51
|
Lee SJ, Kim J, Han G, Hong SP, Kim D, Cho C. Impaired Blastocyst Formation in Lnx2-Knockdown Mouse Embryos. Int J Mol Sci 2023; 24:ijms24021385. [PMID: 36674899 PMCID: PMC9867088 DOI: 10.3390/ijms24021385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Ligand of Numb-protein X 2 (LNX2) is an E3 ubiquitin ligase that is known to regulate Notch signaling by participating in NUMB protein degradation. Notch signaling is important for differentiation and proliferation in mammals, and plays a significant role in blastocyst formation during early embryonic development. In this study, we investigated Lnx2 in mouse preimplantation embryos. Expression analysis showed that Lnx2 is expressed in oocytes and preimplantation embryos. Lnx2-knockdown embryos normally progress to the morula stage, but the majority of them do not develop into normal blastocysts. Transcript analysis revealed that the expression levels of genes critical for cell lineage specification, including octamer-binding transcription factor 4 (Oct4), are increased in Lnx2 knockdown embryos. Furthermore, the expression levels of Notch and Hippo signaling-related genes are also increased by Lnx2 knockdown. Collectively, our results show that Lnx2 is important for blastocyst formation in mice, suggest that this may act via lineage specification of inner cell mass, and further show that Lnx2 may be involved in transcriptionally regulating various genes implicated in early embryonic development.
Collapse
Affiliation(s)
- Seung-Jae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jaehwan Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
- Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Gwidong Han
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Seung-Pyo Hong
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Dayeon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Chunghee Cho
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
- Correspondence:
| |
Collapse
|
52
|
Goissis MD, Cibelli JB. Early Cell Specification in Mammalian Fertilized and Somatic Cell Nuclear Transfer Embryos. Methods Mol Biol 2023; 2647:59-81. [PMID: 37041329 DOI: 10.1007/978-1-0716-3064-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Early cell specification in mammalian preimplantation embryos is an intricate cellular process that leads to coordinated spatial and temporal expression of specific genes. Proper segregation into the first two cell lineages, the inner cell mass (ICM) and the trophectoderm (TE), is imperative for developing the embryo proper and the placenta, respectively. Somatic cell nuclear transfer (SCNT) allows the formation of a blastocyst containing both ICM and TE from a differentiated cell nucleus, which means that this differentiated genome must be reprogrammed to a totipotent state. Although blastocysts can be generated efficiently through SCNT, the full-term development of SCNT embryos is impaired mostly due to placental defects. In this review, we examine the early cell fate decisions in fertilized embryos and compare them to observations in SCNT-derived embryos, in order to understand if these processes are affected by SCNT and could be responsible for the low success of reproductive cloning.
Collapse
Affiliation(s)
- Marcelo D Goissis
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, SP, Brazil.
| | - Jose B Cibelli
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
53
|
Schnirman RE, Kuo SJ, Kelly RC, Yamaguchi TP. The role of Wnt signaling in the development of the epiblast and axial progenitors. Curr Top Dev Biol 2023; 153:145-180. [PMID: 36967193 DOI: 10.1016/bs.ctdb.2023.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Understanding how the body plan is established during embryogenesis remains a fundamental biological question. The Wnt/β-catenin signaling pathway plays a crucial and highly conserved role in body plan formation, functioning to polarize the primary anterior-posterior (AP) or head-to-tail body axis in most metazoans. In this chapter, we focus on the roles that the mammalian Wnt/β-catenin pathway plays to prepare the pluripotent epiblast for gastrulation, and to elicit the emergence of multipotent axial progenitors from the caudal epiblast. Interactions between Wnt and retinoic acid (RA), another powerful family of developmental signaling molecules, in axial progenitors will also be discussed. Gastrulation movements and somitogenesis result in the anterior displacement of the RA source (the rostral somites and lateral plate mesoderm (LPM)), from the posterior Wnt source (the primitive streak (PS)), leading to the establishment of antiparallel gradients of RA and Wnt that control the self-renewal and successive differentiation of neck, trunk and tail progenitors.
Collapse
Affiliation(s)
| | - Samuel J Kuo
- NCI-Frederick, NIH, Frederick, MD, United States
| | - Ryan C Kelly
- NCI-Frederick, NIH, Frederick, MD, United States
| | | |
Collapse
|
54
|
Chowdhary S, Hadjantonakis AK. Journey of the mouse primitive endoderm: from specification to maturation. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210252. [PMID: 36252215 PMCID: PMC9574636 DOI: 10.1098/rstb.2021.0252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022] Open
Abstract
The blastocyst is a conserved stage and distinct milestone in the development of the mammalian embryo. Blastocyst stage embryos comprise three cell lineages which arise through two sequential binary cell fate specification steps. In the first, extra-embryonic trophectoderm (TE) cells segregate from inner cell mass (ICM) cells. Subsequently, ICM cells acquire a pluripotent epiblast (Epi) or extra-embryonic primitive endoderm (PrE, also referred to as hypoblast) identity. In the mouse, nascent Epi and PrE cells emerge in a salt-and-pepper distribution in the early blastocyst and are subsequently sorted into adjacent tissue layers by the late blastocyst stage. Epi cells cluster at the interior of the ICM, while PrE cells are positioned on its surface interfacing the blastocyst cavity, where they display apicobasal polarity. As the embryo implants into the maternal uterus, cells at the periphery of the PrE epithelium, at the intersection with the TE, break away and migrate along the TE as they mature into parietal endoderm (ParE). PrE cells remaining in association with the Epi mature into visceral endoderm. In this review, we discuss our current understanding of the PrE from its specification to its maturation. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Sayali Chowdhary
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
55
|
Pfeffer PL. Alternative mammalian strategies leading towards gastrulation: losing polar trophoblast (Rauber's layer) or gaining an epiblast cavity. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210254. [PMID: 36252216 PMCID: PMC9574635 DOI: 10.1098/rstb.2021.0254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 05/29/2022] [Indexed: 11/12/2022] Open
Abstract
Using embryological data from 14 mammalian orders, the hypothesis is presented that in placental mammals, epiblast cavitation and polar trophoblast loss are alternative developmental solutions to shield the central epiblast from extraembryonic signalling. It is argued that such reciprocal signalling between the edge of the epiblast and the adjoining polar trophoblast or edge of the mural trophoblast or with the amniotic ectoderm is necessary for the induction of gastrulation. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Peter L. Pfeffer
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington 6010, New Zealand
| |
Collapse
|
56
|
Moauro A, Kruger RE, O'Hagan D, Ralston A. Fluorescent Reporters Distinguish Stem Cell Colony Subtypes During Somatic Cell Reprogramming. Cell Reprogram 2022; 24:353-362. [PMID: 36342671 PMCID: PMC9805857 DOI: 10.1089/cell.2022.0071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Somatic cell reprogramming was first developed to create induced pluripotent stem (iPS) cells. Since that time, the highly dynamic and heterogeneous nature of the reprogramming process has come to be appreciated. Remarkably, a distinct type of stem cell, called induced extraembryonic endoderm (iXEN) stem cell, is also formed during reprogramming of mouse somatic cells by ectopic expression of the transcription factors, OCT4, SOX2, KLF4, and MYC (OSKM). The mechanisms leading somatic cells to adopt differing stem cell fates are challenging to resolve given that formation of either stem cell type is slow, stochastic, and rare. For these reasons, fluorescent gene expression reporters have provided an invaluable tool for revealing the path from the somatic state to pluripotency. However, no such reporters have been established for comparable studies of iXEN cell formation. In this study, we examined the expression of multiple fluorescent reporters, including Nanog, Oct4, and the endodermal genes, Gata4 and Gata6-alone and in combination, during reprogramming. We show that only simultaneous evaluation of Nanog and Gata4 reliably distinguishes iPS and iXEN cell colonies during reprogramming.
Collapse
Affiliation(s)
- Alexandra Moauro
- Molecular, Cellular and Integrative Physiology Ph.D. Program, Michigan State University, East Lansing, Michigan, USA
- D.O.-Ph.D. Program, Michigan State University, East Lansing, Michigan, USA
| | - Robin E. Kruger
- Cell and Molecular Biology Ph.D. Program, Michigan State University, East Lansing, Michigan, USA
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, USA
| | - Daniel O'Hagan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Amy Ralston
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
57
|
Karvas RM, David L, Theunissen TW. Accessing the human trophoblast stem cell state from pluripotent and somatic cells. Cell Mol Life Sci 2022; 79:604. [PMID: 36434136 PMCID: PMC9702929 DOI: 10.1007/s00018-022-04549-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022]
Abstract
Trophoblasts are specialized epithelial cells that perform critical functions during blastocyst implantation and mediate maternal-fetal communication during pregnancy. However, our understanding of human trophoblast biology remains limited since access to first-trimester placental tissue is scarce, especially between the first and fourth weeks of development. Moreover, animal models inadequately recapitulate unique aspects of human placental physiology. In the mouse system, the isolation of self-renewing trophoblast stem cells has provided a valuable in vitro model system of placental development, but the derivation of analogous human trophoblast stem cells (hTSCs) has remained elusive until recently. Building on a landmark study reporting the isolation of bona fide hTSCs from blastocysts and first-trimester placental tissues in 2018, several groups have developed methods to derive hTSCs from pluripotent and somatic cell sources. Here we review the biological and molecular properties that define authentic hTSCs, the trophoblast potential of distinct pluripotent states, and methods for inducing hTSCs in somatic cells by direct reprogramming. The generation of hTSCs from pluripotent and somatic cells presents exciting opportunities to elucidate the molecular mechanisms of human placental development and the etiology of pregnancy-related diseases.
Collapse
Affiliation(s)
- Rowan M Karvas
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Laurent David
- Nantes Université, CHU Nantes, INSERM, CR2TI, UMR 1064, 44000, Nantes, France.
- Nantes Université, CHU Nantes, INSERM, CNRS, Biocore, US 016, UAR 3556, 44000, Nantes, France.
| | - Thorold W Theunissen
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
58
|
Sathyanarayanan A, Ing-Simmons E, Chen R, Jeong HW, Ozguldez HO, Fan R, Duethorn B, Kim KP, Kim YS, Stehling M, Brinkmann H, Schöler HR, Adams RH, Vaquerizas JM, Bedzhov I. Early developmental plasticity enables the induction of an intermediate extraembryonic cell state. SCIENCE ADVANCES 2022; 8:eabl9583. [PMID: 36332016 PMCID: PMC9635831 DOI: 10.1126/sciadv.abl9583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/19/2022] [Indexed: 05/23/2023]
Abstract
Two fundamental elements of pre-implantation embryogenesis are cells' intrinsic self-organization program and their developmental plasticity, which allows embryos to compensate for alterations in cell position and number; yet, these elements are still poorly understood. To be able to decipher these features, we established culture conditions that enable the two fates of blastocysts' extraembryonic lineages-the primitive endoderm and the trophectoderm-to coexist. This plasticity emerges following the mechanisms of the first lineage segregation in the mouse embryo, and it manifests as an extended potential for extraembryonic chimerism during the pre-implantation embryogenesis. Moreover, this shared state enables robust assembly into higher-order blastocyst-like structures, thus combining both the cell fate plasticity and self-organization features of the early extraembryonic lineages.
Collapse
Affiliation(s)
- Anusha Sathyanarayanan
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Elizabeth Ing-Simmons
- Regulatory Genomics Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Rui Chen
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Hyun-Woo Jeong
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
- Faculty of Medicine, University of Münster, Röntgenstrasse 20, 48149 Münster, Germany
| | - Hatice O. Ozguldez
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Rui Fan
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Binyamin Duethorn
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Kee-Pyo Kim
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, 222 Banpo-daero Seocho-gu, Seoul 06591, Korea
| | - Yung Su Kim
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Martin Stehling
- Flow Cytometry Unit, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Heike Brinkmann
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Hans R. Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Ralf H. Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
- Faculty of Medicine, University of Münster, Röntgenstrasse 20, 48149 Münster, Germany
| | - Juan M. Vaquerizas
- Regulatory Genomics Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Ivan Bedzhov
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| |
Collapse
|
59
|
Bou G, Guo J, Liu S, Guo S, Davaakhuu G, Lv Q, Xue B, Qiao S, Lv J, Weng X, Zhao J, Zhang Y, He Y, Zhang H, Chai Z, Liu Y, Yu Y, Qu B, Sun R, Shen X, Lei L, Liu Z. OCT4 expression transactivated by GATA protein is essential for non-rodent trophectoderm early development. Cell Rep 2022; 41:111644. [DOI: 10.1016/j.celrep.2022.111644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/26/2022] [Accepted: 10/20/2022] [Indexed: 11/23/2022] Open
|
60
|
Takeichi M. Cell sorting in vitro and in vivo: How are cadherins involved? Semin Cell Dev Biol 2022; 147:2-11. [PMID: 36376196 DOI: 10.1016/j.semcdb.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Animal tissues are composed of heterogenous cells, and their sorting into different compartments of the tissue is a pivotal process for organogenesis. Cells accomplish sorting by themselves-it is well known that singly dispersed cells can self-organize into tissue-like structures in vitro. Cell sorting is regulated by both biochemical and physical mechanisms. Adhesive proteins connect cells together, selecting particular partners through their specific binding properties, while physical forces, such as cell-cortical tension, control the cohesiveness between cells and in turn cell assembly patterns in mechanical ways. These processes cooperate in determining the overall cell sorting behavior. This article focuses on the 'cadherin' family of adhesion molecules as a biochemical component of cell-cell interactions, addressing how they regulate cell sorting by themselves or by cooperating with other factors. New ideas beyond the classical models of cell sorting are also discussed.
Collapse
|
61
|
Krawczyk K, Wilczak K, Szczepańska K, Maleszewski M, Suwińska A. Paracrine interactions through FGFR1 and FGFR2 receptors regulate the development of preimplantation mouse chimaeric embryo. Open Biol 2022; 12:220193. [PMID: 36382369 PMCID: PMC9667143 DOI: 10.1098/rsob.220193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The preimplantation mammalian embryo has the potential to self-organize, allowing the formation of a correctly patterned embryo despite experimental perturbation. To better understand the mechanisms controlling the developmental plasticity of the early mouse embryo, we used chimaeras composed of an embryonic day (E)3.5 or E4.5 inner cell mass (ICM) and cleaving 8-cell embryo. We revealed that the restricted potential of the ICM can be compensated for by uncommitted 8-cell embryo-derived blastomeres, thus leading to the formation of a normal chimaeric blastocyst that can undergo full development. However, whether such chimaeras maintain developmental competence depends on the presence or specific orientation of the polarized primitive endoderm layer in the ICM component. We also demonstrated that downregulated FGFR1 and FGFR2 expression in 8-cell embryos disturbs intercellular interactions between both components and results in an inverse proportion of primitive endoderm and epiblast within the resulting ICM and abnormal embryo development. This finding suggests that FGF signalling is a key part of the regulatory mechanism that assigns cells to a given lineage and ensures the proper composition of the blastocyst, which is a prerequisite for its successful implantation in the uterus and for further development.
Collapse
Affiliation(s)
- Katarzyna Krawczyk
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Katarzyna Wilczak
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Katarzyna Szczepańska
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Marek Maleszewski
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Aneta Suwińska
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
62
|
Vrij EJ, Scholte op Reimer YS, Fuentes LR, Guerreiro IM, Holzmann V, Aldeguer JF, Sestini G, Koo BK, Kind J, van Blitterswijk CA, Rivron NC. A pendulum of induction between the epiblast and extra-embryonic endoderm supports post-implantation progression. Development 2022; 149:dev192310. [PMID: 35993866 PMCID: PMC9534490 DOI: 10.1242/dev.192310] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/23/2022] [Indexed: 08/17/2023]
Abstract
Embryogenesis is supported by dynamic loops of cellular interactions. Here, we create a partial mouse embryo model to elucidate the principles of epiblast (Epi) and extra-embryonic endoderm co-development (XEn). We trigger naive mouse embryonic stem cells to form a blastocyst-stage niche of Epi-like cells and XEn-like cells (3D, hydrogel free and serum free). Once established, these two lineages autonomously progress in minimal medium to form an inner pro-amniotic-like cavity surrounded by polarized Epi-like cells covered with visceral endoderm (VE)-like cells. The progression occurs through reciprocal inductions by which the Epi supports the primitive endoderm (PrE) to produce a basal lamina that subsequently regulates Epi polarization and/or cavitation, which, in return, channels the transcriptomic progression to VE. This VE then contributes to Epi bifurcation into anterior- and posterior-like states. Similarly, boosting the formation of PrE-like cells within blastoids supports developmental progression. We argue that self-organization can arise from lineage bifurcation followed by a pendulum of induction that propagates over time.
Collapse
Affiliation(s)
- Erik J. Vrij
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, Netherlands
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Yvonne S. Scholte op Reimer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Laury Roa Fuentes
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, Netherlands
| | - Isabel Misteli Guerreiro
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, UtrechtUppsalalaan 8, 3584 CT Utrecht, Netherlands
| | - Viktoria Holzmann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Javier Frias Aldeguer
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, UtrechtUppsalalaan 8, 3584 CT Utrecht, Netherlands
| | - Giovanni Sestini
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Jop Kind
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, UtrechtUppsalalaan 8, 3584 CT Utrecht, Netherlands
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, Netherlands
| | - Clemens A. van Blitterswijk
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, Netherlands
| | - Nicolas C. Rivron
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
63
|
Andreu MJ, Alvarez-Franco A, Portela M, Gimenez-Llorente D, Cuadrado A, Badia-Careaga C, Tiana M, Losada A, Manzanares M. Establishment of 3D chromatin structure after fertilization and the metabolic switch at the morula-to-blastocyst transition require CTCF. Cell Rep 2022; 41:111501. [DOI: 10.1016/j.celrep.2022.111501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 07/22/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
|
64
|
Dubois A, Vincenti L, Chervova A, Greenberg MVC, Vandormael-Pournin S, Bourc'his D, Cohen-Tannoudji M, Navarro P. H3K9 tri-methylation at Nanog times differentiation commitment and enables the acquisition of primitive endoderm fate. Development 2022; 149:276335. [PMID: 35976266 PMCID: PMC9482333 DOI: 10.1242/dev.201074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022]
Abstract
Mouse embryonic stem cells have an inherent propensity to explore gene regulatory states associated with either self-renewal or differentiation. This property depends on ERK, which downregulates pluripotency genes such as Nanog. Here, we aimed at identifying repressive histone modifications that would mark Nanog for inactivation in response to ERK activity. We found that the transcription factor ZFP57, which binds methylated DNA to nucleate heterochromatin, is recruited upstream of Nanog, within a region enriched for histone H3 lysine 9 tri-methylation (H3K9me3). Whereas before differentiation H3K9me3 at Nanog depends on ERK, in somatic cells it becomes independent of ERK. Moreover, the loss of H3K9me3 at Nanog, induced by deleting the region or by knocking out DNA methyltransferases or Zfp57, is associated with reduced heterogeneity of NANOG, delayed commitment into differentiation and impaired ability to acquire a primitive endoderm fate. Hence, a network axis centred on DNA methylation, ZFP57 and H3K9me3 links Nanog regulation to ERK activity for the timely establishment of new cell identities. We suggest that establishment of irreversible H3K9me3 at specific master regulators allows the acquisition of particular cell fates during differentiation. Summary: A regulatory axis integrating ERK, ZFP57, DNA and H3K9 methylation underlies the transition of Nanog expression from heterogeneous and dynamic to irreversibly silenced, enabling differentiation commitment and primitive endoderm specification.
Collapse
Affiliation(s)
- Agnès Dubois
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit 1 Department of Developmental and Stem Cell Biology , , F-75015 Paris , France
| | - Loris Vincenti
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit 1 Department of Developmental and Stem Cell Biology , , F-75015 Paris , France
| | - Almira Chervova
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit 1 Department of Developmental and Stem Cell Biology , , F-75015 Paris , France
| | - Maxim V. C. Greenberg
- Department of Genetics and Developmental Biology, Institut Curie, PSL Research University, INSERM, CNRS 2 , 75005 Paris , France
- Université Paris Cité, CNRS, Institut Jacques Monod 3 , F-75013 Paris , France
| | - Sandrine Vandormael-Pournin
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit 1 Department of Developmental and Stem Cell Biology , , F-75015 Paris , France
| | - Déborah Bourc'his
- Department of Genetics and Developmental Biology, Institut Curie, PSL Research University, INSERM, CNRS 2 , 75005 Paris , France
| | - Michel Cohen-Tannoudji
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit 1 Department of Developmental and Stem Cell Biology , , F-75015 Paris , France
| | - Pablo Navarro
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit 1 Department of Developmental and Stem Cell Biology , , F-75015 Paris , France
| |
Collapse
|
65
|
Perera M, Nissen SB, Proks M, Pozzi S, Monteiro RS, Trusina A, Brickman JM. Transcriptional heterogeneity and cell cycle regulation as central determinants of primitive endoderm priming. eLife 2022; 11:78967. [PMID: 35969041 PMCID: PMC9417417 DOI: 10.7554/elife.78967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
During embryonic development cells acquire identity as they proliferate, implying that an intrinsic facet of cell fate choice requires coupling lineage decisions to cell division. How is the cell cycle regulated to promote or suppress heterogeneity and differentiation? We explore this question combining time lapse imaging with single-cell RNA-seq in the contexts of self-renewal, priming, and differentiation of mouse embryonic stem cells (ESCs) towards the Primitive Endoderm (PrE) lineage. Since ESCs are derived from the inner cell mass (ICM) of the mammalian blastocyst, ESCs in standard culture conditions are transcriptionally heterogeneous containing dynamically interconverting subfractions primed for either of the two ICM lineages, Epiblast and PrE. Here, we find that differential regulation of cell cycle can tip the balance between these primed populations, such that naïve ESC culture promotes Epiblast-like expansion and PrE differentiation stimulates the selective survival and proliferation of PrE-primed cells. In endoderm differentiation, this change is accompanied by a counter-intuitive increase in G1 length, also observed in vivo. While fibroblast growth factor/extracellular signal-regulated kinase (FGF/ERK) signalling is a key regulator of ESC differentiation and PrE specification, we find it is not just responsible for ESCs heterogeneity, but also the inheritance of similar cell cycles between sisters and cousins. Taken together, our results indicate a tight relationship between transcriptional heterogeneity and cell cycle regulation in lineage specification, with primed cell populations providing a pool of flexible cell types that can be expanded in a lineage-specific fashion while allowing plasticity during early determination.
Collapse
Affiliation(s)
- Marta Perera
- The Novo Nordisk Foundation Center for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Martin Proks
- The Novo Nordisk Foundation Center for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sara Pozzi
- The Novo Nordisk Foundation Center for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rita Soares Monteiro
- The Novo Nordisk Foundation Center for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ala Trusina
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Joshua M Brickman
- The Novo Nordisk Foundation Center for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
66
|
Fan W, Huang T, Wu T, Bai H, Kawahara M, Takahashi M. Zona pellucida removal by acid Tyrode's solution affects pre- and post-implantation development and gene expression in mouse embryos. Biol Reprod 2022; 107:1228-1241. [PMID: 35948000 DOI: 10.1093/biolre/ioac155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/07/2022] [Accepted: 07/26/2022] [Indexed: 11/15/2022] Open
Abstract
The zona pellucida (ZP) plays a crucial role in the process of fertilization to early embryonic development, including cellular arrangement and communication between blastomeres. However, little is known regarding the role of the ZP in pre- and post-implantation embryonic development associated with gene expression. We investigated the effect of zona pellucida removal (ZPR) on pre- and post-implantation development of mouse embryos. After ZPR of 2-cell stage embryos was performed by acid Tyrode's solution, which is commonly used for ZP treatment, compaction occurred earlier in ZP-free (ZF) than ZP-intact (ZI) embryos. In addition, the expression of differentiation-related genes in the inner cell mass (ICM) and trophectoderm (TE) was significantly altered in ZF blastocyst compared with ZI embryos. After embryo transfer, the rate of implantation and live fetuses was lower in ZF embryos than in control embryos, whereas the fetal weight at E17.5 was not different. However, placental weight significantly increased in ZF embryos. RNA-seq analysis of the placenta showed that a total of 473 differentially expressed genes (DEGs) significantly influenced the biological process. The present study suggests that ZPR by acid Tyrode's solution at the 2-cell stage not only disturbs the expression pattern of ICM/TE-related genes but affects the post-implantation development of mouse embryos. Overall, this study provides deeper insight into the role of the ZP during early embryonic development and the viability of post-implantation development.
Collapse
Affiliation(s)
- Weihong Fan
- Graduate School of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Tengda Huang
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Tian Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, P.R. China
| | - Hanako Bai
- Graduate School of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan.,Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Manabu Kawahara
- Graduate School of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan.,Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Masashi Takahashi
- Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan.,Graduate School of Global Food Resources, Hokkaido University, Hokkaido 060-8589, Japan
| |
Collapse
|
67
|
Robert C, Prista von Bonhorst F, De Decker Y, Dupont G, Gonze D. Initial source of heterogeneity in a model for cell fate decision in the early mammalian embryo. Interface Focus 2022; 12:20220010. [PMID: 35865503 PMCID: PMC9184963 DOI: 10.1098/rsfs.2022.0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/12/2022] [Indexed: 08/30/2024] Open
Abstract
During development, cells from a population of common progenitors evolve towards different fates characterized by distinct levels of specific transcription factors, a process known as cell differentiation. This evolution is governed by gene regulatory networks modulated by intercellular signalling. In order to evolve towards distinct fates, cells forming the population of common progenitors must display some heterogeneity. We applied a modelling approach to obtain insights into the possible sources of cell-to-cell variability initiating the specification of cells of the inner cell mass into epiblast or primitive endoderm cells in early mammalian embryo. At the single-cell level, these cell fates correspond to three possible steady states of the model. A combination of numerical simulations and bifurcation analyses predicts that the behaviour of the model is preserved with respect to the source of variability and that cell-cell coupling induces the emergence of multiple steady states associated with various cell fate configurations, and to a distribution of the levels of expression of key transcription factors. Statistical analysis of these time-dependent distributions reveals differences in the evolutions of the variance-to-mean ratios of key variables of the system, depending on the simulated source of variability, and, by comparison with experimental data, points to the rate of synthesis of the key transcription factor NANOG as a likely initial source of heterogeneity.
Collapse
Affiliation(s)
- Corentin Robert
- Unit of Theoretical Chronobiology and Université Libre de Bruxelles (ULB), Brussels CP 231, Belgium
- Nonlinear Physical Chemistry Unit, Université Libre de Bruxelles (ULB), Brussels CP 231, Belgium
| | | | - Yannick De Decker
- Nonlinear Physical Chemistry Unit, Université Libre de Bruxelles (ULB), Brussels CP 231, Belgium
| | - Geneviève Dupont
- Unit of Theoretical Chronobiology and Université Libre de Bruxelles (ULB), Brussels CP 231, Belgium
| | - Didier Gonze
- Unit of Theoretical Chronobiology and Université Libre de Bruxelles (ULB), Brussels CP 231, Belgium
| |
Collapse
|
68
|
Lee M, Oh JN, Choe GC, Kim SH, Choi KH, Lee DK, Jeong J, Lee CK. Changes in OCT4 expression play a crucial role in the lineage specification and proliferation of preimplantation porcine blastocysts. Cell Prolif 2022; 55:e13313. [PMID: 35883229 DOI: 10.1111/cpr.13313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVES Curiosity about the role of OCT4, a core transcription factor that maintains inner cell mass (ICM) formation during preimplantation embryogenesis and the pluripotent state in embryonic development, has long been an issue. OCT4 has a species-specific expression pattern in mammalian preimplantation embryogenesis and is known to play an essential role in ICM formation. However, there is a need to study new roles for OCT4-related pluripotency networks and second-cell fate decisions. MATERIALS AND METHODS To determine the functions of OCT4 in lineage specification and embryo proliferation, loss- and gain-of-function studies were performed on porcine parthenotes using microinjection. Then, we performed immunocytochemistry and quantitative real-time polymerase chain reaction (PCR) to examine the association of OCT4 with other lineage markers and its effect on downstream genes. RESULTS In OCT4-targeted late blastocysts, SOX2, NANOG, and SOX17 positive cells were decreased, and the total cell number of blastocysts was also decreased. According to real-time PCR analysis, NANOG, SOX17, and CDK4 were decreased in OCT4-targeted blastocysts, but trophoblast-related genes were increased. In OCT4-overexpressing blastocysts, SOX2 and NANOG positive cells increased, while SOX17 positive cells decreased, and while total cell number of blastocysts increased. As a result of real-time PCR analysis, the expression of SOX2, NANOG, and CDK4 was increased, but the expression of SOX17 was decreased. CONCLUSION Taken together, our results demonstrated that OCT4 leads pluripotency in porcine blastocysts and also plays an important role in ICM formation, secondary cell fate decision, and cell proliferation.
Collapse
Affiliation(s)
- Mingyun Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jong-Nam Oh
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Gyung Cheol Choe
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Seung-Hun Kim
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Kwang-Hwan Choi
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Dong-Kyung Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jinsol Jeong
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, South Korea
| |
Collapse
|
69
|
Thompson JJ, Lee DJ, Mitra A, Frail S, Dale RK, Rocha PP. Extensive co-binding and rapid redistribution of NANOG and GATA6 during emergence of divergent lineages. Nat Commun 2022; 13:4257. [PMID: 35871075 PMCID: PMC9308780 DOI: 10.1038/s41467-022-31938-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 07/11/2022] [Indexed: 11/26/2022] Open
Abstract
Fate-determining transcription factors (TFs) can promote lineage-restricted transcriptional programs from common progenitor states. The inner cell mass (ICM) of mouse blastocysts co-expresses the TFs NANOG and GATA6, which drive the bifurcation of the ICM into either the epiblast (Epi) or the primitive endoderm (PrE), respectively. Here, we induce GATA6 in embryonic stem cells-that also express NANOG-to characterize how a state of co-expression of opposing TFs resolves into divergent lineages. Surprisingly, we find that GATA6 and NANOG co-bind at the vast majority of Epi and PrE enhancers, a phenomenon we also observe in blastocysts. The co-bound state is followed by eviction and repression of Epi TFs, and quick remodeling of chromatin and enhancer-promoter contacts thus establishing the PrE lineage while repressing the Epi fate. We propose that co-binding of GATA6 and NANOG at shared enhancers maintains ICM plasticity and promotes the rapid establishment of Epi- and PrE-specific transcriptional programs.
Collapse
Affiliation(s)
- Joyce J Thompson
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Daniel J Lee
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Apratim Mitra
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sarah Frail
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Pedro P Rocha
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
- National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
70
|
Watts JL, Ralston A. The fetal lineage is susceptible to Zika virus infection within days of fertilization. Development 2022; 149:276104. [PMID: 35900100 PMCID: PMC9382896 DOI: 10.1242/dev.200501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/09/2022] [Indexed: 11/20/2022]
Abstract
Adults contracting Zika virus (ZIKV) typically exhibit mild symptoms, yet ZIKV infection of pregnant individuals can cause miscarriage or birth defects in their offspring. Many studies have focused on maternal-to-fetal ZIKV transmission via blood and placenta. Notably, however, ZIKV is also transmitted sexually, raising the possibility that ZIKV could infect the embryo shortly after fertilization, long before the placenta is established. Here, we evaluate the consequences of ZIKV infection in mouse embryos during the first few days of embryogenesis. We show that divergent strains of ZIKV can infect the fetal lineage and can cause developmental arrest, raising concern for the developmental consequences of sexual ZIKV transmission. This article has an associated ‘The people behind the papers’ interview. Summary: Mouse preimplantation embryos are vulnerable to Zika virus-induced lethality even in the presence of the zona pellucida, highlighting a potential risk of sexually transmitted infection in early pregnancy.
Collapse
Affiliation(s)
- Jennifer L. Watts
- Molecular, Cellular and Integrative Physiology Graduate Program, Michigan State University 1 , East Lansing , MI 48824 , USA
- Michigan State University 2 Reproductive and Developmental Biology Training Program , , East Lansing , MI 48824 , USA
- Michigan State University 3 Department of Biochemistry and Molecular Biology , , East Lansing , MI 48824 , USA
| | - Amy Ralston
- Michigan State University 2 Reproductive and Developmental Biology Training Program , , East Lansing , MI 48824 , USA
- Michigan State University 3 Department of Biochemistry and Molecular Biology , , East Lansing , MI 48824 , USA
| |
Collapse
|
71
|
Nichols J, Lima A, Rodríguez TA. Cell competition and the regulative nature of early mammalian development. Cell Stem Cell 2022; 29:1018-1030. [PMID: 35803224 DOI: 10.1016/j.stem.2022.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The mammalian embryo exhibits a remarkable plasticity that allows it to correct for the presence of aberrant cells, adjust its growth so that its size is in accordance with its developmental stage, or integrate cells of another species to form fully functional organs. Here, we will discuss the contribution that cell competition, a quality control that eliminates viable cells that are less fit than their neighbors, makes to this plasticity. We will do this by reviewing the roles that cell competition plays in the early mammalian embryo and how they contribute to ensure normal development of the embryo.
Collapse
Affiliation(s)
- Jennifer Nichols
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK; Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK.
| | - Ana Lima
- National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| | - Tristan A Rodríguez
- National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
72
|
Minchiotti G, D’Aniello C, Fico A, De Cesare D, Patriarca EJ. Capturing Transitional Pluripotency through Proline Metabolism. Cells 2022; 11:cells11142125. [PMID: 35883568 PMCID: PMC9323356 DOI: 10.3390/cells11142125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/03/2022] Open
Abstract
In this paper, we summarize the current knowledge of the role of proline metabolism in the control of the identity of Embryonic Stem Cells (ESCs). An imbalance in proline metabolism shifts mouse ESCs toward a stable naïve-to-primed intermediate state of pluripotency. Proline-induced cells (PiCs), also named primitive ectoderm-like cells (EPLs), are phenotypically metastable, a trait linked to a rapid and reversible relocalization of E-cadherin from the plasma membrane to intracellular membrane compartments. The ESC-to-PiC transition relies on the activation of Erk and Tgfβ/Activin signaling pathways and is associated with extensive remodeling of the transcriptome, metabolome and epigenome. PiCs maintain several properties of naïve pluripotency (teratoma formation, blastocyst colonization and 3D gastruloid development) and acquire a few traits of primed cells (flat-shaped colony morphology, aerobic glycolysis metabolism and competence for primordial germ cell fate). Overall, the molecular and phenotypic features of PiCs resemble those of an early-primed state of pluripotency, providing a robust model to study the role of metabolic perturbations in pluripotency and cell fate decisions.
Collapse
|
73
|
Allègre N, Chauveau S, Dennis C, Renaud Y, Meistermann D, Estrella LV, Pouchin P, Cohen-Tannoudji M, David L, Chazaud C. NANOG initiates epiblast fate through the coordination of pluripotency genes expression. Nat Commun 2022; 13:3550. [PMID: 35729116 PMCID: PMC9213552 DOI: 10.1038/s41467-022-30858-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 05/24/2022] [Indexed: 12/20/2022] Open
Abstract
The epiblast is the source of all mammalian embryonic tissues and of pluripotent embryonic stem cells. It differentiates alongside the primitive endoderm in a “salt and pepper” pattern from inner cell mass (ICM) progenitors during the preimplantation stages through the activity of NANOG, GATA6 and the FGF pathway. When and how epiblast lineage specification is initiated is still unclear. Here, we show that the coordinated expression of pluripotency markers defines epiblast identity. Conversely, ICM progenitor cells display random cell-to-cell variability in expression of various pluripotency markers, remarkably dissimilar from the epiblast signature and independently from NANOG, GATA6 and FGF activities. Coordination of pluripotency markers expression fails in Nanog and Gata6 double KO (DKO) embryos. Collectively, our data suggest that NANOG triggers epiblast specification by ensuring the coordinated expression of pluripotency markers in a subset of cells, implying a stochastic mechanism. These features are likely conserved, as suggested by analysis of human embryos. Pluripotent epiblast cells segregate from primitive endoderm in the blastocyst inner cell mass (ICM). Here the authors show that mosaic epiblast differentiation during mouse and human preimplantation development initiates stochastically in ICM progenitors, independently of the FGF pathway, and requires NANOG activity
Collapse
Affiliation(s)
- Nicolas Allègre
- Université Clermont Auvergne, CNRS, INSERM, GReD Institute, Faculté de Médecine, F-63000, Clermont-Ferrand, France
| | - Sabine Chauveau
- Université Clermont Auvergne, CNRS, INSERM, GReD Institute, Faculté de Médecine, F-63000, Clermont-Ferrand, France
| | - Cynthia Dennis
- Université Clermont Auvergne, CNRS, INSERM, GReD Institute, Faculté de Médecine, F-63000, Clermont-Ferrand, France
| | - Yoan Renaud
- Université Clermont Auvergne, CNRS, INSERM, GReD Institute, Faculté de Médecine, F-63000, Clermont-Ferrand, France.,Byonet, 19 rue du courait, F-63200, Riom, France
| | - Dimitri Meistermann
- Université de Nantes, CHU Nantes, INSERM, CR2TI, UMR 1064, ITUN, F-44000, Nantes, France.,Université de Nantes, CNRS, LS2N, CNRS UMR 6004, F-44000, Nantes, France
| | - Lorena Valverde Estrella
- Université Clermont Auvergne, CNRS, INSERM, GReD Institute, Faculté de Médecine, F-63000, Clermont-Ferrand, France
| | - Pierre Pouchin
- Université Clermont Auvergne, CNRS, INSERM, GReD Institute, Faculté de Médecine, F-63000, Clermont-Ferrand, France
| | - Michel Cohen-Tannoudji
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, F-75015, Paris, France
| | - Laurent David
- Université de Nantes, CHU Nantes, INSERM, CR2TI, UMR 1064, ITUN, F-44000, Nantes, France.,Université de Nantes, CHU Nantes, INSERM, CNRS, UMS Biocore, INSERM UMS 016, CNRS UMS 3556, F-44000, Nantes, France
| | - Claire Chazaud
- Université Clermont Auvergne, CNRS, INSERM, GReD Institute, Faculté de Médecine, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
74
|
Shendy NAM, Zimmerman MW, Abraham BJ, Durbin AD. Intrinsic transcriptional heterogeneity in neuroblastoma guides mechanistic and therapeutic insights. Cell Rep Med 2022; 3:100632. [PMID: 35584622 PMCID: PMC9133465 DOI: 10.1016/j.xcrm.2022.100632] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/24/2022] [Accepted: 04/20/2022] [Indexed: 12/20/2022]
Abstract
Cell state is controlled by master transcription factors (mTFs) that determine the cellular gene expression program. Cancer cells acquire dysregulated gene expression programs by mutational and non-mutational processes. Intratumoral heterogeneity can result from cells displaying distinct mTF-regulated cell states, which co-exist within the tumor. One archetypal tumor associated with transcriptionally regulated heterogeneity is high-risk neuroblastoma (NB). Patients with NB have poor overall survival despite intensive therapies, and relapsed patients are commonly refractory to treatment. The cellular populations that comprise NB are marked by different cohorts of mTFs and differential sensitivity to conventional therapies. Recent studies have highlighted mechanisms by which NB cells dynamically shift the cell state with treatment, revealing new opportunities to control the cellular response to treatment by manipulating cell-state-defining transcriptional programs. Here, we review recent advances in understanding transcriptionally defined cancer heterogeneity. We offer challenges to the field to encourage translation of basic science into clinical benefit.
Collapse
Affiliation(s)
- Noha A M Shendy
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mark W Zimmerman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Brian J Abraham
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Adam D Durbin
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
75
|
Yuen AC, Prasad AR, Fernandes VM, Amoyel M. A kinase translocation reporter reveals real-time dynamics of ERK activity in Drosophila. Biol Open 2022; 11:bio059364. [PMID: 35608229 PMCID: PMC9167624 DOI: 10.1242/bio.059364] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular signal-regulated kinase (ERK) lies downstream of a core signalling cascade that controls all aspects of development and adult homeostasis. Recent developments have led to new tools to image and manipulate the pathway. However, visualising ERK activity in vivo with high temporal resolution remains a challenge in Drosophila. We adapted a kinase translocation reporter (KTR) for use in Drosophila, which shuttles out of the nucleus when phosphorylated by ERK. We show that ERK-KTR faithfully reports endogenous ERK signalling activity in developing and adult tissues, and that it responds to genetic perturbations upstream of ERK. Using ERK-KTR in time-lapse imaging, we made two novel observations: firstly, sustained hyperactivation of ERK by expression of dominant-active epidermal growth factor receptor raised the overall level but did not alter the kinetics of ERK activity; secondly, the direction of migration of retinal basal glia correlated with their ERK activity levels, suggesting an explanation for the heterogeneity in ERK activity observed in fixed tissue. Our results show that KTR technology can be applied in Drosophila to monitor ERK activity in real-time and suggest that this modular tool can be further adapted to study other kinases. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | | | | | - Marc Amoyel
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
76
|
Pluripotent Core in Bovine Embryos: A Review. Animals (Basel) 2022; 12:ani12081010. [PMID: 35454256 PMCID: PMC9032358 DOI: 10.3390/ani12081010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Early development in mammals is characterized by the ability of each cell to produce a complete organism plus the extraembryonic, or placental, cells, defined as pluripotency. During subsequent development, pluripotency is lost, and cells begin to differentiate to a particular cell fate. This review summarizes the current knowledge of pluripotency features of bovine embryos cultured in vitro, focusing on the core of pluripotency genes (OCT4, NANOG, SOX2, and CDX2), and main chemical strategies for controlling pluripotent networks during early development. Finally, we discuss the applicability of manipulating pluripotency during the morula to blastocyst transition in cattle species.
Collapse
|
77
|
Nelson CM. Mechanical Control of Cell Differentiation: Insights from the Early Embryo. Annu Rev Biomed Eng 2022; 24:307-322. [PMID: 35385680 DOI: 10.1146/annurev-bioeng-060418-052527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Differentiation is the process by which a cell activates the expression of tissue-specific genes, downregulates the expression of potency markers, and acquires the phenotypic characteristics of its mature fate. The signals that regulate differentiation include biochemical and mechanical factors within the surrounding microenvironment. We describe recent breakthroughs in our understanding of the mechanical control mechanisms that regulate differentiation, with a specific emphasis on the differentiation events that build the early mouse embryo. Engineering approaches to reproducibly mimic the mechanical regulation of differentiation will permit new insights into early development and applications in regenerative medicine. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Celeste M Nelson
- Departments of Chemical & Biological Engineering and Molecular Biology, Princeton University, Princeton, New Jersey USA;
| |
Collapse
|
78
|
Tsume-Kajioka M, Kimura-Yoshida C, Mochida K, Ueda Y, Matsuo I. BET proteins are essential for the specification and maintenance of the epiblast lineage in mouse preimplantation embryos. BMC Biol 2022; 20:64. [PMID: 35264162 PMCID: PMC8905768 DOI: 10.1186/s12915-022-01251-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/09/2022] [Indexed: 11/23/2022] Open
Abstract
Background During mammalian preimplantation development, as the fertilized egg develops and differentiates, three cell lineages become specified: trophectoderm (TE), epiblast, and primitive endoderm (PrE). Through two steps of cell fate decisions, 16-cell blastomeres develop into TE and an inner cell mass (ICM), and thereafter, the latter differentiates into pluripotent epiblast and PrE. Although bromodomain and extra-terminal domain (BET) proteins, such as BRD4, are necessary for the transcriptional activation of genes involved in the maintenance of mouse embryonic stem cells by occupying their enhancers, their roles in the development of mouse preimplantation are unknown. Results To evaluate the effect of BET protein deficiency on cell lineage formation, we cultured preimplantation embryos in the presence of JQ1, which blocks the binding of BET bromodomains to acetylated-histones. We found BET inhibition blocked the transcriptional activation of genes, such as Nanog, Otx2, and Sox2, important for the formation of the epiblast lineage in blastocysts. Expression studies with lineage-specific markers in morulae and blastocysts revealed BET proteins were essential for the specification and maintenance of the epiblast lineage but were dispensable for the formation of primarily extraembryonic TE and PrE lineages. Additional Ingenuity Pathway Analysis and expression studies with a transcriptionally active form of signal transducer and activator of the transcription 3 (STAT3) suggested BET-dependent activation was partly associated with the STAT3-dependent pathway to maintain the epiblast lineage. To identify BET proteins involved in the formation of the epiblast lineage, we analyzed mutant embryos deficient in Brd4, Brd2, and double mutants. Abolishment of NANOG-positive epiblast cells was only evident in Brd4/Brd2 double-deficient morulae. Thus, the phenotype of JQ1-treated embryos is reproduced not by a Brd4- or Brd2-single deficiency, but only Brd4/Brd2-double deficiency, demonstrating the redundant roles of BRD2 and BRD4 in the specification of the epiblast lineage. Conclusions BET proteins are essential to the specification and maintenance of the epiblast lineage by activating lineage-specific core transcription factors during mouse preimplantation development. Among BET proteins, BRD4 plays a central role and BRD2 a complementary role in the specification and maintenance of epiblast lineages. Additionally, BET-dependent maintenance of the epiblast lineage may be partly associated with the STAT3-dependent pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01251-0.
Collapse
Affiliation(s)
- Mami Tsume-Kajioka
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka, 594-1101, Japan
| | - Chiharu Kimura-Yoshida
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka, 594-1101, Japan
| | - Kyoko Mochida
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka, 594-1101, Japan
| | - Yoko Ueda
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka, 594-1101, Japan
| | - Isao Matsuo
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka, 594-1101, Japan. .,Department of Pediatric and Neonatal-Perinatal Research, Osaka Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
79
|
Yanagida A, Corujo-Simon E, Revell CK, Sahu P, Stirparo GG, Aspalter IM, Winkel AK, Peters R, De Belly H, Cassani DAD, Achouri S, Blumenfeld R, Franze K, Hannezo E, Paluch EK, Nichols J, Chalut KJ. Cell surface fluctuations regulate early embryonic lineage sorting. Cell 2022; 185:777-793.e20. [PMID: 35196500 PMCID: PMC8896887 DOI: 10.1016/j.cell.2022.01.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 10/22/2021] [Accepted: 01/26/2022] [Indexed: 01/24/2023]
Abstract
In development, lineage segregation is coordinated in time and space. An important example is the mammalian inner cell mass, in which the primitive endoderm (PrE, founder of the yolk sac) physically segregates from the epiblast (EPI, founder of the fetus). While the molecular requirements have been well studied, the physical mechanisms determining spatial segregation between EPI and PrE remain elusive. Here, we investigate the mechanical basis of EPI and PrE sorting. We find that rather than the differences in static cell surface mechanical parameters as in classical sorting models, it is the differences in surface fluctuations that robustly ensure physical lineage sorting. These differential surface fluctuations systematically correlate with differential cellular fluidity, which we propose together constitute a non-equilibrium sorting mechanism for EPI and PrE lineages. By combining experiments and modeling, we identify cell surface dynamics as a key factor orchestrating the correct spatial segregation of the founder embryonic lineages.
Collapse
Affiliation(s)
- Ayaka Yanagida
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Elena Corujo-Simon
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Christopher K Revell
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, UK
| | - Preeti Sahu
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| | - Giuliano G Stirparo
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Irene M Aspalter
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Alex K Winkel
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Ruby Peters
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Henry De Belly
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Davide A D Cassani
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Sarra Achouri
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Raphael Blumenfeld
- Gonville & Caius College, University of Cambridge, Trinity St., Cambridge CB2 1TA, UK
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Edouard Hannezo
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| | - Ewa K Paluch
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| | - Jennifer Nichols
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| | - Kevin J Chalut
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| |
Collapse
|
80
|
Al-Mousawi J, Boskovic A. Transcriptional and epigenetic control of early life cell fate decisions. Curr Opin Oncol 2022; 34:148-154. [PMID: 35025815 DOI: 10.1097/cco.0000000000000814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Global epigenetic reprogramming of the parental genomes after fertilization ensures the establishment of genome organization permissive for cell specialization and differentiation during development. In this review, we highlight selected, well-characterized relationships between epigenetic factors and transcriptional cell fate regulators during the initial stages of mouse development. RECENT FINDINGS Blastomeres of the mouse embryo are characterized by atypical and dynamic histone modification arrangements, noncoding RNAs and DNA methylation profiles. Moreover, asymmetries in epigenomic patterning between embryonic cells arise as early as the first cleavage, with potentially instructive roles during the first lineage allocations in the mouse embryo. Although it is widely appreciated that transcription factors and developmental signaling pathways play a crucial role in cell fate specification at the onset of development, it is increasingly clear that their function is tightly connected to the underlying epigenetic status of the embryonic cells in which they act. SUMMARY Findings on the interplay between genetic, epigenetic and environmental factors during reprogramming and differentiation in the embryo are crucial for understanding the molecular underpinnings of disease processes, particularly tumorigenesis, which is characterized by global epigenetic rewiring and progressive loss of cellular identity.
Collapse
Affiliation(s)
- Jasmina Al-Mousawi
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo, Italy
| | | |
Collapse
|
81
|
Zuo ZY, Yang GH, Wang HY, Liu SY, Zhang YJ, Cai Y, Chen F, Dai H, Xiao Y, Cheng MB, Huang Y, Zhang Y. Klf4 methylated by Prmt1 restrains the commitment of primitive endoderm. Nucleic Acids Res 2022; 50:2005-2018. [PMID: 35137179 PMCID: PMC8887470 DOI: 10.1093/nar/gkac054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/11/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022] Open
Abstract
The second cell fate decision in the early stage of mammalian embryonic development is pivotal; however, the underlying molecular mechanism is largely unexplored. Here, we report that Prmt1 acts as an important regulator in primitive endoderm (PrE) formation. First, Prmt1 depletion promotes PrE gene expression in mouse embryonic stem cells (ESCs). Single-cell RNA sequencing and flow cytometry assays demonstrated that Prmt1 depletion in mESCs contributes to an emerging cluster, where PrE genes are upregulated significantly. Furthermore, the efficiency of extraembryonic endoderm stem cell induction increased in Prmt1-depleted ESCs. Second, the pluripotency factor Klf4 methylated at Arg396 by Prmt1 is required for recruitment of the repressive mSin3a/HDAC complex to silence PrE genes. Most importantly, an embryonic chimeric assay showed that Prmt1 inhibition and mutated Klf4 at Arg 396 induce the integration of mouse ESCs into the PrE lineage. Therefore, we reveal a regulatory mechanism for cell fate decisions centered on Prmt1-mediated Klf4 methylation.
Collapse
Affiliation(s)
- Zhen-yu Zuo
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Guang-hui Yang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Hai-yu Wang
- State Key Laboratory of Medical Molecular Biology, Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Shu-yu Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yan-jun Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yun Cai
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Fei Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Hui Dai
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yi Xiao
- State Key Laboratory of Medical Molecular Biology, Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Mo-bin Cheng
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yue Huang
- State Key Laboratory of Medical Molecular Biology, Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Ye Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
82
|
Hou X, Cai C, He Y, An S, Zhao S, Sun H, Yang Y. Protective Effect of Minocycline Hydrochloride on the Mouse Embryonic Development Against Suboptimal Environment. Front Cell Dev Biol 2022; 10:799042. [PMID: 35178387 PMCID: PMC8844553 DOI: 10.3389/fcell.2022.799042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Numerous studies have reported how inner cell mass (ICM) and trophectoderm (TE) was determined during the process of early mouse embryonic development from zygotes into organized blastocysts, however, multiple mysteries still remain. It is noteworthy that pluripotent stem cells (PSCs), which are derived from embryos at different developmental stages, have identical developmental potential and molecular characteristics to their counterpart embryos. Advances of PSCs research may provide us a distinctive perspective of deciphering embryonic development mechanism. Minocycline hydrochloride (MiH), a critical component for maintaining medium of novel type of extended pluripotent stem cells, which possesses developmental potential similar to both ICM and TE, can be substituted with genetic disruption of Parp1 in our previous study. Though Parp1-deficient mouse ESCs are more susceptible to differentiate into trophoblast derivatives, what role of MiH plays in mouse preimplantation embryonic development is still a subject of concern. Here, by incubating mouse zygotes in a medium containing MiH till 100 h after fertilization, we found that MiH could slow down embryonic developmental kinetics during cleavage stage without impairing blastocyst formation potential. Olaparib and Talazoparib, two FDA approved PARP1 inhibitors, exhibited similar effects on mouse embryos, indicating the aforementioned effects of MiH were through inhibiting of PARP1. Besides, we showed an embryonic protective role of MiH against suboptimal environment including long term exposure to external environment and H2O2 treatment, which could mimic inevitable manipulation during embryo culture procedures in clinical IVF laboratory. To our knowledge, it is not only for the first time to study MiH in the field of embryo development, but also for the first time to propose MiH as a protective supplement for embryo culture, giving the way to more studies on exploring the multiple molecular mechanisms on embryonic development that might be useful in assisted reproductive technology.
Collapse
Affiliation(s)
- Xiaojing Hou
- State Key Laboratory of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Changming Cai
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yuanlin He
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Shiyu An
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Shuqin Zhao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Hao Sun
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yang Yang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
83
|
Thowfeequ S, Stower MJ, Srinivas S. Epithelial dynamics during early mouse development. Curr Opin Genet Dev 2022; 72:110-117. [PMID: 34929609 PMCID: PMC7615355 DOI: 10.1016/j.gde.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/03/2022]
Abstract
The first epithelia to arise in an organism face the challenge of maintaining the integrity of the newly formed tissue, while exhibiting the behavioral flexibility required for morphogenetic processes to occur effectively. Epithelial cells integrate biochemical and biomechanical cues, both intrinsic and extrinsic, in order to bring about the molecular changes which determine their morphology, behavior and fate. In this review we highlight recent advances in our understanding of the various dynamic processes that the emergent epithelial cells undergo during the first seven days of mouse development and speculate what the future holds in understanding the mechanistic bases for these processes through integrative approaches.
Collapse
Affiliation(s)
- Shifaan Thowfeequ
- University of Oxford, Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford, OX1 3QX, UK
| | - Matthew J Stower
- University of Oxford, Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford, OX1 3QX, UK
| | - Shankar Srinivas
- University of Oxford, Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford, OX1 3QX, UK.
| |
Collapse
|
84
|
Ford MJ, Yamanaka Y. Reprogramming Mouse Oviduct Epithelial Cells Using In Vivo Electroporation and CRISPR/Cas9-Mediated Genetic Manipulation. Methods Mol Biol 2022; 2429:367-377. [PMID: 35507174 DOI: 10.1007/978-1-0716-1979-7_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Advances in gene editing tools such as CRISPR/Cas9 have made precise in vivo gene editing possible, opening up avenues of research into somatic cell reprograming to study adult stem cells, homeostasis, and malignant transformation. Here we describe a method for CRISPR/Cas9 mediated in vivo gene editing, in combination with Cre-based lineage tracing via electroporation in the mouse oviduct. This method facilitates the delivery of multiple plasmids into oviduct epithelial cells, sufficient for studying homeostasis and generation of high-grade serous ovarian cancer (HGSOC) models.
Collapse
Affiliation(s)
- Matthew J Ford
- Department of Human Genetics, Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Yojiro Yamanaka
- Department of Human Genetics, Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
85
|
Suzuki D, Okura K, Nagakura S, Ogawa H. CDX2 downregulation in mouse mural trophectoderm during peri-implantation is heteronomous, dependent on the YAP-TEAD pathway and controlled by estrogen-induced factors. Reprod Med Biol 2022; 21:e12446. [PMID: 35386376 PMCID: PMC8967280 DOI: 10.1002/rmb2.12446] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 01/31/2023] Open
Abstract
Purpose To investigate the transition of CDX2 expression patterns in mouse trophectoderm (TE) and its regulatory mechanisms during implantation. Methods Mouse E3.5-4.5 blastocysts were used to immunostain CDX2, YAP, TEAD4, and ESRRB. Endogenous estrogen signaling was perturbed by administrating estrogen receptor antagonist ICI 182,780 or ovariectomy followed by administration of progesterone and β-estradiol to elucidate the relationship between the transition of CDX2 expression patterns and ovarian estrogen-dependent change in the uterine environment. Results CDX2 expression was gradually downregulated in the mural TE from E4.0 in vivo, whereas CDX2 downregulation was not observed in blastocysts cultured in KSOM. Fetal bovine serum (FBS) supplementation in KSOM induced CDX2 downregulation independently of blastocyst attachment to dishes. CDX2 downregulation in the mural TE was repressed by administration of ICI 182,780 or by ovariectomy, and administration of β-estradiol into ovariectomized mice retriggered CDX2 downregulation. Furthermore, Cdx2 expression in the mural TE might be controlled by the YAP-TEAD pathway. Conclusions CDX2 downregulation was induced heteronomously in the mural TE from E4.0 by uterus-derived factors, the secretion of which was stimulated by ovarian estrogen.
Collapse
Affiliation(s)
- Daisuke Suzuki
- Department of BioscienceTokyo University of AgricultureTokyoJapan
- Research Fellow of Japan Society for the Promotion of ScienceTokyoJapan
| | - Keitaro Okura
- Department of BioscienceTokyo University of AgricultureTokyoJapan
| | - Seina Nagakura
- Department of BioscienceTokyo University of AgricultureTokyoJapan
| | - Hidehiko Ogawa
- Department of BioscienceTokyo University of AgricultureTokyoJapan
| |
Collapse
|
86
|
Filimonow K, de la Fuente R. Specification and role of extraembryonic endoderm lineages in the periimplantation mouse embryo. Theriogenology 2021; 180:189-206. [PMID: 34998083 DOI: 10.1016/j.theriogenology.2021.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
During mammalian embryo development, the correct formation of the first extraembryonic endoderm lineages is fundamental for successful development. In the periimplantation blastocyst, the primitive endoderm (PrE) is formed, which gives rise to the parietal endoderm (PE) and visceral endoderm (VE) during further developmental stages. These PrE-derived lineages show significant differences in both their formation and roles. Whereas differentiation of the PE as a migratory lineage has been suggested to represent the first epithelial-to-mesenchymal transition (EMT) in development, organisation of the epithelial VE is of utmost importance for the correct axis definition and patterning of the embryo. Despite sharing a common origin, the striking differences between the VE and PE are indicative of their distinct roles in early development. However, there is a significant disparity in the current knowledge of each lineage, which reflects the need for a deeper understanding of their respective specification processes. In this review, we will discuss the origin and maturation of the PrE, PE, and VE during the periimplantation period using the mouse model as an example. Additionally, we consider the latest findings regarding the role of the PrE-derived lineages and early embryo morphogenesis, as obtained from the most recent in vitro models.
Collapse
Affiliation(s)
- Katarzyna Filimonow
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland.
| | - Roberto de la Fuente
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland.
| |
Collapse
|
87
|
X-chromosome reactivation: a concise review. Biochem Soc Trans 2021; 49:2797-2805. [PMID: 34821360 DOI: 10.1042/bst20210777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022]
Abstract
Mammalian females (XX) silence transcription on one of the two X chromosomes to compensate the expression dosage with males (XY). This process - named X-chromosome inactivation - entails a variety of epigenetic modifications that act synergistically to maintain silencing and make it heritable through cell divisions. Genes along the inactive X chromosome are, indeed, refractory to reactivation. Nonetheless, X-chromosome reactivation can occur alongside with epigenome reprogramming or by perturbing multiple silencing pathways. Here we review the events associated with X-chromosome reactivation during in vivo and in vitro reprogramming and highlight recent efforts in inducing Xi reactivation by molecular perturbations. This provides us with a first understanding of the mechanisms underlying X-chromosome reactivation, which could be tackled for therapeutic purposes.
Collapse
|
88
|
Kim EJY, Sorokin L, Hiiragi T. ECM-integrin signalling instructs cellular position-sensing to pattern the early mouse embryo. Development 2021; 149:273721. [PMID: 34908109 PMCID: PMC8881741 DOI: 10.1242/dev.200140] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/03/2021] [Indexed: 11/20/2022]
Abstract
Development entails patterned emergence of diverse cell types within the embryo. In mammals, cells positioned inside the embryo give rise to the inner cell mass (ICM), which eventually forms the embryo itself. Yet, the molecular basis of how these cells recognise their ‘inside’ position to instruct their fate is unknown. Here, we show that provision of extracellular matrix (ECM) to isolated embryonic cells induces ICM specification and alters the subsequent spatial arrangement between epiblast (EPI) and primitive endoderm (PrE) cells that emerge within the ICM. Notably, this effect is dependent on integrin β1 activity and involves apical-to-basal conversion of cell polarity. We demonstrate that ECM-integrin activity is sufficient for ‘inside’ positional signalling and is required for correct EPI/PrE patterning. Thus, our findings highlight the significance of ECM-integrin adhesion in enabling position sensing by cells to achieve tissue patterning. Summary: The importance of patterned cell-extracellular matrix (ECM) interactions in early mouse development: ECM signals can modulate both cell fate and the relative spatial arrangement between cells.
Collapse
Affiliation(s)
- Esther Jeong Yoon Kim
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Universität Heidelberg, Heidelberg, Germany
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry and Cells in Motion Interfaculty Centre (CiMIC), University of Muenster, Germany
| | - Takashi Hiiragi
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| |
Collapse
|
89
|
Effect of NANOG overexpression on porcine embryonic development and pluripotent embryonic stem cell formation in vitro. ZYGOTE 2021; 30:324-329. [PMID: 34879895 DOI: 10.1017/s0967199421000678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The efficiency of establishing pig pluripotent embryonic stem cell clones from blastocysts is still low. The transcription factor Nanog plays an important role in maintaining the pluripotency of mouse and human embryonic stem cells. Adequate activation of Nanog has been reported to increase the efficiency of establishing mouse embryonic stem cells from 3.5 day embryos. In mouse, Nanog starts to be strongly expressed as early as the morula stage, whereas in porcine NANOG starts to be strongly expressed by the late blastocyst stage. Therefore, here we investigated both the effect of expressing NANOG on porcine embryos early from the morula stage and the efficiency of porcine pluripotent embryonic stem cell clone formation. Compared with intact porcine embryos, NANOG overexpression induced a lower blastocyst rate, and did not show any advantages for embryo development and pluripotent embryonic stem cell line formation. These results indicated that, although NANOG is important pluripotent factor, NANOG overexpression is unnecessary for the initial formation of porcine pluripotent embryonic stem cell clones in vitro.
Collapse
|
90
|
Zhang ML, Jin Y, Zhao LH, Zhang J, Zhou M, Li MS, Yin ZB, Wang ZX, Zhao LX, Li XH, Li RF. Derivation of Porcine Extra-Embryonic Endoderm Cell Lines Reveals Distinct Signaling Pathway and Multipotency States. Int J Mol Sci 2021; 22:ijms222312918. [PMID: 34884722 PMCID: PMC8657774 DOI: 10.3390/ijms222312918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 11/16/2022] Open
Abstract
The inner cell mass of the pre-implantation blastocyst consists of the epiblast and hypoblast from which embryonic stem cells (ESCs) and extra-embryonic endoderm (XEN) stem cells, respectively, can be derived. Importantly, each stem cell type retains the defining properties and lineage restriction of its in vivo tissue origin. We have developed a novel approach for deriving porcine XEN (pXEN) cells via culturing the blastocysts with a chemical cocktail culture system. The pXEN cells were positive for XEN markers, including Gata4, Gata6, Sox17, and Sall4, but not for pluripotent markers Oct4, Sox2, and Nanog. The pXEN cells also retained the ability to undergo visceral endoderm (VE) and parietal endoderm (PE) differentiation in vitro. The maintenance of pXEN required FGF/MEK+TGFβ signaling pathways. The pXEN cells showed a stable phenotype through more than 50 passages in culture and could be established repeatedly from blastocysts or converted from the naïve-like ESCs established in our lab. These cells provide a new tool for exploring the pathways of porcine embryo development and differentiation and providing further reference to the establishment of porcine ESCs with potency of germline chimerism and gamete development.
Collapse
Affiliation(s)
- Man-Ling Zhang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010020, China; (M.-L.Z.); (J.Z.); (L.-X.Z.)
| | - Yong Jin
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (Y.J.); (L.-H.Z.); (M.Z.); (M.-S.L.); (Z.-B.Y.)
| | - Li-Hua Zhao
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (Y.J.); (L.-H.Z.); (M.Z.); (M.-S.L.); (Z.-B.Y.)
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Jia Zhang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010020, China; (M.-L.Z.); (J.Z.); (L.-X.Z.)
| | - Meng Zhou
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (Y.J.); (L.-H.Z.); (M.Z.); (M.-S.L.); (Z.-B.Y.)
| | - Mei-Shuang Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (Y.J.); (L.-H.Z.); (M.Z.); (M.-S.L.); (Z.-B.Y.)
| | - Zhi-Bao Yin
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (Y.J.); (L.-H.Z.); (M.Z.); (M.-S.L.); (Z.-B.Y.)
| | - Zi-Xin Wang
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot 011517, China;
| | - Li-Xia Zhao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010020, China; (M.-L.Z.); (J.Z.); (L.-X.Z.)
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot 011517, China;
| | - Xi-He Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010020, China; (M.-L.Z.); (J.Z.); (L.-X.Z.)
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot 011517, China;
- Correspondence: (X.-H.L.); (R.-F.L.)
| | - Rong-Feng Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (Y.J.); (L.-H.Z.); (M.Z.); (M.-S.L.); (Z.-B.Y.)
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
- Correspondence: (X.-H.L.); (R.-F.L.)
| |
Collapse
|
91
|
Krawczyk K, Kosyl E, Częścik-Łysyszyn K, Wyszomirski T, Maleszewski M. Developmental capacity is unevenly distributed among single blastomeres of 2-cell and 4-cell stage mouse embryos. Sci Rep 2021; 11:21422. [PMID: 34728646 PMCID: PMC8563712 DOI: 10.1038/s41598-021-00834-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/14/2021] [Indexed: 11/25/2022] Open
Abstract
During preimplantation development, mammalian embryo cells (blastomeres) cleave, gradually losing their potencies and differentiating into three primary cell lineages: epiblast (EPI), trophectoderm (TE), and primitive endoderm (PE). The exact moment at which cells begin to vary in their potency for multilineage differentiation still remains unknown. We sought to answer the question of whether single cells isolated from 2- and 4-cell embryos differ in their ability to generate the progenitors and cells of blastocyst lineages. We revealed that twins were often able to develop into blastocysts containing inner cell masses (ICMs) with PE and EPI cells. Despite their capacity to create a blastocyst, the twins differed in their ability to produce EPI, PE, and TE cell lineages. In contrast, quadruplets rarely formed normal blastocysts, but instead developed into blastocysts with ICMs composed of only one cell lineage or completely devoid of an ICM altogether. We also showed that quadruplets have unequal capacities to differentiate into TE, PE, and EPI lineages. These findings could explain the difficulty of creating monozygotic twins and quadruplets from 2- and 4-cell stage mouse embryos.
Collapse
Affiliation(s)
- Katarzyna Krawczyk
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Ewa Kosyl
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Karolina Częścik-Łysyszyn
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Tomasz Wyszomirski
- Department of Ecology and Environmental Protection, Institute of Environmental Biology, Faculty of Biology, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Marek Maleszewski
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
92
|
Senft AD, Macfarlan TS. Transposable elements shape the evolution of mammalian development. Nat Rev Genet 2021; 22:691-711. [PMID: 34354263 DOI: 10.1038/s41576-021-00385-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 02/06/2023]
Abstract
Transposable elements (TEs) promote genetic innovation but also threaten genome stability. Despite multiple layers of host defence, TEs actively shape mammalian-specific developmental processes, particularly during pre-implantation and extra-embryonic development and at the maternal-fetal interface. Here, we review how TEs influence mammalian genomes both directly by providing the raw material for genetic change and indirectly via co-evolving TE-binding Krüppel-associated box zinc finger proteins (KRAB-ZFPs). Throughout mammalian evolution, individual activities of ancient TEs were co-opted to enable invasive placentation that characterizes live-born mammals. By contrast, the widespread activity of evolutionarily young TEs may reflect an ongoing co-evolution that continues to impact mammalian development.
Collapse
Affiliation(s)
- Anna D Senft
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD, USA.
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
93
|
Raina D, Bahadori A, Stanoev A, Protzek M, Koseska A, Schröter C. Cell-cell communication through FGF4 generates and maintains robust proportions of differentiated cell types in embryonic stem cells. Development 2021; 148:dev199926. [PMID: 34651174 PMCID: PMC8602943 DOI: 10.1242/dev.199926] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/04/2021] [Indexed: 01/20/2023]
Abstract
During embryonic development and tissue homeostasis, reproducible proportions of differentiated cell types are specified from populations of multipotent precursor cells. Molecular mechanisms that enable both robust cell-type proportioning despite variable initial conditions in the precursor cells, and the re-establishment of these proportions upon perturbations in a developing tissue remain to be characterized. Here, we report that the differentiation of robust proportions of epiblast-like and primitive endoderm-like cells in mouse embryonic stem cell cultures emerges at the population level through cell-cell communication via a short-range fibroblast growth factor 4 (FGF4) signal. We characterize the molecular and dynamical properties of the communication mechanism and show how it controls both robust cell-type proportioning from a wide range of experimentally controlled initial conditions, as well as the autonomous re-establishment of these proportions following the isolation of one cell type. The generation and maintenance of reproducible proportions of discrete cell types is a new function for FGF signaling that might operate in a range of developing tissues.
Collapse
Affiliation(s)
| | | | | | | | | | - Christian Schröter
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| |
Collapse
|
94
|
Teng K, Ford MJ, Harwalkar K, Li Y, Pacis AS, Farnell D, Yamanaka N, Wang YC, Badescu D, Ton Nu TN, Ragoussis J, Huntsman DG, Arseneau J, Yamanaka Y. Modeling High-Grade Serous Ovarian Carcinoma Using a Combination of In Vivo Fallopian Tube Electroporation and CRISPR-Cas9-Mediated Genome Editing. Cancer Res 2021; 81:5147-5160. [PMID: 34301761 PMCID: PMC9397628 DOI: 10.1158/0008-5472.can-20-1518] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 09/16/2020] [Accepted: 07/21/2021] [Indexed: 01/07/2023]
Abstract
Ovarian cancer is the most lethal gynecologic cancer to date. High-grade serous ovarian carcinoma (HGSOC) accounts for most ovarian cancer cases, and it is most frequently diagnosed at advanced stages. Here, we developed a novel strategy to generate somatic ovarian cancer mouse models using a combination of in vivo electroporation and CRISPR-Cas9-mediated genome editing. Mutation of tumor suppressor genes associated with HGSOC in two different combinations (Brca1, Tp53, Pten with and without Lkb1) resulted in successfully generation of HGSOC, albeit with different latencies and pathophysiology. Implementing Cre lineage tracing in this system enabled visualization of peritoneal micrometastases in an immune-competent environment. In addition, these models displayed copy number alterations and phenotypes similar to human HGSOC. Because this strategy is flexible in selecting mutation combinations and targeting areas, it could prove highly useful for generating mouse models to advance the understanding and treatment of ovarian cancer. SIGNIFICANCE: This study unveils a new strategy to generate genetic mouse models of ovarian cancer with high flexibility in selecting mutation combinations and targeting areas.
Collapse
Affiliation(s)
- Katie Teng
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Matthew J Ford
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Keerthana Harwalkar
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - YuQi Li
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Alain S Pacis
- Canadian Centre for Computational Genomics, McGill University, Montreal, Canada
| | - David Farnell
- Department of Pathology, Laboratory Medicine, University of British Columbia, Vancouver, British Columbia
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia
| | - Nobuko Yamanaka
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Yu-Chang Wang
- Department of Human Genetics, McGill University, Montreal, Canada
- McGill University and Genome Centre, Montreal, Canada
| | - Dunarel Badescu
- Department of Human Genetics, McGill University, Montreal, Canada
- McGill University and Genome Centre, Montreal, Canada
| | - Tuyet Nhung Ton Nu
- Department of Pathology, McGill University Hospital Research Institute, Montreal, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, Montreal, Canada
- McGill University and Genome Centre, Montreal, Canada
- Department of Bioengineering, McGill University, Montreal, Canada
| | - David G Huntsman
- Department of Pathology, Laboratory Medicine, University of British Columbia, Vancouver, British Columbia
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia
| | - Jocelyne Arseneau
- Department of Pathology, McGill University Hospital Research Institute, Montreal, Canada
| | - Yojiro Yamanaka
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada.
- Department of Human Genetics, McGill University, Montreal, Canada
| |
Collapse
|
95
|
Duan K, Si CY, Zhao SM, Ai ZY, Niu BH, Yin Y, Xiang LF, Ding H, Zheng Y. The Long Terminal Repeats of ERV6 Are Activated in Pre-Implantation Embryos of Cynomolgus Monkey. Cells 2021; 10:cells10102710. [PMID: 34685690 PMCID: PMC8534818 DOI: 10.3390/cells10102710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022] Open
Abstract
Precise gene regulation is critical during embryo development. Long terminal repeat elements (LTRs) of endogenous retroviruses (ERVs) are dynamically expressed in blastocysts of mammalian embryos. However, the expression pattern of LTRs in monkey blastocyst is still unknown. By single-cell RNA-sequencing (seq) data of cynomolgus monkeys, we found that LTRs of several ERV families, including MacERV6, MacERV3, MacERV2, MacERVK1, and MacERVK2, were highly expressed in pre-implantation embryo cells including epiblast (EPI), trophectoderm (TrB), and primitive endoderm (PrE), but were depleted in post-implantation. We knocked down MacERV6-LTR1a in cynomolgus monkeys with a short hairpin RNA (shRNA) strategy to examine the potential function of MacERV6-LTR1a in the early development of monkey embryos. The silence of MacERV6-LTR1a mainly postpones the differentiation of TrB, EPI, and PrE cells in embryos at day 7 compared to control. Moreover, we confirmed MacERV6-LTR1a could recruit Estrogen Related Receptor Beta (ESRRB), which plays an important role in the maintenance of self-renewal and pluripotency of embryonic and trophoblast stem cells through different signaling pathways including FGF and Wnt signaling pathways. In summary, these results suggest that MacERV6-LTR1a is involved in gene regulation of the pre-implantation embryo of the cynomolgus monkeys.
Collapse
Affiliation(s)
- Kui Duan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (K.D.); (C.-Y.S.); (S.-M.Z.); (Z.-Y.A.); (B.-H.N.); (Y.Y.); (L.-F.X.); (H.D.)
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Provincial Academy of Science and Technology, Kunming 650500, China
| | - Chen-Yang Si
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (K.D.); (C.-Y.S.); (S.-M.Z.); (Z.-Y.A.); (B.-H.N.); (Y.Y.); (L.-F.X.); (H.D.)
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Provincial Academy of Science and Technology, Kunming 650500, China
| | - Shu-Mei Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (K.D.); (C.-Y.S.); (S.-M.Z.); (Z.-Y.A.); (B.-H.N.); (Y.Y.); (L.-F.X.); (H.D.)
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Provincial Academy of Science and Technology, Kunming 650500, China
| | - Zong-Yong Ai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (K.D.); (C.-Y.S.); (S.-M.Z.); (Z.-Y.A.); (B.-H.N.); (Y.Y.); (L.-F.X.); (H.D.)
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Provincial Academy of Science and Technology, Kunming 650500, China
| | - Bao-Hua Niu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (K.D.); (C.-Y.S.); (S.-M.Z.); (Z.-Y.A.); (B.-H.N.); (Y.Y.); (L.-F.X.); (H.D.)
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Provincial Academy of Science and Technology, Kunming 650500, China
| | - Yu Yin
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (K.D.); (C.-Y.S.); (S.-M.Z.); (Z.-Y.A.); (B.-H.N.); (Y.Y.); (L.-F.X.); (H.D.)
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Provincial Academy of Science and Technology, Kunming 650500, China
| | - Li-Feng Xiang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (K.D.); (C.-Y.S.); (S.-M.Z.); (Z.-Y.A.); (B.-H.N.); (Y.Y.); (L.-F.X.); (H.D.)
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Provincial Academy of Science and Technology, Kunming 650500, China
| | - Hao Ding
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (K.D.); (C.-Y.S.); (S.-M.Z.); (Z.-Y.A.); (B.-H.N.); (Y.Y.); (L.-F.X.); (H.D.)
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Provincial Academy of Science and Technology, Kunming 650500, China
| | - Yun Zheng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (K.D.); (C.-Y.S.); (S.-M.Z.); (Z.-Y.A.); (B.-H.N.); (Y.Y.); (L.-F.X.); (H.D.)
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Provincial Academy of Science and Technology, Kunming 650500, China
- Correspondence:
| |
Collapse
|
96
|
Herrera-Delgado E, Maître JL. A theoretical understanding of mammalian preimplantation development. Cells Dev 2021; 168:203752. [PMID: 34634520 DOI: 10.1016/j.cdev.2021.203752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 11/28/2022]
Abstract
The blastocyst has long been a hallmark system of study in developmental biology due to its importance in mammalian development and clinical relevance for assisted reproductive technologies. In recent years, the blastocyst is emerging as a system of study for mathematical modelling. In this review, we compile, to our knowledge, all models describing preimplantation development. Coupled with experiments, these models have provided insight regarding the morphogenesis and cell-fate specification throughout preimplantation development. In the case of cell-fate specification, theoretical models have provided mechanisms explaining how proportion of cell types are established and maintained when confronted to perturbations. For cell-shape based models, they have described quantitatively how mechanical forces sculpt the blastocyst and even predicted how morphogenesis could be manipulated. As theoretical biology develops, we believe the next critical stage in modelling involves an integration of cell fate and mechanics to provide integrative models of development at distinct spatiotemporal scales. We discuss how, building on a balanced base of mechanical and chemical models, the preimplantation embryo will play a key role in integrating these two faces of the same coin.
Collapse
Affiliation(s)
| | - Jean-Léon Maître
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France.
| |
Collapse
|
97
|
Cell fate determination and Hippo signaling pathway in preimplantation mouse embryo. Cell Tissue Res 2021; 386:423-444. [PMID: 34586506 DOI: 10.1007/s00441-021-03530-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
First cell fate determination plays crucial roles in cell specification during early phases of embryonic development. Three classical concepts have been proposed to explain the lineage specification mechanism of the preimplantation embryo: inside-outside, pre-patterning, and polarity models. Transcriptional effectors of the Hippo signal pathway are YAP and TAZ activators that can create a shuttle between the cytoplasm and the nucleus. Despite different localizations of YAP in the cell, it determines the fate of ICM and TE. How the decisive cue driving factors that determine YAP localization are coordinated remains a central unanswered question. How can an embryonic cell find its position? The objective of this review is to summarize the molecular and mechanical aspects in cell fate decision during mouse preimplantation embryonic development. The findings will reveal the relationship between cell-cell adhesion, cell polarity, and determination of cell fate during early embryonic development in mice and elucidate the inducing/inhibiting mechanisms that are involved in cell specification following zygotic genome activation and compaction processes. With future studies, new biophysical and chemical cues in the cell fate determination will impart significant spatiotemporal effects on early embryonic development. The achieved knowledge will provide important information to the development of new approaches to be used in infertility treatment and increase the success of pregnancy.
Collapse
|
98
|
Akizawa H, Saito S, Kohri N, Furukawa E, Hayashi Y, Bai H, Nagano M, Yanagawa Y, Tsukahara H, Takahashi M, Kagawa S, Kawahara-Miki R, Kobayashi H, Kono T, Kawahara M. Deciphering two rounds of cell lineage segregations during bovine preimplantation development. FASEB J 2021; 35:e21904. [PMID: 34569650 DOI: 10.1096/fj.202002762rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Abstract
Blastocyst formation gives rise to the inner cell mass (ICM) and trophectoderm (TE) and is followed by the differentiation of the epiblast (Epi) and primitive endoderm (PrE) within the ICM. Although these two-round cell lineage differentiations underpin proper embryogenesis in every mammal, their spatiotemporal dynamics are quite diverse among species. Here, molecular details of the blastocyst stage in cattle were dissected using an optimized in vitro culture method. Blastocyst embryos were placed on agarose gel filled with nutrient-rich media to expose embryos to both gaseous and liquid phases. Embryos derived from this "on-gel" culture were transferred to surrogate mothers on day (D) 10 after fertilization and successfully implanted. Immunofluorescent studies using on-gel-cultured embryos revealed that the proportion of TE cells expressing the pluripotent ICM marker, OCT4, which was beyond 80% on D8, was rapidly reduced after D9 and reached 0% on D9.5. This first lineage segregation process was temporally parallel with the second one, identified by the spatial separation of Epi cells expressing SOX2 and PrE cells expressing SOX17. RNA-seq comparison of TE cells from D8 in vitro fertilized embryos and D14 in vivo embryos revealed that besides drastic reduction of pluripotency-related genes, TE cells highly expressed Wnt, FGF, and VEGF signaling pathways-related genes to facilitate the functional maturation required for feto-maternal interaction. Quantitative PCR analysis of TE cells derived from on-gel culture further confirmed time-dependent increments in the expression of key TE markers. Altogether, the present study provides platforms to understand species-specific strategies for mammalian preimplantation development.
Collapse
Affiliation(s)
- Hiroki Akizawa
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Shun Saito
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Nanami Kohri
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Eri Furukawa
- Laboratory of Theriogenology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshihiro Hayashi
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hanako Bai
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Masashi Nagano
- Laboratory of Animal Reproduction, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Yojiro Yanagawa
- Laboratory of Theriogenology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Hayato Tsukahara
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Masashi Takahashi
- Global Station for Food, Land and Water Resources, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido, Japan
| | - Shinjiro Kagawa
- Livestock Research Institute, Aomori Prefectural Industrial Technology Research Center, Aomori, Japan
| | | | - Hisato Kobayashi
- Department of Embryology, Nara Medical University, Kashihara, Japan
| | - Tomohiro Kono
- Department of Bioscience, Tokyo University of Agriculture, Setagaya, Japan
| | - Manabu Kawahara
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
99
|
Winiarczyk D, Piliszek A, Sampino S, Lukaszewicz M, Modli Ski JA. Embryo structure reorganisation reduces the probability of apoptosis in preimplantation mouse embryos. Reprod Fertil Dev 2021; 33:725-735. [PMID: 34488937 DOI: 10.1071/rd21074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/29/2021] [Indexed: 11/23/2022] Open
Abstract
Programmed cell death plays a key role in mammalian development because the morphological events of an organism's formation are dependent on apoptosis. In the mouse development, the first apoptotic waves occur physiologically at the blastocyst stage. Cell number and the mean nucleus to cytoplasm (N/C) ratio increase exponentially throughout subsequent embryo cleavages, while cell volume concurrently decreases from the zygote to blastocyst stage. In this study we tested the hypothesis that reorganisation of the embryo structure by manipulating cell number, the N/C ratio and the cell volume of 2-cell embryos may result in the earlier and more frequent occurrence of apoptosis. The results indicate that doubling ('Aggregates' group) or halving ('Embryos 1/2' group) the initial cell number and modifying embryo volume, ploidy ('Embryos 4n' group) and the N/C ratio ('Embryos 2/1' group) reduce the probability of apoptosis in the resulting embryos. There was a higher probability of apoptosis in the inner cell mass of the blastocyst, but apoptotic cells were never observed at the morula stage in any of the experimental groups. Thus, manipulation of cell number, embryo volume, the N/C ratio and ploidy cause subtle changes in the occurrence of apoptosis, although these are mostly dependent on embryo stage and cell lineage (trophectoderm or inner cell mass), which have the greatest effect on the probability of apoptosis.
Collapse
Affiliation(s)
- Dawid Winiarczyk
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Poland; and Corresponding authors. ;
| | - Anna Piliszek
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Silvestre Sampino
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Marek Lukaszewicz
- Department of Animal Improvement and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Jacek Andrzej Modli Ski
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Poland; and Corresponding authors. ;
| |
Collapse
|
100
|
Springer C, Zakhartchenko V, Wolf E, Simmet K. Hypoblast Formation in Bovine Embryos Does Not Depend on NANOG. Cells 2021; 10:cells10092232. [PMID: 34571882 PMCID: PMC8466907 DOI: 10.3390/cells10092232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/24/2022] Open
Abstract
The role of the pluripotency factor NANOG during the second embryonic lineage differentiation has been studied extensively in mouse, although species-specific differences exist. To elucidate the role of NANOG in an alternative model organism, we knocked out NANOG in fibroblast cells and produced bovine NANOG-knockout (KO) embryos via somatic cell nuclear transfer (SCNT). At day 8, NANOG-KO blastocysts showed a decreased total cell number when compared to controls from SCNT (NT Ctrl). The pluripotency factors OCT4 and SOX2 as well as the hypoblast (HB) marker GATA6 were co-expressed in all cells of the inner cell mass (ICM) and, in contrast to mouse Nanog-KO, expression of the late HB marker SOX17 was still present. We blocked the MEK-pathway with a MEK 1/2 inhibitor, and control embryos showed an increase in NANOG positive cells, but SOX17 expressing HB precursor cells were still present. NANOG-KO together with MEK-inhibition was lethal before blastocyst stage, similarly to findings in mouse. Supplementation of exogenous FGF4 to NANOG-KO embryos did not change SOX17 expression in the ICM, unlike mouse Nanog-KO embryos, where missing SOX17 expression was completely rescued by FGF4. We conclude that NANOG mediated FGF/MEK signaling is not required for HB formation in the bovine embryo and that another—so far unknown—pathway regulates HB differentiation.
Collapse
Affiliation(s)
- Claudia Springer
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (V.Z.); (E.W.)
- Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany
| | - Valeri Zakhartchenko
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (V.Z.); (E.W.)
- Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (V.Z.); (E.W.)
- Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Kilian Simmet
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (V.Z.); (E.W.)
- Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany
- Correspondence:
| |
Collapse
|