51
|
Holtz ML, Misra RP. Serum response factor is required for cell contact maintenance but dispensable for proliferation in visceral yolk sac endothelium. BMC DEVELOPMENTAL BIOLOGY 2011; 11:18. [PMID: 21401944 PMCID: PMC3065428 DOI: 10.1186/1471-213x-11-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 03/14/2011] [Indexed: 01/14/2023]
Abstract
Background Endothelial-specific knockout of the transcription factor serum response factor (SRF) results in embryonic lethality by mid-gestation. The associated phenotype exhibits vascular failure in embryos as well as visceral yolk sac (VYS) tissues. Previous data suggest that this vascular failure is caused by alterations in cell-cell and cell-matrix contacts. In the current study, we sought to more carefully address the role of SRF in endothelial function and cell contact interactions in VYS tissues. Results Tie2-Cre recombinase-mediated knockout of SRF expression resulted in loss of detectable SRF from VYS mesoderm by E12.5. This loss was accompanied by decreased expression of smooth muscle alpha-actin as well as vascular endothelial cadherin and claudin 5, endothelial-specific components of adherens and tight junctions, respectively. Focal adhesion (FA) integrins alpha5 and beta1 were largely unchanged in contrast to loss of the FA-associated molecule vinculin. The integrin binding partner fibronectin-1 was also profoundly decreased in the extracellular matrix, indicating another aspect of impaired adhesive function and integrin signaling. Additionally, cells in SRF-null VYS mesoderm failed to reduce proliferation, suggesting not only that integrin-mediated contact inhibition is impaired but also that SRF protein is not required for proliferation in these cells. Conclusions Our data support a model in which SRF is critical in maintaining functional cell-cell and cell-matrix adhesion in endothelial cells. Furthermore, we provide evidence that supports a model in which loss of SRF protein results in a sustained proliferation defect due in part to failed integrin signaling.
Collapse
Affiliation(s)
- Mary L Holtz
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA.
| | | |
Collapse
|
52
|
Developmental roles for Srf, cortical cytoskeleton and cell shape in epidermal spindle orientation. Nat Cell Biol 2011; 13:203-14. [PMID: 21336301 DOI: 10.1038/ncb2163] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 11/30/2010] [Indexed: 12/16/2022]
Abstract
During development, a polarized epidermal sheet undergoes stratification and differentiation to produce the skin barrier. Through mechanisms that are poorly understood, the process involves actin dynamics, spindle reorientation and Notch signalling. To elucidate how epidermal embryogenesis is governed, we conditionally targeted serum response factor (Srf), a transcription factor that is essential for epidermal differentiation. Unexpectedly, previously ascribed causative defects are not responsible for profoundly perturbed embryonic epidermis. Seeking the mechanism for this, we identified actins and their regulators that were downregulated after ablation. Without Srf, cells exhibit a diminished cortical network and in mitosis, they fail to round up, features we recapitulate with low-dose actin inhibitors in vivo and shRNA-knockdown in vitro. Altered concomitantly are phosphorylated ERM and cortical myosin-IIA, shown in vitro to establish a rigid cortical actomyosin network and elicit critical shape changes. We provide a link between these features and Srf loss, and we show that the process is physiologically relevant in skin, as reflected by defects in spindle orientation, asymmetric cell divisions, stratification and differentiation.
Collapse
|
53
|
Heemers HV, Schmidt LJ, Sun Z, Regan KM, Anderson SK, Duncan K, Wang D, Liu S, Ballman KV, Tindall DJ. Identification of a clinically relevant androgen-dependent gene signature in prostate cancer. Cancer Res 2011; 71:1978-88. [PMID: 21324924 DOI: 10.1158/0008-5472.can-10-2512] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The androgen receptor (AR) is the principal target for treatment of non-organ-confined prostate cancer (PCa). Androgen deprivation therapies (ADT) directed against the AR ligand-binding domain do not fully inhibit androgen-dependent signaling critical for PCa progression. Thus, information that could direct the development of more effective ADTs is desired. Systems and bioinformatics approaches suggest that considerable variation exists in the mechanisms by which AR regulates expression of effector genes, pointing to a role for secondary transcription factors. A combination of microarray and in silico analyses led us to identify a 158-gene signature that relies on AR along with the transcription factor SRF (serum response factor), representing less than 6% of androgen-dependent genes. This AR-SRF signature is sufficient to distinguish microdissected benign and malignant prostate samples, and it correlates with the presence of aggressive disease and poor outcome. The AR-SRF signature described here associates more strongly with biochemical failure than other AR target gene signatures of similar size. Furthermore, it is enriched in malignant versus benign prostate tissues, compared with other signatures. To our knowledge, this profile represents the first demonstration of a distinct mechanism of androgen action with clinical relevance in PCa, offering a possible rationale to develop novel and more effective forms of ADT.
Collapse
Affiliation(s)
- Hannelore V Heemers
- Department of Urology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
Serum response factor (SRF) is a ubiquitously expressed transcription factor that binds to a DNA cis element known as the CArG box, which is found in the proximal regulatory regions of over 200 experimentally validated target genes. Genetic deletion of SRF is incompatible with life in a variety of animals from different phyla. In mice, loss of SRF throughout the early embryo results in gastrulation defects precluding analyses in individual organ systems. Genetic inactivation studies using conditional or inducible promoters directing the expression of the bacteriophage Cre recombinase have shown a vital role for SRF in such cellular processes as contractility, cell migration, synaptic activity, inflammation, and cell survival. A growing number of experimental and human diseases are associated with changes in SRF expression, suggesting that SRF has a role in the pathogenesis of disease. This review summarizes data from experimental model systems and human pathology where SRF expression is either deliberately or naturally altered.
Collapse
|
55
|
Abstract
Adhesion properties of hematopoietic stem cells (HSCs) in the bone marrow (BM) niches control their migration and affect their cell-cycle dynamics. The serum response factor (Srf) regulates growth factor-inducible genes and genes controlling cytoskeleton structures involved in cell spreading, adhesion, and migration. We identified a role for Srf in HSC adhesion and steady-state hematopoiesis. Conditional deletion of Srf in BM cells resulted in a 3-fold expansion of the long- and short-term HSCs and multipotent progenitors (MPPs), which occurs without long-term modification of cell-cycle dynamics. Early differentiation steps to myeloid and lymphoid lineages were normal, but Srf loss results in alterations in mature-cell production and severe thrombocytopenia. Srf-null BM cells also displayed compromised engraftment properties in transplantation assays. Gene expression analysis identified Srf target genes expressed in HSCs, including a network of genes associated with cell migration and adhesion. Srf-null stem cells and MPPs displayed impair expression of the integrin network and decreased adherence in vitro. In addition, Srf-null mice showed increase numbers of circulating stem and progenitor cells, which likely reflect their reduced retention in the BM. Altogether, our results demonstrate that Srf is an essential regulator of stem cells and MPP adhesion, and suggest that Srf acts mainly through cell-matrix interactions and integrin signaling.
Collapse
|
56
|
A pathogenic relationship between a regulator of the actin cytoskeleton and serum response factor. Genetics 2010; 186:147-57. [PMID: 20610412 DOI: 10.1534/genetics.110.117309] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cell hyperproliferation, inflammation, and angiogenesis are biological processes central to the pathogenesis of corneal disease, as well as other conditions including tumorigenesis and chronic inflammatory disorders. Due to the number of disease conditions that arise as a result of these abnormalities, identifying the molecular mechanisms underlying these processes is critical. The avascular and transparent cornea serves as a good in vivo model to study the pathogenesis of cell hyperproliferation, inflammation, and angiogenesis. Corneal disease 1 (Dstn(corn1)) mice are homozygous for a spontaneous null allele of the destrin (Dstn) gene, which is also known as actin depolymerizing factor (ADF). These mice exhibit abnormalities in the cornea including epithelial cell hyperproliferation, stromal inflammation, and neovascularization. We previously identified that the transcription factor, serum response factor (SRF) and a number of its target genes are upregulated in the cornea of these mice. In this study, we show that conditional ablation of Srf in the corneal epithelium of a diseased Dstn(corn1) cornea results in the rescue of the epithelial cell hyperproliferation, inflammation, and neovascularization phenotypes, delineating an epithelial cell-specific role for SRF in the development of all of these abnormalities. Our study also demonstrates that Dstn is genetically upstream of Srf and defines a new functional role for SRF as the master regulator of a hyperproliferative, inflammatory phenotype accompanied by neovascularization.
Collapse
|
57
|
Olson EN, Nordheim A. Linking actin dynamics and gene transcription to drive cellular motile functions. Nat Rev Mol Cell Biol 2010; 11:353-65. [PMID: 20414257 DOI: 10.1038/nrm2890] [Citation(s) in RCA: 747] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Numerous physiological and pathological stimuli promote the rearrangement of the actin cytoskeleton, thereby modulating cellular motile functions. Although it seems intuitively obvious that cell motility requires coordinated protein biosynthesis, until recently the linkage between cytoskeletal actin dynamics and correlated gene activities remained unknown. This knowledge gap was filled in part by the discovery that globular actin polymerization liberates myocardin-related transcription factor (MRTF) cofactors, thereby inducing the nuclear transcription factor serum response factor (SRF) to modulate the expression of genes encoding structural and regulatory effectors of actin dynamics. This insight stimulated research to better understand the actin-MRTF-SRF circuit and to identify alternative mechanisms that link cytoskeletal dynamics and genome activity.
Collapse
Affiliation(s)
- Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | | |
Collapse
|
58
|
Centanin L, Gorr TA, Wappner P. Tracheal remodelling in response to hypoxia. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:447-54. [PMID: 19482033 PMCID: PMC2862287 DOI: 10.1016/j.jinsphys.2009.05.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 05/14/2009] [Accepted: 05/18/2009] [Indexed: 05/25/2023]
Abstract
The insect tracheal system is a continuous tubular network that ramifies into progressively thinner branches to provide air directly to every organ and tissue throughout the body. During embryogenesis the basic architecture of the tracheal system develops in a stereotypical and genetically controlled manner. Later, in larval stages, the tracheal system becomes plastic, and adapts to particular oxygen needs of the different tissues of the body. Oxygen sensing is mediated by specific prolyl-4-hydroxylases that regulate protein stability of the alpha subunit of oxygen-responsive transcription factors from the HIF family. Tracheal cells are exquisitely sensitive to oxygen levels, modulating the expression of hypoxia-inducible proteins that mediate sprouting of tracheal branches in direction to oxygen-deprived tissues.
Collapse
Affiliation(s)
- Lazaro Centanin
- Institute of Zoology, Im Neuenheimer Feld University of Heidelberg, 69120 Heidelberg, Germany
| | - Thomas A. Gorr
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Wintherthurerstrasse 260, CH-8057 Zurich, Switzerland
| | - Pablo Wappner
- Instituto Leloir and FBMC, FCEyN-Universidad de Buenos Aires, CONICET, Patricias Argentinas 435, Buenos Aires 1405, Argentina
| |
Collapse
|
59
|
Gervais L, Casanova J. In vivo coupling of cell elongation and lumen formation in a single cell. Curr Biol 2010; 20:359-66. [PMID: 20137948 DOI: 10.1016/j.cub.2009.12.043] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 11/26/2009] [Accepted: 12/17/2009] [Indexed: 10/19/2022]
Abstract
Fine tubes form inside cells as they reach their target tissues in epithelial ducts and in angiogenesis. Although a very suggestive model of cell hollowing proposes that intracellular lumen could arise by coalescence of intracellular vacuoles, how those tubes form in vivo remains an open question. We addressed this issue by examining intracellular lumen formation in the Drosophila trachea. The main branches of the Drosophila tracheal system have an extracellular lumen because their cells fold to form a tube. However, terminal cells, specialized cells in some of the main branches, form unicellular branches by the generation of an intracellular lumen. Conversely to the above-mentioned model, we find that the intracellular lumen arises by growth of an apical membrane inwards the cell. In support, we detect an appropriate subcellular compartmentalization of different components of the intracellular trafficking machinery. We show that both cellular elongation and lumen formation depend on a mechanism based on asymmetric actin accumulation and microtubule network organization. Given the similarities in the formation of fine respiratory tubes and capillaries, we propose that an inward membrane growth model could account for lumen formation in both processes.
Collapse
Affiliation(s)
- Louis Gervais
- Institut de Biologia Molecular de Barcelona-CSIC, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | | |
Collapse
|
60
|
Mochizuki N. Vascular integrity mediated by vascular endothelial cadherin and regulated by sphingosine 1-phosphate and angiopoietin-1. Circ J 2009; 73:2183-91. [PMID: 19838001 DOI: 10.1253/circj.cj-09-0666] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Development of blood vessels is coordinated by angiogenesis and stabilization of vascular endothelial cells (ECs). The vascular network is established during embryogenesis to supply oxygen and nutrients to the tissues and organs. However, after cardiac or peripheral ischemia is caused by occlusion of the vessels, new vessels must be formed to rescue the ischemic tissues. Many angiogenic growth factors and chemokines are produced in the ischemic tissue to induce angiogenic sprouting of preexisting vessels. Branched vessels must be again restabilized to form mature vessels that deliver blood to the tissues. To this end, vascular EC-cell adhesion is tightly regulated by cell-cell adhesion molecules and extracellular stimuli that activate G protein-coupled receptors and receptor tyrosine kinases exclusively expressed on vascular ECs. This review spotlights the recent studies of vascular endothelial cadherin and of sphingosine 1-phosphate signaling and angiopoietin-Tie signaling.
Collapse
Affiliation(s)
- Naoki Mochizuki
- Department of Structural Analysis, National Cardiovascular Center Research Institute, Suita, Japan.
| |
Collapse
|
61
|
Bentley K, Mariggi G, Gerhardt H, Bates PA. Tipping the balance: robustness of tip cell selection, migration and fusion in angiogenesis. PLoS Comput Biol 2009; 5:e1000549. [PMID: 19876379 PMCID: PMC2762315 DOI: 10.1371/journal.pcbi.1000549] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 09/29/2009] [Indexed: 12/31/2022] Open
Abstract
Vascular abnormalities contribute to many diseases such as cancer and diabetic retinopathy. In angiogenesis new blood vessels, headed by a migrating tip cell, sprout from pre-existing vessels in response to signals, e.g., vascular endothelial growth factor (VEGF). Tip cells meet and fuse (anastomosis) to form blood-flow supporting loops. Tip cell selection is achieved by Dll4-Notch mediated lateral inhibition resulting, under normal conditions, in an interleaved arrangement of tip and non-migrating stalk cells. Previously, we showed that the increased VEGF levels found in many diseases can cause the delayed negative feedback of lateral inhibition to produce abnormal oscillations of tip/stalk cell fates. Here we describe the development and implementation of a novel physics-based hierarchical agent model, tightly coupled to in vivo data, to explore the system dynamics as perpetual lateral inhibition combines with tip cell migration and fusion. We explore the tipping point between normal and abnormal sprouting as VEGF increases. A novel filopodia-adhesion driven migration mechanism is presented and validated against in vivo data. Due to the unique feature of ongoing lateral inhibition, 'stabilised' tip/stalk cell patterns show sensitivity to the formation of new cell-cell junctions during fusion: we predict cell fates can reverse. The fusing tip cells become inhibited and neighbouring stalk cells flip fate, recursively providing new tip cells. Junction size emerges as a key factor in establishing a stable tip/stalk pattern. Cell-cell junctions elongate as tip cells migrate, which is shown to provide positive feedback to lateral inhibition, causing it to be more susceptible to pathological oscillations. Importantly, down-regulation of the migratory pathway alone is shown to be sufficient to rescue the sprouting system from oscillation and restore stability. Thus we suggest the use of migration inhibitors as therapeutic agents for vascular normalisation in cancer.
Collapse
Affiliation(s)
- Katie Bentley
- Biomolecular Modelling Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
- Vascular Biology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Giovanni Mariggi
- Vascular Biology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Holger Gerhardt
- Vascular Biology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Paul A. Bates
- Biomolecular Modelling Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| |
Collapse
|
62
|
Knöll B, Nordheim A. Functional versatility of transcription factors in the nervous system: the SRF paradigm. Trends Neurosci 2009; 32:432-42. [PMID: 19643506 DOI: 10.1016/j.tins.2009.05.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 05/18/2009] [Accepted: 05/18/2009] [Indexed: 12/23/2022]
Abstract
Individual transcription factors in the brain frequently display broad functional versatility, thereby controlling multiple cellular outputs. In accordance, neuron-restricted mutagenesis of the murine Srf gene, encoding the transcription factor serum response factor (SRF), revealed numerous SRF functions in the nervous system. First, SRF controls immediate early gene (IEG) activation associated with perception of synaptic activity, learning and memory. Second, processes linked to actin cytoskeletal dynamics are mediated by SRF, such as developmental neuronal migration, outgrowth and pathfinding of neurites, as well as synaptic targeting. Therefore, SRF seems to be instrumental in converting synaptic activity into plasticity-associated structural changes in neuronal connectivities. This highlights the decisive role of SRF in integrating cytoskeletal actin dynamics and nuclear gene expression. Finally, we relate SRF to the multi-functional transcription factor CREB and point out overlapping, distinct and concerted functions of these two transcriptional regulators in the brain.
Collapse
Affiliation(s)
- Bernd Knöll
- Neuronal Gene Expression Laboratory, Eberhard-Karls-University Tübingen, Interfaculty Institute for Cell Biology, Department of Molecular Biology, Auf der Morgenstelle 15, 72076 Tübingen, Germany.
| | | |
Collapse
|
63
|
Abstract
Cell cytoskeleton proteins are fundamental to cell shape, cell adhesion and cell motility, and therefore play an important role during angiogenesis. One of the major regulators of cytoskeletal protein expression is serum response factor (SRF), a MADS-box transcription factor that regulates multiple genes implicated in cell growth, migration, cytoskeletal organization, energy metabolism and myogenesis. Recent data have demonstrated a crucial role of SRF downstream of VEGF and FGF signalling during sprouting angiogenesis, regulating endothelial cell (EC) migration, actin polymerisation, tip cell morphology, EC junction assembly and vascular integrity. Here, we review the role of SRF in the regulation of angiogenesis and EC function, integrate SRF function into a broader mechanism regulating branching morphogenesis, and discuss future directions and perspectives of SRF in EC biology.
Collapse
Affiliation(s)
- Claudio A Franco
- UPMC Univ Paris 06, UR4, aging, stress and inflammation, Paris, France
| | | |
Collapse
|
64
|
De Smet F, Segura I, De Bock K, Hohensinner PJ, Carmeliet P. Mechanisms of Vessel Branching. Arterioscler Thromb Vasc Biol 2009; 29:639-49. [DOI: 10.1161/atvbaha.109.185165] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Filopodia, “the fingers that do the walking,” have been identified on endothelial cells at the tip of sprouting vessels for half a century, but the key role of the tip cell in vessel branching has been recognized only in the past few years. A model is emerging, whereby tip cells lead the way in a branching vessel, stalk cells elongate the sprout, and a very recently discovered phalanx cell ensures quiescence and perfusion of the newly formed branch. Recent genetic studies have shed light on the molecular signature of these distinct endothelial phenotypes; this provides a novel conceptual framework of how vessel morphogenesis occurs. Here, we will discuss the molecular candidates that participate in the decision of endothelial cells to adapt these distinct fates and highlight the emerging insights on how these cells send out filopodia while navigating.
Collapse
Affiliation(s)
| | | | - Katrien De Bock
- From the Vesalius Research Center, VIB, K.U. Leuven, Belgium
| | | | - Peter Carmeliet
- From the Vesalius Research Center, VIB, K.U. Leuven, Belgium
| |
Collapse
|
65
|
Murakami M, Simons M. Regulation of vascular integrity. J Mol Med (Berl) 2009; 87:571-82. [PMID: 19337719 DOI: 10.1007/s00109-009-0463-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 03/03/2009] [Accepted: 03/06/2009] [Indexed: 12/13/2022]
Abstract
The integrity of blood vessels is critical to vascular homeostasis. Maintenance of vascular integrity has been conventionally regarded as a passive process that is largely dependent on continuous blood flow. Recent studies, however, have begun unveiling molecular processes essential for maintenance of vascular integrity and homeostasis under physiological conditions, leading to the notion that maintenance of the vasculature is an active biological process that requires continuous, basal cellular signaling. Failure of this system results in serious consequences such as hemorrhage, edema, inflammation, and tissue ischemia. In this review, we will discuss the emerging concepts in regulation of vascular integrity with the emphasis on structural components of blood vessels that are essential for vascular maintenance.
Collapse
Affiliation(s)
- Masahiro Murakami
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
66
|
Koegel H, von Tobel L, Schäfer M, Alberti S, Kremmer E, Mauch C, Hohl D, Wang XJ, Beer HD, Bloch W, Nordheim A, Werner S. Loss of serum response factor in keratinocytes results in hyperproliferative skin disease in mice. J Clin Invest 2009; 119:899-910. [PMID: 19307725 DOI: 10.1172/jci37771] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 01/21/2009] [Indexed: 11/17/2022] Open
Abstract
The transcription factor serum response factor (SRF) plays a crucial role in the development of several organs. However, its role in the skin has not been explored. Here, we show that keratinocytes in normal human and mouse skin expressed high levels of SRF but that SRF expression was strongly downregulated in the hyperproliferative epidermis of wounded and psoriatic skin. Keratinocyte-specific deletion within the mouse SRF locus during embryonic development caused edema and skin blistering, and all animals died in utero. Postnatal loss of mouse SRF in keratinocytes resulted in the development of psoriasis-like skin lesions. These lesions were characterized by inflammation, hyperproliferation, and abnormal differentiation of keratinocytes as well as by disruption of the actin cytoskeleton. Ultrastructural analysis revealed markedly reduced cell-cell and cell-matrix contacts and loss of cell compaction in all epidermal layers. siRNA-mediated knockdown of SRF in primary human keratinocytes revealed that the cytoskeletal abnormalities and adhesion defects were a direct consequence of the loss of SRF. In contrast, the hyperproliferation observed in vivo was an indirect effect that was most likely a consequence of the inflammation. These results reveal that loss of SRF disrupts epidermal homeostasis and strongly suggest its involvement in the pathogenesis of hyperproliferative skin diseases, including psoriasis.
Collapse
Affiliation(s)
- Heidi Koegel
- Institute of Cell Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Izmiryan A, Franco CA, Paulin D, Li Z, Xue Z. Synemin isoforms during mouse development: Multiplicity of partners in vascular and neuronal systems. Exp Cell Res 2009; 315:769-83. [DOI: 10.1016/j.yexcr.2008.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 11/21/2008] [Accepted: 12/07/2008] [Indexed: 11/25/2022]
|
68
|
Bernard A, Gao-Li J, Franco CA, Bouceba T, Huet A, Li Z. Laminin receptor involvement in the anti-angiogenic activity of pigment epithelium-derived factor. J Biol Chem 2009; 284:10480-90. [PMID: 19224861 DOI: 10.1074/jbc.m809259200] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pigment epithelium-derived factor (PEDF) is a multifunctional protein with neurotrophic, anti-oxidative, and anti-inflammatory properties. It is also one of the most potent endogenous inhibitors of angiogenesis, playing an important role in restricting tumor growth, invasion, and metastasis. Studies show that PEDF binds to cell surface proteins, but little is known about how it exerts its effects. Recently, research identified phospholipase A(2)/nutrin/patatin-like phospholipase domain-containing 2 as one PEDF receptor. To identify other receptors, we performed yeast two-hybrid screening using PEDF as bait and discovered that the non-integrin 37/67-kDa laminin receptor (LR) is another PEDF receptor. Co-immunoprecipitation, His tag pulldown, and surface plasmon resonance assays confirmed the interaction between PEDF and LR. Using the yeast two-hybrid method, we further restricted the LR-interacting domain on PEDF to a 34-amino acid (aa) peptide (aa 44-77) and the PEDF-interacting domain on LR to a 91-aa fragment (aa 120-210). A 25-mer peptide named P46 (aa 46-70), derived from 34-mer, interacts with LR in surface plasmon resonance assays and binds to endothelial cell (EC) membranes. This peptide induces EC apoptosis and inhibits EC migration, tube-like network formation in vitro, and retinal angiogenesis ex vivo, like PEDF. Our results suggest that LR is a real PEDF receptor that mediates PEDF angiogenesis inhibition.
Collapse
Affiliation(s)
- Adrien Bernard
- Université Pierre et Marie Curie, Univerisité Paris 06, UR4, Aging, Stress and Inflammation and Institut Fédératif de Recherche 83, 75252 Paris, France
| | | | | | | | | | | |
Collapse
|