylation with risk and clinical features of bladder cancer. Heterogeneity among studies was assessed with Q test and I 2 statistic. In addition, the diagnostic sensitivity, specificity, and area under the curve (AUC) value of APC hypermethylation for bladder cancer were calculated. Results In total, 14 articles with 531 controls and 1,293 cases were included to assess the associations of APC promoter hypermethylation with the risk and clinical characteristics of bladder cancer. The significant association between APC promoter hypermethylation and bladder cancer risk was detected (OR =17.01, CI =7.40-39.07). Furthermore, the results revealed that APC promoter hypermethylation was significantly correlated with the grade of bladder tumor (pTNM stage: OR =1.84, CI =0.87-3.93; grade: OR =4.11, CI =1.62-10.43). According to the results of diagnostic evaluation, the diagnostic sensitivity, specificity, and AUC value of APC hypermethylation for bladder cancer risk were 0.52 (95% CI =0.41-0.63), 0.98 (95% CI =0.90-1.00), and 0.80 (95% CI =0.76-0.83), respectively. Conclusion This meta-analysis revealed that APC promoter hypermethylation was a risk factor for bladder cancer risk. In addition, APC promoter hypermethylation was significantly associated with the grade of bladder cancer. APC hypermethylation might be a useful biomarker for the clinical diagnosis of bladder cancer.
Collapse
Affiliation(s)
- Wei Han
- Department of Pharmacy, Central Hospital of Zibo Mining Group Limited Liability Company, Zibo, China
| | - Yutao Wang
- Shandong Institute of Prevention and Control for Endemic Disease, Thyroid Disease Prevention and Control Center, Jinan, China,
| | - Jingli Fan
- Shandong Institute of Prevention and Control for Endemic Disease, Thyroid Disease Prevention and Control Center, Jinan, China,
| | - Chunlei Wang
- Shandong Institute of Prevention and Control for Endemic Disease, Thyroid Disease Prevention and Control Center, Jinan, China,
| |
Collapse
|
69
|
Abstract
The cytoskeleton is crucially important for the assembly of cell-cell junctions and the homeostatic regulation of their functions. Junctional proteins act, in turn, as anchors for cytoskeletal filaments, and as regulators of cytoskeletal dynamics and signalling proteins. The cross-talk between junctions and the cytoskeleton is critical for the morphogenesis and physiology of epithelial and other tissues, but is not completely understood. Microtubules are implicated in the delivery of junctional proteins to cell-cell contact sites, in the differentiation and spatial organization of the cytoplasm, and in the stabilization of the barrier and adhesive functions of junctions. Here we focus on the relationships between microtubules and junctions of vertebrate epithelial cells. We highlight recent discoveries on the molecular underpinnings of microtubule-junction interactions, and report new data about the interaction of cingulin and paracingulin with microtubules. We also propose a possible new role of junctions as “molecular sinks” for microtubule-associated signalling proteins.
Collapse
Affiliation(s)
- Ekaterina Vasileva
- a Department of Cell Biology, Faculty of Sciences and Institute for Genetics and Genomics in Geneva (iGE3) , University of Geneva , Geneva , Switzerland
| | - Sandra Citi
- a Department of Cell Biology, Faculty of Sciences and Institute for Genetics and Genomics in Geneva (iGE3) , University of Geneva , Geneva , Switzerland
| |
Collapse
|
70
|
Molinar-Inglis O, Oliver SL, Rudich P, Kunttas E, McCartney BM. APC2 associates with the actin cortex through a multipart mechanism to regulate cortical actin organization and dynamics in the Drosophila ovary. Cytoskeleton (Hoboken) 2018; 75:323-335. [PMID: 30019417 DOI: 10.1002/cm.21471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/24/2018] [Accepted: 06/19/2018] [Indexed: 01/20/2023]
Abstract
The actin cortex that lines the plasma membrane of most eukaryotic cells resists external mechanical forces and plays critical roles in a variety of cellular processes including morphogenesis, cytokinesis, and cell migration. Despite its ubiquity and significance, we understand relatively little about the composition, dynamics, and structure of the actin cortex. Adenomatous polyposis coli (APC) proteins regulate the actin and microtubule cytoskeletons through a variety of mechanisms, and in some contexts, APC proteins are cortically enriched. Here we show that APC2 regulates cortical actin dynamics in the follicular epithelium and the nurse cells of the Drosophila ovary and in addition affects the distribution of cortical actin at the apical side of the follicular epithelium. To understand how APC2 influences these properties of the actin cortex, we investigated the mechanisms controlling the cortical localization of APC2 in S2 cultured cells. We previously showed that the N-terminal half of APC2 containing the Armadillo repeats and the C-terminal 30 amino acids (C30) are together necessary and sufficient for APC2's cortical localization. Our work presented here supports a model that cortical localization of APC2 is governed in part by self-association through the N-terminal APC Self-Association Domain (ASAD) and a highly conserved coiled-coil within the C30 domain.
Collapse
Affiliation(s)
- Olivia Molinar-Inglis
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Stacie L Oliver
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Paige Rudich
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Ezgi Kunttas
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Brooke M McCartney
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
71
|
Truncated Adenomatous Polyposis Coli Mutation Induces Asef-Activated Golgi Fragmentation. Mol Cell Biol 2018; 38:MCB.00135-18. [PMID: 29866653 DOI: 10.1128/mcb.00135-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/31/2018] [Indexed: 01/08/2023] Open
Abstract
Adenomatous polyposis coli (APC) is a key molecule to maintain cellular homeostasis in colonic epithelium by regulating cell-cell adhesion, cell polarity, and cell migration through activating the APC-stimulated guanine nucleotide-exchange factor (Asef). The APC-activated Asef stimulates the small GTPase, which leads to decreased cell-cell adherence and cell polarity, and enhanced cell migration. In colorectal cancers, while truncated APC constitutively activates Asef and promotes cancer initiation and progression, regulation of Asef by full-length APC is still unclear. Here, we report the autoinhibition mechanism of full-length APC. We found that the armadillo repeats in full-length APC interact with the APC residues 1362 to 1540 (APC-2,3 repeats), and this interaction competes off and inhibits Asef. Deletion of APC-2,3 repeats permits Asef interactions leading to downstream signaling events, including the induction of Golgi fragmentation through the activation of the Asef-ROCK-MLC2. Truncated APC also disrupts protein trafficking and cholesterol homeostasis by inhibition of SREBP2 activity in a Golgi fragmentation-dependent manner. Our study thus uncovers the autoinhibition mechanism of full-length APC and a novel gain of function of truncated APC in regulating Golgi structure, as well as cholesterol homeostasis, which provides a potential target for pharmaceutical intervention against colon cancers.
Collapse
|
72
|
Wang X, Wang X, Liu Y, Dong Y, Wang Y, Kassab MA, Fan W, Yu X, Wu C. LGR5 regulates gastric adenocarcinoma cell proliferation and invasion via activating Wnt signaling pathway. Oncogenesis 2018; 7:57. [PMID: 30089773 PMCID: PMC6082861 DOI: 10.1038/s41389-018-0071-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/20/2018] [Accepted: 06/29/2018] [Indexed: 12/20/2022] Open
Abstract
LGR5 plays a critical role in tissue development and the maintenance of adult stem cells in gastrointestinal tract. However, the oncogenic role of LGR5 in the development of gastric adenocarcinoma remains elusive. Here, we show that LGR5 promotes gastric adenocarcinoma cell proliferation and metastasis. We find that knock down of LGR5 or suppression of Wnt signaling pathway by inhibitor C59 arrests gastric adenocarcinoma cell proliferation and invasion. Moreover, treatment of Wnt3a, the activator of Wnt signaling pathway, partially recovers the proliferation defect observed in LGR5 knockdown gastric adenocarcinoma cells. Moreover, LGR5 facilitates β-catenin nuclear accumulation, a surrogate marker of the activation of Wnt signaling pathway. In addition, C59 treatment suppresses transcription of Axin2 and TCF1, both of which are the target genes of β-catenin in gastric adenocarcinoma cells. Gastric adenocarcinoma cells with overexpressed LGR5 form a large quantity of visible actin filaments and pseudopods, suggesting that LGR5 significantly enhances the ability of cell movement, which might capacitate gastric adenocarcinoma cells with enhanced LGR5 expression to gain invasive and migratory properties. Taken together, our results show that LGR5 contributes to cell proliferation and invasion through the activation of Wnt/β-catenin-signaling pathway in gastric adenocarcinoma cells.
Collapse
Affiliation(s)
- Xiangfei Wang
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China
| | - Xiumin Wang
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China
| | - Yang Liu
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China
| | - Yating Dong
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China
| | - Yanan Wang
- Affiliated hospital of Hebei University, Baoding, 071002, Hebei, China
| | - Muzaffer Ahmad Kassab
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd, Duarte, CA, 91010, USA
| | - Wufang Fan
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China.
| | - Xiaochun Yu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd, Duarte, CA, 91010, USA.
| | - Chen Wu
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China.
| |
Collapse
|
73
|
Sommer CA, Capilla A, Molina-Estevez FJ, Gianotti-Sommer A, Skvir N, Caballero I, Chowdhury S, Mostoslavsky G. Modeling APC mutagenesis and familial adenomatous polyposis using human iPS cells. PLoS One 2018; 13:e0200657. [PMID: 30024920 PMCID: PMC6053155 DOI: 10.1371/journal.pone.0200657] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/30/2018] [Indexed: 01/31/2023] Open
Abstract
Mutations in the gene Adenomatous Polyposis Coli or APC appear in most sporadic cases of colorectal cancer and it is the most frequent mutation causing hereditary Familial Adenomatous Polyposis. The detailed molecular mechanism by which APC mutations predispose to the development of colorectal cancer is not completely understood. This is in part due to the lack of accessibility to appropriate models that recapitulate the early events associated with APC mediated intestinal transformation. We have established a novel platform utilizing human induced Pluripotent Stem cells or iPSC from normal or FAP-specific APC mutant individuals and evaluated the effect of the mutation in the cells before and after differentiation into intestinal organoids. In order to minimize genetic background effects, we also established an isogenic platform using TALEN-mediated gene editing. Comparison of normal and APC mutant iPSC revealed a significant defect in cell identity and polarity due to the presence of APC in heterozygosity as well as chromosomal aberrations including abnormal anaphases and centrosome numbers. Importantly, upon specification into intestinal progeny, APC heterozygosity was responsible for a major change in the transcriptional identity of the cells with dysregulation of key signaling pathways, including metabolic reprogramming, abnormal lipid metabolism and intestinal-specific cadherin expression. In conclusion, we have developed a novel iPSC/intestinal model of APC mutagenesis and provide strong evidence that APC in heterozygosity imparts a clear phenotypic and molecular defect, affecting basic cellular functions and integrity, providing novel insights in the earlier events of APC-mediated tumorigenesis.
Collapse
Affiliation(s)
- Cesar A. Sommer
- Section of Gastroenterology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Center for Regenerative Medicine (CReM), Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Amalia Capilla
- Section of Gastroenterology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Center for Regenerative Medicine (CReM), Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Francisco J. Molina-Estevez
- Section of Gastroenterology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Center for Regenerative Medicine (CReM), Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Andreia Gianotti-Sommer
- Section of Gastroenterology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Center for Regenerative Medicine (CReM), Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Nicholas Skvir
- Center for Regenerative Medicine (CReM), Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Ignacio Caballero
- Center for Regenerative Medicine (CReM), Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Sanjib Chowdhury
- Section of Gastroenterology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Gustavo Mostoslavsky
- Section of Gastroenterology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Center for Regenerative Medicine (CReM), Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
74
|
Bhattacharya R, Panda CK, Nandi S, Mukhopadhyay A. An insight into metastasis: Random or evolving paradigms? Pathol Res Pract 2018; 214:1064-1073. [PMID: 30078401 DOI: 10.1016/j.prp.2018.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/05/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022]
Abstract
Mechanical or fostered molecular events define metastatic cascade. Three distinct sets of molecular events characterize metastasis, viz invasion of extracellular matrix; angiogenesis, vascular dissemination and anoikis resistance; tumor homing and relocation of tumor cells to selective organ. Invasion of extracellular matrix requires epithelial to mesenchymal transition through disrupted lamellopodia formation and contraction of actin cytoskeleton; aberration of Focal adhesion complex formation involving integrins and the extracellular matrix; degradation of extracellular matrix by matrix metalloproteases; faulty immune surveillance in tumor microenvironment and an upregulated proton efflux pump NHE1 in tumors. Vascular dissemination and anoikis resistance depend upon upregulation of integrins, phosphorylation of CDCP1, attenuated apoptotic pathways and upregulation of angiogenesis. Tumor homing depends on recruitment of mesenchymal stem cells, expression on chemokines and growth factors, upregulated stem cell renewal pathways. Despite of many potential challenges in curbing metastasis, future targeted therapies involving immunotherapy, stem cell engineered and oncolytic virus based therapy, pharmacological activation of circadian clock are held promising. To sum up, metastasis is a complex cascade of events and warrants detailed molecular understanding for development of therapeutic strategies.
Collapse
Affiliation(s)
- Rittwika Bhattacharya
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, 16A Park Lane, Kolkata, 700016, India.
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37 S.P Mukherjee Road, Kolkata, 700026, India.
| | - Sourav Nandi
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, 16A Park Lane, Kolkata, 700016, India.
| | - Ashis Mukhopadhyay
- Department of Haemato-Oncology, Netaji Subhas Chandra Bose Cancer Research Institute, 16A Park Lane, Kolkata, 700016, India.
| |
Collapse
|
75
|
Kikuchi K, Nakamura A, Arata M, Shi D, Nakagawa M, Tanaka T, Uemura T, Fujimori T, Kikuchi A, Uezu A, Sakamoto Y, Nakanishi H. Map7/7D1 and Dvl form a feedback loop that facilitates microtubule remodeling and Wnt5a signaling. EMBO Rep 2018; 19:embr.201745471. [PMID: 29880710 DOI: 10.15252/embr.201745471] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/28/2018] [Accepted: 05/08/2018] [Indexed: 11/09/2022] Open
Abstract
The Wnt signaling pathway can be grouped into two classes, the β-catenin-dependent and β-catenin-independent pathways. Wnt5a signaling through a β-catenin-independent pathway promotes microtubule (MT) remodeling during cell-substrate adhesion, cell migration, and planar cell polarity formation. Although Wnt5a signaling and MT remodeling are known to form an interdependent regulatory loop, the underlying mechanism remains unknown. Here we show that in HeLa cells, the paralogous MT-associated proteins Map7 and Map7D1 (Map7/7D1) form an interdependent regulatory loop with Disheveled, the critical signal transducer in Wnt signaling. Map7/7D1 bind to Disheveled, direct its cortical localization, and facilitate the cortical targeting of MT plus-ends in response to Wnt5a signaling. Wnt5a signaling also promotes Map7/7D1 movement toward MT plus-ends, and depletion of the Kinesin-1 member Kif5b abolishes the Map7/7D1 dynamics and Disheveled localization. Furthermore, Disheveled stabilizes Map7/7D1. Intriguingly, Map7/7D1 and its Drosophila ortholog, Ensconsin show planar-polarized distribution in both mouse and fly epithelia, and Ensconsin influences proper localization of Drosophila Disheveled in pupal wing cells. These results suggest that the role of Map7/7D1/Ensconsin in Disheveled localization is evolutionarily conserved.
Collapse
Affiliation(s)
- Koji Kikuchi
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kumamoto University, Chuo-ku Kumamoto, Japan
| | - Akira Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-ku Kumamoto, Japan.,Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku Kumamoto, Japan
| | - Masaki Arata
- Graduate School of Biostudies, Kyoto University, Sakyo-ku Kyoto, Japan
| | - Dongbo Shi
- Division of Embryology, National Institute for Basic Biology, Okazaki Aichi, Japan
| | - Mami Nakagawa
- Division of Embryology, National Institute for Basic Biology, Okazaki Aichi, Japan
| | - Tsubasa Tanaka
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-ku Kumamoto, Japan.,Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku Kumamoto, Japan
| | - Tadashi Uemura
- Graduate School of Biostudies, Kyoto University, Sakyo-ku Kyoto, Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, Okazaki Aichi, Japan
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita Osaka, Japan
| | - Akiyoshi Uezu
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kumamoto University, Chuo-ku Kumamoto, Japan
| | - Yasuhisa Sakamoto
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kumamoto University, Chuo-ku Kumamoto, Japan
| | - Hiroyuki Nakanishi
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kumamoto University, Chuo-ku Kumamoto, Japan
| |
Collapse
|
76
|
Lee HK, Lee EW, Seo J, Jeong M, Lee SH, Kim SY, Jho EH, Choi CH, Chung JY, Song J. Ubiquitylation and degradation of adenomatous polyposis coli by MKRN1 enhances Wnt/β-catenin signaling. Oncogene 2018; 37:4273-4286. [DOI: 10.1038/s41388-018-0267-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 03/08/2018] [Accepted: 03/27/2018] [Indexed: 12/20/2022]
|
77
|
Vodicska B, Cerikan B, Schiebel E, Hoffmann I. MISP regulates the IQGAP1/Cdc42 complex to collectively orchestrate spindle orientation and mitotic progression. Sci Rep 2018; 8:6330. [PMID: 29679050 PMCID: PMC5910412 DOI: 10.1038/s41598-018-24682-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/26/2018] [Indexed: 01/02/2023] Open
Abstract
Precise mitotic spindle orientation is essential for both cell fate and tissue organization while defects in this process are associated with tumorigenesis and other diseases. In most animal cell types, the dynein motor complex is anchored at the cell cortex and exerts pulling forces on astral microtubules to position the spindle. The actin-binding protein MISP controls spindle orientation and mitotic progression in human cells. However, the exact underlying mechanism remains to be elucidated. Here we report that MISP interacts with the multidomain scaffolding protein IQGAP1. We further show that MISP binds to the active form of Cdc42 through IQGAP1. Depletion of MISP promotes increased accumulation of IQGAP1 at the cell cortex and a decrease in its Cdc42-binding capacity leading to reduced active Cdc42 levels. Interestingly, overexpression of IQGAP1 can rescue mitotic defects caused by MISP downregulation including spindle misorientation, loss of astral microtubules and prolonged mitosis and also restores active Cdc42 levels. Importantly, we find that IQGAP1 acts downsteam of MISP in regulating astral microtubule dynamics and the localization of the dynactin subunit p150glued that is crucial for proper spindle positioning. We propose that MISP regulates IQGAP1 and Cdc42 to ensure proper mitotic progression and correct spindle orientation.
Collapse
Affiliation(s)
- Barbara Vodicska
- Cell Cycle Control and Carcinogenesis, F045, German Cancer Research Center, DKFZ, 69120, Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Berati Cerikan
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ - ZMBH Alliance, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ - ZMBH Alliance, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany
| | - Ingrid Hoffmann
- Cell Cycle Control and Carcinogenesis, F045, German Cancer Research Center, DKFZ, 69120, Heidelberg, Germany.
| |
Collapse
|
78
|
Jayatilaka H, Giri A, Karl M, Aifuwa I, Trenton NJ, Phillip JM, Khatau S, Wirtz D. EB1 and cytoplasmic dynein mediate protrusion dynamics for efficient 3-dimensional cell migration. FASEB J 2018; 32:1207-1221. [PMID: 29097501 PMCID: PMC5893312 DOI: 10.1096/fj.201700444rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/23/2017] [Indexed: 11/12/2022]
Abstract
Microtubules have long been implicated to play an integral role in metastatic disease, for which a critical step is the local invasion of tumor cells into the 3-dimensional (3D) collagen-rich stromal matrix. Here we show that cell migration of human cancer cells uses the dynamic formation of highly branched protrusions that are composed of a microtubule core surrounded by cortical actin, a cytoskeletal organization that is absent in cells on 2-dimensional (2D) substrates. Microtubule plus-end tracking protein End-binding 1 and motor protein dynein subunits light intermediate chain 2 and heavy chain 1, which do not regulate 2D migration, critically modulate 3D migration by affecting RhoA and thus regulate protrusion branching through differential assembly dynamics of microtubules. An important consequence of this observation is that the commonly used cancer drug paclitaxel is 100-fold more effective at blocking migration in a 3D matrix than on a 2D matrix. This work reveals the central role that microtubule dynamics plays in powering cell migration in a more pathologically relevant setting and suggests further testing of therapeutics targeting microtubules to mitigate migration.-Jayatilaka, H., Giri, A., Karl, M., Aifuwa, I., Trenton, N. J., Phillip, J. M., Khatau, S., Wirtz, D. EB1 and cytoplasmic dynein mediate protrusion dynamics for efficient 3-dimensional cell migration.
Collapse
Affiliation(s)
- Hasini Jayatilaka
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
- Johns Hopkins Physical Sciences–Oncology Center, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Anjil Giri
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
- Johns Hopkins Physical Sciences–Oncology Center, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Michelle Karl
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
- Johns Hopkins Physical Sciences–Oncology Center, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Ivie Aifuwa
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
- Johns Hopkins Physical Sciences–Oncology Center, The Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Jude M. Phillip
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Shyam Khatau
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
- Johns Hopkins Physical Sciences–Oncology Center, The Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Sydney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
79
|
Kreitzer G, Myat MM. Microtubule Motors in Establishment of Epithelial Cell Polarity. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a027896. [PMID: 28264820 DOI: 10.1101/cshperspect.a027896] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epithelial cells play a key role in insuring physiological homeostasis by acting as a barrier between the outside environment and internal organs. They are also responsible for the vectorial transport of ions and fluid essential to the function of many organs. To accomplish these tasks, epithelial cells must generate an asymmetrically organized plasma membrane comprised of structurally and functionally distinct apical and basolateral membranes. Adherent and occluding junctions, respectively, anchor cells within a layer and prevent lateral diffusion of proteins in the outer leaflet of the plasma membrane and restrict passage of proteins and solutes through intercellular spaces. At a fundamental level, the establishment and maintenance of epithelial polarity requires that signals initiated at cell-substratum and cell-cell adhesions are transmitted appropriately and dynamically to the cytoskeleton, to the membrane-trafficking machinery, and to the regulation of occluding and adherent junctions. Rigorous descriptive and mechanistic studies published over the last 50 years have provided great detail to our understanding of epithelial polarization. Yet still, critical early steps in morphogenesis are not yet fully appreciated. In this review, we discuss how cytoskeletal motor proteins, primarily kinesins, contribute to coordinated modification of microtubule and actin arrays, formation and remodeling of cell adhesions to targeted membrane trafficking, and to initiating the formation and expansion of an apical lumen.
Collapse
Affiliation(s)
- Geri Kreitzer
- Department of Pathobiology, Sophie Davis School of Biomedical Education, City College of New York, The City University of New York School of Medicine, New York, New York 10031
| | - Monn Monn Myat
- Department of Biology, Medgar Evers College, Brooklyn, New York 11225.,The Graduate Center, The City University of New York, New York, New York 10016
| |
Collapse
|
80
|
Sawada M, Ohno N, Kawaguchi M, Huang SH, Hikita T, Sakurai Y, Bang Nguyen H, Quynh Thai T, Ishido Y, Yoshida Y, Nakagawa H, Uemura A, Sawamoto K. PlexinD1 signaling controls morphological changes and migration termination in newborn neurons. EMBO J 2018; 37:embj.201797404. [PMID: 29348324 DOI: 10.15252/embj.201797404] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 10/28/2017] [Accepted: 12/15/2017] [Indexed: 12/22/2022] Open
Abstract
Newborn neurons maintain a very simple, bipolar shape, while they migrate from their birthplace toward their destinations in the brain, where they differentiate into mature neurons with complex dendritic morphologies. Here, we report a mechanism by which the termination of neuronal migration is maintained in the postnatal olfactory bulb (OB). During neuronal deceleration in the OB, newborn neurons transiently extend a protrusion from the proximal part of their leading process in the resting phase, which we refer to as a filopodium-like lateral protrusion (FLP). The FLP formation is induced by PlexinD1 downregulation and local Rac1 activation, which coincide with microtubule reorganization and the pausing of somal translocation. The somal translocation of resting neurons is suppressed by microtubule polymerization within the FLP The timing of neuronal migration termination, controlled by Sema3E-PlexinD1-Rac1 signaling, influences the final positioning, dendritic patterns, and functions of the neurons in the OB These results suggest that PlexinD1 signaling controls FLP formation and the termination of neuronal migration through a precise control of microtubule dynamics.
Collapse
Affiliation(s)
- Masato Sawada
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Nobuhiko Ohno
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, School of Medicine, Shimotsuke, Japan
| | - Mitsuyasu Kawaguchi
- Department of Organic and Medicinal Chemistry, Nagoya City University Graduate School of Pharmaceutical Sciences, Nagoya, Japan
| | - Shih-Hui Huang
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takao Hikita
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Youmei Sakurai
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Huy Bang Nguyen
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan
| | - Truc Quynh Thai
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan
| | - Yuri Ishido
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yutaka Yoshida
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hidehiko Nakagawa
- Department of Organic and Medicinal Chemistry, Nagoya City University Graduate School of Pharmaceutical Sciences, Nagoya, Japan
| | - Akiyoshi Uemura
- Department of Retinal Vascular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan .,Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
81
|
Barbiero I, Peroni D, Tramarin M, Chandola C, Rusconi L, Landsberger N, Kilstrup-Nielsen C. The neurosteroid pregnenolone reverts microtubule derangement induced by the loss of a functional CDKL5-IQGAP1 complex. Hum Mol Genet 2018. [PMID: 28641386 DOI: 10.1093/hmg/ddx237] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
CDKL5 is a protein kinase that plays a key role for neuronal functions as testified by the onset of complex neuronal dysfunctions in patients with genetic lesions in CDKL5. Here we identify a novel interactor of CDKL5, IQGAP1, a fundamental regulator of cell migration and polarity. In accordance with a functional role of this interaction, depletion of CDKL5 impairs cell migration and impedes the localization of IQGAP1 at the leading edge. Moreover, we demonstrate that CDKL5 is required for IQGAP1 to form a functional complex with its effectors, Rac1 and the microtubule plus end tracking protein CLIP170. These defects eventually impact on the microtubule association of CLIP170, thus deranging their dynamics. CLIP170 is a cellular target of the neurosteroid pregnenolone; by blocking CLIP170 in its active conformation, pregnenolone is capable of restoring the microtubule association of CLIP170 in CDKL5 deficient cells and rescuing morphological defects in neurons devoid of CDKL5. These findings provide novel insights into CDKL5 functions and pave the way for target-specific therapeutic strategies for individuals affected with CDKL5-disorder.
Collapse
Affiliation(s)
- Isabella Barbiero
- Department of Biotechnology and Life Sciences and Center of Neuroscience, University of Insubria, 21052 Busto Arsizio, Italy
| | - Diana Peroni
- Department of Biotechnology and Life Sciences and Center of Neuroscience, University of Insubria, 21052 Busto Arsizio, Italy
| | - Marco Tramarin
- Department of Biotechnology and Life Sciences and Center of Neuroscience, University of Insubria, 21052 Busto Arsizio, Italy
| | - Chetan Chandola
- Department of Biotechnology and Life Sciences and Center of Neuroscience, University of Insubria, 21052 Busto Arsizio, Italy
| | - Laura Rusconi
- Department of Biotechnology and Life Sciences and Center of Neuroscience, University of Insubria, 21052 Busto Arsizio, Italy
| | - Nicoletta Landsberger
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Charlotte Kilstrup-Nielsen
- Department of Biotechnology and Life Sciences and Center of Neuroscience, University of Insubria, 21052 Busto Arsizio, Italy
| |
Collapse
|
82
|
Stypulkowski E, Asangani IA, Witze ES. The depalmitoylase APT1 directs the asymmetric partitioning of Notch and Wnt signaling during cell division. Sci Signal 2018; 11:eaam8705. [PMID: 29295957 PMCID: PMC5914505 DOI: 10.1126/scisignal.aam8705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Asymmetric cell division results in two distinctly fated daughter cells. A molecular hallmark of asymmetric division is the unequal partitioning of cell fate determinants. We have previously established that growth factor signaling promotes protein depalmitoylation to foster polarized protein localization, which, in turn, drives migration and metastasis. We report protein palmitoylation as a key mechanism for the asymmetric partitioning of the cell fate determinants Numb and β-catenin through the activity of the depalmitoylating enzyme APT1. Using point mutations, we showed that specific palmitoylated residues on Numb were required for its asymmetric localization. By live-cell imaging, we showed that reciprocal interactions between APT1 and the Rho family GTPase CDC42 promoted the asymmetric localization of Numb and β-catenin to the plasma membrane. This, in turn, restricted Notch- or Wnt-responsive transcriptional activity to one daughter cell. Moreover, we showed that altering APT1 abundance changed the transcriptional signatures of MDA-MB-231 triple receptor-negative breast cancer cells, similar to changes in Notch and β-catenin-mediated Wnt signaling. We also showed that loss of APT1 depleted a specific subpopulation of tumorigenic cells in colony formation assays. Together, our findings suggest that APT1-mediated depalmitoylation is a major mechanism of asymmetric cell division that maintains Notch- and Wnt-associated protein dynamics, gene expression, and cellular functions.
Collapse
Affiliation(s)
- Ewa Stypulkowski
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Irfan A Asangani
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric S Witze
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
83
|
Reimer M, Denby E, Zustiak SP, Schober JM. Ras GAP-related and C-terminal domain-dependent localization and tumorigenic activities of IQGAP1 in melanoma cells. PLoS One 2017; 12:e0189589. [PMID: 29240845 PMCID: PMC5730206 DOI: 10.1371/journal.pone.0189589] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022] Open
Abstract
IQGAP1 interacts with a number of binding partners through a calponin homology domain (CHD), a WW motif, IQ repeats, a Ras GAP-related domain (GRD), and a conserved C-terminal (CT) domain. Among various biological and cellular functions, IQGAP1 is known to play a role in actin cytoskeleton dynamics during membrane ruffling and lamellipodium protrusion. In addition, phosphorylation near the CT domain is thought to control IQGAP1 activity through regulation of intramolecular interaction. In a previous study, we discovered that IQGAP1 preferentially localizes to retracting areas in B16F10 mouse melanoma cells, not areas of membrane ruffling and lamellipodium protrusion. Nothing is known of the domains needed for retraction localization and very little is known of IQGAP1 function in the actin cytoskeleton of melanoma cells. Thus, we examined localization of IQGAP1 mutants to retracting areas, and characterized knock down phenotypes on tissue culture plastic and physiologic-stiffness hydrogels. Localization of IQGAP1 mutants (S1441E/S1443D, S1441A/S1443A, ΔCHD, ΔGRD or ΔCT) to retracting and protruding cell edges were measured. In retracting areas there was a decrease in S1441A/S1443A, ΔGRD and ΔCT localization, a minor decrease in ΔCHD localization, and normal localization of the S1441E/S1443D mutant. In areas of cell protrusion just behind the lamellipodium leading edge, we surprisingly observed both ΔGRD and ΔCT localization, and increased number of microtubules. IQGAP1 knock down caused loss of cell polarity on laminin-coated glass, decreased proliferation on tissue culture polystyrene, and abnormal spheroid growth on laminin-coated hydrogels. We propose that the GRD and CT domains regulate IQGAP1 localization to retracting actin networks to promote a tumorigenic role in melanoma cells.
Collapse
Affiliation(s)
- Michael Reimer
- Department of Pharmaceutical Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America
| | - Elisabeth Denby
- Department of Pharmaceutical Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America
| | - Silviya P. Zustiak
- Department of Biomedical Engineering, Saint Louis University, Saint Louis, Missouri, United States of America
| | - Joseph M. Schober
- Department of Pharmaceutical Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America
- * E-mail:
| |
Collapse
|
84
|
Itoh N, Nagai T, Watanabe T, Taki K, Nabeshima T, Kaibuchi K, Yamada K. Valosin-containing protein (VCP) is a novel IQ motif-containing GTPase activating protein 1 (IQGAP1)-interacting protein. Biochem Biophys Res Commun 2017; 493:1384-1389. [PMID: 28970065 DOI: 10.1016/j.bbrc.2017.09.159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 09/28/2017] [Indexed: 02/05/2023]
Abstract
Scaffold proteins play a pivotal role in making protein complexes, and organize binding partners into a functional unit to enhance specific signaling pathways. IQ motif-containing GTPase activating protein 1 (IQGAP1) is an essential protein for spine formation due to its role in scaffolding multiple signal complexes. However, it remains unclear how IQGAP1 interacts within the brain. In the present study, we screened novel IQGAP1-interacting proteins by a proteomic approach. As a novel IQGAP1-interacting protein, we identified valosin-containing protein (VCP) which is a causative gene in patients with inclusion body myopathy with Paget's disease of bone and frontotemporal dementia (IBMPFD). The physiological interaction of IQGAP1 with VCP was confirmed by an immunoprecipitation assay. Both the N-terminal (N-half) and C-terminal (C-half) fragments of IQGAP1 interacted with the N-terminal region of VCP. Co-localization of IQGAP1 and VCP was observed in the growth corn, axonal shaft, cell body, and dendrites in cultured hippocampal neurons at 4 days in vitro (DIV4). In cultured neurons at DIV14, IQGAP1 co-localized with VCP in dendrites. When HEK293T cells were co-transfected with IQGAP1 and VCP, an immunoprecipitation assay revealed that binding of IQGAP1 with disease-related mutant (R155H or A232E) VCP was markedly reduced compared to wild-type (WT) VCP. These results suggest that reduction of IQGAP1 and VCP interaction may be associated with the pathophysiology of IBMPFD.
Collapse
Affiliation(s)
- Norimichi Itoh
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8560, Japan; Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8560, Japan
| | - Takashi Watanabe
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Kentaro Taki
- Division for Medical Research Engineering, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences and Aino University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8560, Japan.
| |
Collapse
|
85
|
Hegsted A, Yingling CV, Pruyne D. Inverted formins: A subfamily of atypical formins. Cytoskeleton (Hoboken) 2017; 74:405-419. [PMID: 28921928 DOI: 10.1002/cm.21409] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/22/2017] [Accepted: 08/31/2017] [Indexed: 12/25/2022]
Abstract
Formins are a family of regulators of actin and microtubule dynamics that are present in almost all eukaryotes. These proteins are involved in many cellular processes, including cytokinesis, stress fiber formation, and cell polarization. Here we review one subfamily of formins, the inverted formins. Inverted formins as a group break several formin stereotypes, having atypical biochemical properties and domain organization, and they have been linked to kidney disease and neuropathy in humans. In this review, we will explore recent research on members of the inverted formin sub-family in mammals, zebrafish, fruit flies, and worms.
Collapse
Affiliation(s)
- Anna Hegsted
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Curtis V Yingling
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - David Pruyne
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| |
Collapse
|
86
|
Karki P, Birukova AA. Microtubules-associated Rac regulation of endothelial barrier: a role of Asef in acute lung injury. J Investig Med 2017; 65:1089-1092. [PMID: 28923883 DOI: 10.1136/jim-2017-000571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2017] [Indexed: 12/13/2022]
Abstract
The endothelial barrier function regulated by the cytoskeletal reorganizations has been implicated in the pathogenesis of multiple lung diseases including asthma, sepsis, edema, and acute respiratory distress syndrome. The extensive studies have established that activation of small GTPase Rac is a key mechanism in endothelial barrier protection but the role of microtubules-associated Rac in the endothelial functions remains poorly understood. With the emerging evidences that microtubules disassembly also plays a critical role in actin cytoskeleton remodeling leading to endothelial permeability, the knowledge on microtubules-mediated regulation of endothelial barrier is imperative to better understand the etiology of lung injuries as well as to develop novel therapeutics against these disorders. In this regard, our recent studies have revealed some novel aspects of microtubules-mediated regulation of endothelial barrier functions and unraveled a putative role of Rac-specific guanine nucleotide exchange factor Asef in mediating the barrier protective effects of hepatocyte growth factor. In this review, we will discuss the role of this novel Rac activator Asef in endothelial barrier protection and its regulation by microtubules.
Collapse
Affiliation(s)
- Pratap Karki
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Anna A Birukova
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
87
|
van Kappel EC, Maurice MM. Molecular regulation and pharmacological targeting of the β-catenin destruction complex. Br J Pharmacol 2017. [PMID: 28634996 PMCID: PMC5727331 DOI: 10.1111/bph.13922] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The β‐catenin destruction complex is a dynamic cytosolic multiprotein assembly that provides a key node in Wnt signalling regulation. The core components of the destruction complex comprise the scaffold proteins axin and adenomatous polyposis coli and the Ser/Thr kinases casein kinase 1 and glycogen synthase kinase 3. In unstimulated cells, the destruction complex efficiently drives degradation of the transcriptional coactivator β‐catenin, thereby preventing the activation of the Wnt/β‐catenin pathway. Mutational inactivation of the destruction complex is a major pathway in the pathogenesis of cancer. Here, we review recent insights in the regulation of the β‐catenin destruction complex, including newly identified interaction interfaces, regulatory elements and post‐translationally controlled mechanisms. In addition, we discuss how mutations in core destruction complex components deregulate Wnt signalling via distinct mechanisms and how these findings open up potential therapeutic approaches to restore destruction complex activity in cancer cells. Linked Articles This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc
Collapse
Affiliation(s)
- Eline C van Kappel
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Madelon M Maurice
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
88
|
hmmr mediates anterior neural tube closure and morphogenesis in the frog Xenopus. Dev Biol 2017; 430:188-201. [PMID: 28778799 DOI: 10.1016/j.ydbio.2017.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 07/19/2017] [Accepted: 07/26/2017] [Indexed: 12/20/2022]
Abstract
Development of the central nervous system requires orchestration of morphogenetic processes which drive elevation and apposition of the neural folds and their fusion into a neural tube. The newly formed tube gives rise to the brain in anterior regions and continues to develop into the spinal cord posteriorly. Conspicuous differences between the anterior and posterior neural tube become visible already during neural tube closure (NTC). Planar cell polarity (PCP)-mediated convergent extension (CE) movements are restricted to the posterior neural plate, i.e. hindbrain and spinal cord, where they propagate neural fold apposition. The lack of CE in the anterior neural plate correlates with a much slower mode of neural fold apposition anteriorly. The morphogenetic processes driving anterior NTC have not been addressed in detail. Here, we report a novel role for the breast cancer susceptibility gene and microtubule (MT) binding protein Hmmr (Hyaluronan-mediated motility receptor, RHAMM) in anterior neurulation and forebrain development in Xenopus laevis. Loss of hmmr function resulted in a lack of telencephalic hemisphere separation, arising from defective roof plate formation, which in turn was caused by impaired neural tissue narrowing. hmmr regulated polarization of neural cells, a function which was dependent on the MT binding domains. hmmr cooperated with the core PCP component vangl2 in regulating cell polarity and neural morphogenesis. Disrupted cell polarization and elongation in hmmr and vangl2 morphants prevented radial intercalation (RI), a cell behavior essential for neural morphogenesis. Our results pinpoint a novel role of hmmr in anterior neural development and support the notion that RI is a major driving force for anterior neurulation and forebrain morphogenesis.
Collapse
|
89
|
Rotoli D, Morales M, Maeso MDC, García MDP, Gutierrez R, Valladares F, Ávila J, Díaz-Flores L, Mobasheri A, Martín-Vasallo P. Alterations in IQGAP1 expression and localization in colorectal carcinoma and liver metastases following oxaliplatin-based chemotherapy. Oncol Lett 2017; 14:2621-2628. [PMID: 28928806 PMCID: PMC5588162 DOI: 10.3892/ol.2017.6525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/11/2016] [Indexed: 01/29/2023] Open
Abstract
IQGAP1 is a scaffolding protein that serves a key role in cell dynamics by integrating internal and external stimuli to distinct signal outputs. Previous studies have identified several genes that are significantly up- or downregulated in the peripheral white cells (PWCs) of patients with colorectal adenocarcinoma (CRC), who underwent oxaliplatin-based chemotherapy (CT). In addition, screening studies have reported that IQ-motif containing GTPase activating protein 1 (IQGAP1) transcriptional expression levels varied from ‘off’ to ‘on’ following oxaliplatin CT. In order to determine if variations previously described in PWCs are able to be observed at the protein level in tumors and in metastases following CT, the present study performed an immunohistochemical analysis of IQGAP1 in CRC and primary metastases. IQGAP1 expression was observed in the nuclear envelope and in lateral cell membranes and cytoplasm in normal colon tissue. However, in tumor tissue, cells exhibited a diffuse pattern, with variable expression levels of staining in the nuclear membrane and cytoplasm, with the highest expression intensity observed at the invasive front. In healthy and metastasized liver tissue and in the metastases themselves, expression levels varied from cell to cell from no expression to a high level. In the majority of cells, IQGAP1 co-localized with microtubules at the cytoplasmic face of the nuclear envelope. Strong positive expression was observed in areas of the lesion where cells were detaching from the lesion into the lumen. Despite the homogeneous IQGAP1 staining pattern observed in healthy colon tissue sections, CRC demonstrated heterogeneity in staining, which was more marked in metastasized liver tissue resected following CT. However, the most notable findings were the observed effects on the cellular and subcellular distribution and its implications for cancer biology. These results suggest that IQGAP1 may be a putative biomarker, a candidate for clinical diagnostics and a potential novel target for anti-cancer therapeutics.
Collapse
Affiliation(s)
- Deborah Rotoli
- Laboratory of Developmental Biology, UD-Biochemistry and Molecular Biology and Centre for Biomedical Research of The Canary Islands, University of La Laguna, 38206 La Laguna, Canary Islands, Spain.,National Research Council, Institute of Endocrinology and Experimental Oncology, I-80131 Naples, Italy
| | - Manuel Morales
- Service of Medical Oncology, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Canary Islands, Spain.,Medical Oncology, Hospiten Rambla, 38001 Santa Cruz de Tenerife, Canary Islands, Spain
| | - María Del Carmen Maeso
- Service of Pathology, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Canary Islands, Spain
| | - María Del Pino García
- Department of Pathology, Hospiten Rambla, 38001 Santa Cruz de Tenerife, Canary Islands, Spain
| | - Ricardo Gutierrez
- Department of Pathology, School of Medicine, University of La Laguna, 38201 La Laguna, Canary Islands, Spain
| | - Francisco Valladares
- Department of Pathology, School of Medicine, University of La Laguna, 38201 La Laguna, Canary Islands, Spain
| | - Julio Ávila
- Laboratory of Developmental Biology, UD-Biochemistry and Molecular Biology and Centre for Biomedical Research of The Canary Islands, University of La Laguna, 38206 La Laguna, Canary Islands, Spain
| | - Lucio Díaz-Flores
- Department of Pathology, School of Medicine, University of La Laguna, 38201 La Laguna, Canary Islands, Spain
| | - Ali Mobasheri
- Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK.,Center of Excellence in Genomic Medicine Research, King Fahd Medical Research Center, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Pablo Martín-Vasallo
- Laboratory of Developmental Biology, UD-Biochemistry and Molecular Biology and Centre for Biomedical Research of The Canary Islands, University of La Laguna, 38206 La Laguna, Canary Islands, Spain
| |
Collapse
|
90
|
Juanes MA, Bouguenina H, Eskin JA, Jaiswal R, Badache A, Goode BL. Adenomatous polyposis coli nucleates actin assembly to drive cell migration and microtubule-induced focal adhesion turnover. J Cell Biol 2017; 216:2859-2875. [PMID: 28663347 PMCID: PMC5584174 DOI: 10.1083/jcb.201702007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/14/2017] [Accepted: 05/25/2017] [Indexed: 02/07/2023] Open
Abstract
Cell motility depends on tight coordination between the microtubule (MT) and actin cytoskeletons, but the mechanisms underlying this MT-actin cross talk have remained poorly understood. Here, we show that the tumor suppressor protein adenomatous polyposis coli (APC), which is a known MT-associated protein, directly nucleates actin assembly to promote directed cell migration. By changing only two residues in APC, we generated a separation-of-function mutant, APC (m4), that abolishes actin nucleation activity without affecting MT interactions. Expression of full-length APC carrying the m4 mutation (APC (m4)) rescued cellular defects in MT organization, MT dynamics, and mitochondrial distribution caused by depletion of endogenous APC but failed to restore cell migration. Wild-type APC and APC (m4) localized to focal adhesions (FAs), and APC (m4) was defective in promoting actin assembly at FAs to facilitate MT-induced FA turnover. These results provide the first direct evidence for APC-mediated actin assembly in vivo and establish a role for APC in coordinating MTs and actin at FAs to direct cell migration.
Collapse
Affiliation(s)
| | - Habib Bouguenina
- Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | | | - Richa Jaiswal
- Department of Biology, Brandeis University, Waltham, MA
| | - Ali Badache
- Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Bruce L Goode
- Department of Biology, Brandeis University, Waltham, MA
| |
Collapse
|
91
|
Zhao HY, Han Y, Wang J, Yang LH, Zheng XY, Du J, Wu GP, Wang EH. IQ-domain GTPase-activating protein 1 promotes the malignant phenotype of invasive ductal breast carcinoma via canonical Wnt pathway. Tumour Biol 2017; 39:1010428317705769. [PMID: 28618949 DOI: 10.1177/1010428317705769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
IQ-domain GTPase-activating protein 1 is a scaffolding protein with multidomain which plays a role in modulating dishevelled (Dvl) nuclear translocation in canonical Wnt pathway. However, the biological function and mechanism of IQ-domain GTPase-activating protein 1 in invasive ductal carcinoma (IDC) remain unknown. In this study, we found that IQ-domain GTPase-activating protein 1 expression was elevated in invasive ductal carcinoma, which was positively correlated with tumor grade, lymphatic metastasis, and poor prognosis. Coexpression of IQ-domain GTPase-activating protein 1 and Dvl in the nucleus and cytoplasm of invasive ductal carcinoma was significantly correlated but not in the membrane. Postoperative survival in the patients with their coexpression in the nucleus and cytoplasm was obviously lower than that without coexpression. The positive expression rates of c-myc and cyclin D1 were significantly higher in the patients with nuclear coexpression of Dvl and IQ-domain GTPase-activating protein 1 than that with cytoplasmic coexpression, correlating with poor prognosis. IQ-domain GTPase-activating protein 1 significantly enhanced cell proliferation and invasion in invasive ductal carcinoma cell lines by interacting with Dvl in cytoplasm to promote Dvl nuclear translocation so as to upregulate the expression of c-myc and cyclin D1. Collectively, our data suggest that IQ-domain GTPase-activating protein 1 may promote the malignant phenotype of invasive ductal carcinoma via canonical Wnt signaling, and it could be used as a potential prognostic biomarker for breast cancer patients.
Collapse
Affiliation(s)
- Huan-Yu Zhao
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yang Han
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Jian Wang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Lian-He Yang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xiao-Ying Zheng
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Jiang Du
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Guang-Ping Wu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - En-Hua Wang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
92
|
Konietzny A, Bär J, Mikhaylova M. Dendritic Actin Cytoskeleton: Structure, Functions, and Regulations. Front Cell Neurosci 2017; 11:147. [PMID: 28572759 PMCID: PMC5435805 DOI: 10.3389/fncel.2017.00147] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/05/2017] [Indexed: 12/28/2022] Open
Abstract
Actin is a versatile and ubiquitous cytoskeletal protein that plays a major role in both the establishment and the maintenance of neuronal polarity. For a long time, the most prominent roles that were attributed to actin in neurons were the movement of growth cones, polarized cargo sorting at the axon initial segment, and the dynamic plasticity of dendritic spines, since those compartments contain large accumulations of actin filaments (F-actin) that can be readily visualized using electron- and fluorescence microscopy. With the development of super-resolution microscopy in the past few years, previously unknown structures of the actin cytoskeleton have been uncovered: a periodic lattice consisting of actin and spectrin seems to pervade not only the whole axon, but also dendrites and even the necks of dendritic spines. Apart from that striking feature, patches of F-actin and deep actin filament bundles have been described along the lengths of neurites. So far, research has been focused on the specific roles of actin in the axon, while it is becoming more and more apparent that in the dendrite, actin is not only confined to dendritic spines, but serves many additional and important functions. In this review, we focus on recent developments regarding the role of actin in dendrite morphology, the regulation of actin dynamics by internal and external factors, and the role of F-actin in dendritic protein trafficking.
Collapse
Affiliation(s)
- Anja Konietzny
- DFG Emmy Noether Group 'Neuronal Protein Transport,' Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-EppendorfHamburg, Germany
| | - Julia Bär
- DFG Emmy Noether Group 'Neuronal Protein Transport,' Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-EppendorfHamburg, Germany
| | - Marina Mikhaylova
- DFG Emmy Noether Group 'Neuronal Protein Transport,' Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-EppendorfHamburg, Germany
| |
Collapse
|
93
|
Zhang L, Shay JW. Multiple Roles of APC and its Therapeutic Implications in Colorectal Cancer. J Natl Cancer Inst 2017; 109:3113843. [PMID: 28423402 DOI: 10.1093/jnci/djw332] [Citation(s) in RCA: 270] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/21/2016] [Indexed: 02/06/2023] Open
Abstract
Adenomatous polyposis coli (APC) is widely accepted as a tumor suppressor gene highly mutated in colorectal cancers (CRC). Mutation and inactivation of this gene is a key and early event almost uniquely observed in colorectal tumorigenesis. Alterations in the APC gene generate truncated gene products, leading to activation of the Wnt signaling pathway and deregulation of multiple other cellular processes. It has been a mystery why most patients with CRC retain a truncated APC protein, but accumulating evidence suggest that these C terminally truncated APC proteins may have gain of function properties beyond the well-established loss of tumor suppressive function. Here, we will review the evidence for both the loss of function and the gain of function of APC truncations and how together they contribute to CRC initiation and progression.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA
| |
Collapse
|
94
|
Rotoli D, Morales M, Ávila J, Maeso MDC, García MDP, Mobasheri A, Martín-Vasallo P. Commitment of Scaffold Proteins in the Onco-Biology of Human Colorectal Cancer and Liver Metastases after Oxaliplatin-Based Chemotherapy. Int J Mol Sci 2017; 18:ijms18040891. [PMID: 28441737 PMCID: PMC5412470 DOI: 10.3390/ijms18040891] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/15/2017] [Accepted: 04/19/2017] [Indexed: 01/13/2023] Open
Abstract
Scaffold proteins play pivotal roles in the regulation of signaling pathways, integrating external and internal stimuli to various cellular outputs. We report the pattern of cellular and subcellular expression of scaffoldins angiomotin-like 2 (AmotL2), FK506 binding protein 5 (FKBP51) and IQ motif containing GTPase-activating protein 1 (IQGAP1) in colorectal cancer (CRC) and metastases in liver resected after oxaliplatin-based chemotherapy (CT). Positive immunostaining for the three scaffoldins was found in most cells in healthy colon, tumor, healthy liver and metastasized liver. The patterns of expression of AmotL2, FKBP51 and IQGAP1 show the greatest variability in immune system cells and neurons and glia cells and the least in blood vessel cells. The simultaneous subcellular localization in tumor cells and other cell types within the tumor suggest an involvement of these three scaffoldins in cancer biology, including a role in Epithelial Mesenchymal Transition. The display in differential localization and quantitative expression of AmotL2, FKBP51, and IQGAP1 could be used as biomarkers for more accurate tumor staging and as potential targets for anti-cancer therapeutics by blocking or slowing down their interconnecting functions. Tough further research needs to be done in order to improve these assessments.
Collapse
Affiliation(s)
- Deborah Rotoli
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, Av. Astrofísico Sánchez s/n., 38206 La Laguna, Spain.
- CNR-National Research Council, Institute of Endocrinology and Experimental Oncology (IEOS), Via Sergio Pansini 5, 80131 Naples, Italy.
| | - Manuel Morales
- Service of Medical Oncology, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain.
- Service of Medical Oncology, Hospiten® Hospitals, 38001 Santa Cruz de Tenerife, Spain.
| | - Julio Ávila
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, Av. Astrofísico Sánchez s/n., 38206 La Laguna, Spain.
| | - María Del Carmen Maeso
- Service of Pathology, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain.
| | | | - Ali Mobasheri
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, GU2 7XH Guildford, UK.
- Center of Excellence in Genomic Medicine Research (CEGMR), King Fahd Medical Research Center (KFMRC), Faculty of Applied Medical Sciences, King AbdulAziz University, 21589 Jeddah, Saudi Arabia.
| | - Pablo Martín-Vasallo
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, Av. Astrofísico Sánchez s/n., 38206 La Laguna, Spain.
| |
Collapse
|
95
|
Abstract
Exocytosis is a fundamental cellular process whereby secreted molecules are packaged into vesicles that move along cytoskeletal filaments and fuse with the plasma membrane. To function optimally, cells are strongly dependent on precisely controlled delivery of exocytotic cargo. In mammalian cells, microtubules serve as major tracks for vesicle transport by motor proteins, and thus microtubule organization is important for targeted delivery of secretory carriers. Over the years, multiple microtubule-associated and cortical proteins have been discovered that facilitate the interaction between the microtubule plus ends and the cell cortex. In this review, we focus on mammalian protein complexes that have been shown to participate in both cortical microtubule capture and exocytosis, thereby regulating the spatial organization of secretion. These complexes include microtubule plus-end tracking proteins, scaffolding factors, actin-binding proteins, and components of vesicle docking machinery, which together allow efficient coordination of cargo transport and release.
Collapse
Affiliation(s)
- Ivar Noordstra
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| |
Collapse
|
96
|
Caceres PS, Benedicto I, Lehmann GL, Rodriguez-Boulan EJ. Directional Fluid Transport across Organ-Blood Barriers: Physiology and Cell Biology. Cold Spring Harb Perspect Biol 2017; 9:a027847. [PMID: 28003183 PMCID: PMC5334253 DOI: 10.1101/cshperspect.a027847] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Directional fluid flow is an essential process for embryo development as well as for organ and organism homeostasis. Here, we review the diverse structure of various organ-blood barriers, the driving forces, transporters, and polarity mechanisms that regulate fluid transport across them, focusing on kidney-, eye-, and brain-blood barriers. We end by discussing how cross talk between barrier epithelial and endothelial cells, perivascular cells, and basement membrane signaling contribute to generate and maintain organ-blood barriers.
Collapse
Affiliation(s)
- Paulo S Caceres
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, New York 10065
| | - Ignacio Benedicto
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, New York 10065
| | - Guillermo L Lehmann
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, New York 10065
| | - Enrique J Rodriguez-Boulan
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, New York 10065
| |
Collapse
|
97
|
Wang JC, Lee JYJ, Christian S, Dang-Lawson M, Pritchard C, Freeman SA, Gold MR. The Rap1-cofilin-1 pathway coordinates actin reorganization and MTOC polarization at the B cell immune synapse. J Cell Sci 2017; 130:1094-1109. [PMID: 28167682 DOI: 10.1242/jcs.191858] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 01/31/2017] [Indexed: 12/19/2022] Open
Abstract
B cells that bind antigens displayed on antigen-presenting cells (APCs) form an immune synapse, a polarized cellular structure that optimizes the dual functions of the B cell receptor (BCR), signal transduction and antigen internalization. Immune synapse formation involves polarization of the microtubule-organizing center (MTOC) towards the APC. We now show that BCR-induced MTOC polarization requires the Rap1 GTPase (which has two isoforms, Rap1a and Rap1b), an evolutionarily conserved regulator of cell polarity, as well as cofilin-1, an actin-severing protein that is regulated by Rap1. MTOC reorientation towards the antigen contact site correlated strongly with cofilin-1-dependent actin reorganization and cell spreading. We also show that BCR-induced MTOC polarization requires the dynein motor protein as well as IQGAP1, a scaffolding protein that can link the actin and microtubule cytoskeletons. At the periphery of the immune synapse, IQGAP1 associates closely with F-actin structures and with the microtubule plus-end-binding protein CLIP-170 (also known as CLIP1). Moreover, the accumulation of IQGAP1 at the antigen contact site depends on F-actin reorganization that is controlled by Rap1 and cofilin-1. Thus the Rap1-cofilin-1 pathway coordinates actin and microtubule organization at the immune synapse.
Collapse
Affiliation(s)
- Jia C Wang
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Jeff Y-J Lee
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Sonja Christian
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - May Dang-Lawson
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Caitlin Pritchard
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Spencer A Freeman
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Michael R Gold
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
98
|
Shen X, Jia Z, D'Alonzo D, Wang X, Bruder E, Emch FH, De Geyter C, Zhang H. HECTD1 controls the protein level of IQGAP1 to regulate the dynamics of adhesive structures. Cell Commun Signal 2017; 15:2. [PMID: 28073378 PMCID: PMC5225595 DOI: 10.1186/s12964-016-0156-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 12/06/2016] [Indexed: 12/21/2022] Open
Abstract
Background Cell migration including collective cell movement and individual cell migration are crucial factors in embryogenesis. During the spreading/migration of cells, several types of adhesive structures physically interacting with the extracellular matrix (ECM) or with another cell have been described and the formation and maturation of adhesion structures are coordinated, however the molecular pathways involved are still not fully understood. Results We generated a mouse embryonic fibroblast line (MEF) from homozygous mutant (Hectd1R/R, Hectd1Gt(RRC200)) mouse of the E3 ubiquitin ligase for inhibin B receptor (Hectd1). Detailed examination of cell motion on MEF cells demonstrated that loss of Hectd1 resulted in accelerated cell spreading and migration but impaired directionality of migration. In Hectd1R/R cells paxillin and zyxin were largely mis-localized, whereas their expression levels were unchanged. In addition the formation of focal adhesions (FAs) was impaired and the focal complexes (FXs) were increased. We further identified HECTD1 as a key regulator of IQGAP1. IQGAP1 co-localized together with HECTD1 in the leading edge of cells. HECTD1 interacted with IQGAP1 and regulated its degradation through ubiquitination. Over-expression of IQGAP1 in control MEF phenocopied the spreading and migration defects of Hectd1R/R cells. In contrast, siRNA-mediated knockdown of IQGAP1 rescued the defects in cellular movement of Hectd1R/R cells. Conclusions The E3 ligase activity of Hectd1 regulates the protein level of IQGAP1 through ubiquitination and therefore mediates the dynamics of FXs including the recruitment of paxillin and actinin. IQGAP1 is one of the effectors of HECTD1. Electronic supplementary material The online version of this article (doi:10.1186/s12964-016-0156-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoli Shen
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland.,Present Address: Chongqing Reproductive and Genetics Institute, 64 Jing Tang ST, Yu Zhong District, Chongqing, 400013, China
| | - Zanhui Jia
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland.,Present Address: 2nd hospital of Jilin University, Changchun, China
| | - Donato D'Alonzo
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland
| | - Xinggang Wang
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland
| | - Elisabeth Bruder
- Pathologie, Universitätsspital Basel, Schönbeinstrasse 40, CH-4031, Basel, Switzerland
| | - Fabienne Hélène Emch
- Clinic of Gynecological Endocrinology and Reproductive Medicine, University Hospital, University of Basel, Basel, Switzerland
| | - Christian De Geyter
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland.,Clinic of Gynecological Endocrinology and Reproductive Medicine, University Hospital, University of Basel, Basel, Switzerland
| | - Hong Zhang
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland. .,Department of Biomedicine, University of Basel, Hebelstra. 20, CH-4031, Basel, Switzerland.
| |
Collapse
|
99
|
Cui X, Song L, Bai Y, Wang Y, Wang B, Wang W. Elevated IQGAP1 and CDC42 levels correlate with tumor malignancy of human glioma. Oncol Rep 2016; 37:768-776. [PMID: 28035419 PMCID: PMC5355752 DOI: 10.3892/or.2016.5341] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 12/12/2016] [Indexed: 01/03/2023] Open
Abstract
IQGAP1 is a multifunctional scaffold protein involved in cell adhesion and cell migration. The abnormal expression of IQGAP1 widely exists in many cancers, but the combined biological roles of IQGAP1 and CDC42 in human glioma remain to be clarified. In this study, we investigated the associated expression level of IQGAP1, CDC42 and clinical significances in human glioma, as well as its biological functions in glioma progression. Our results revealed that IQGAP1 and CDC42 are frequently elevated in glioma tissues compared with their noncancerous counterparts, and a high expression of IQGAP1 and CDC42 correlates with tumor grades and poor overall survival of glioma patients. Moreover, the overexpression of IQGAP1 improves cell proliferation and migration ability of human glioma cells, whereas the knockdown of IQGAP1 by siRNA reduces cell growth and cell migration in vitro. These results suggest that IQGAP1, CDC42 and their interactions play important roles in human glioma carcinogenesis and progression.
Collapse
Affiliation(s)
- Xiaobo Cui
- Inner Mongolia Medical University Affiliated Hospital, Hohhot, Inner Mongolia 010050, P.R. China
| | - Laixiao Song
- Inner Mongolia Medical University Affiliated Hospital, Hohhot, Inner Mongolia 010050, P.R. China
| | - Yunfei Bai
- Inner Mongolia Medical University Affiliated Hospital, Hohhot, Inner Mongolia 010050, P.R. China
| | - Yaping Wang
- Inner Mongolia Medical University Affiliated Hospital, Hohhot, Inner Mongolia 010050, P.R. China
| | - Boqian Wang
- Inner Mongolia Medical University Affiliated Hospital, Hohhot, Inner Mongolia 010050, P.R. China
| | - Wei Wang
- Inner Mongolia Medical University Affiliated Hospital, Hohhot, Inner Mongolia 010050, P.R. China
| |
Collapse
|
100
|
Evans IM, Kennedy SA, Paliashvili K, Santra T, Yamaji M, Lovering RC, Britton G, Frankel P, Kolch W, Zachary IC. Vascular Endothelial Growth Factor (VEGF) Promotes Assembly of the p130Cas Interactome to Drive Endothelial Chemotactic Signaling and Angiogenesis. Mol Cell Proteomics 2016; 16:168-180. [PMID: 28007913 PMCID: PMC5294206 DOI: 10.1074/mcp.m116.064428] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/15/2016] [Indexed: 01/13/2023] Open
Abstract
p130Cas is a polyvalent adapter protein essential for cardiovascular development, and with a key role in cell movement. In order to identify the pathways by which p130Cas exerts its biological functions in endothelial cells we mapped the p130Cas interactome and its dynamic changes in response to VEGF using high-resolution mass spectrometry and reconstruction of protein interaction (PPI) networks with the aid of multiple PPI databases. VEGF enriched the p130Cas interactome in proteins involved in actin cytoskeletal dynamics and cell movement, including actin-binding proteins, small GTPases and regulators or binders of GTPases. Detailed studies showed that p130Cas association of the GTPase-binding scaffold protein, IQGAP1, plays a key role in VEGF chemotactic signaling, endothelial polarization, VEGF-induced cell migration, and endothelial tube formation. These findings indicate a cardinal role for assembly of the p130Cas interactome in mediating the cell migratory response to VEGF in angiogenesis, and provide a basis for further studies of p130Cas in cell movement.
Collapse
Affiliation(s)
- Ian M Evans
- From the ‡Centre for Cardiovascular Biology and Medicine, Division of Medicine The Rayne Building, University College London, London WC1E 6JJ, United Kingdom
| | - Susan A Kennedy
- §Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ketevan Paliashvili
- From the ‡Centre for Cardiovascular Biology and Medicine, Division of Medicine The Rayne Building, University College London, London WC1E 6JJ, United Kingdom
| | - Tapesh Santra
- §Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Maiko Yamaji
- From the ‡Centre for Cardiovascular Biology and Medicine, Division of Medicine The Rayne Building, University College London, London WC1E 6JJ, United Kingdom
| | - Ruth C Lovering
- **Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, The Rayne Building, University College London, London WC1E 6JJ, United Kingdom
| | - Gary Britton
- From the ‡Centre for Cardiovascular Biology and Medicine, Division of Medicine The Rayne Building, University College London, London WC1E 6JJ, United Kingdom
| | - Paul Frankel
- From the ‡Centre for Cardiovascular Biology and Medicine, Division of Medicine The Rayne Building, University College London, London WC1E 6JJ, United Kingdom
| | - Walter Kolch
- §Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.,¶Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.,‖School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ian C Zachary
- From the ‡Centre for Cardiovascular Biology and Medicine, Division of Medicine The Rayne Building, University College London, London WC1E 6JJ, United Kingdom;
| |
Collapse
|