51
|
Abstract
During oncogenesis, cells acquire multiple genetic alterations that confer essential tumor-specific traits, including immortalization, escape from antimitogenic signaling, neovascularization, invasiveness, and metastatic potential. In most instances, these alterations are thought to arise incrementally over years, if not decades. However, recent progress in sequencing cancer genomes has begun to challenge this paradigm, because a radically different phenomenon, termed chromothripsis, has been suggested to cause complex intra- and interchromosomal rearrangements on short timescales. In this Review, we review established pathways crucial for genome integrity and discuss how their dysfunction could precipitate widespread chromosome breakage and rearrangement in the course of malignancy.
Collapse
Affiliation(s)
- Mathew J K Jones
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
52
|
Boboila C, Alt FW, Schwer B. Classical and alternative end-joining pathways for repair of lymphocyte-specific and general DNA double-strand breaks. Adv Immunol 2013; 116:1-49. [PMID: 23063072 DOI: 10.1016/b978-0-12-394300-2.00001-6] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Classical nonhomologous end joining (C-NHEJ) is one of the two major known pathways for the repair of DNA double-strand breaks (DSBs) in mammalian cells. Our understanding of C-NHEJ has been derived, in significant part, through studies of programmed physiologic DNA DSBs formed during V(D)J recombination in the developing immune system. Studies of immunoglobulin heavy-chain (IgH) class-switch recombination (CSR) also have revealed that there is an "alternative" end-joining process (A-EJ) that can function, relatively robustly, in the repair of DSBs in activated mature B lymphocytes. This A-EJ process has also been implicated in the formation of oncogenic translocations found in lymphoid tumors. In this review, we discuss our current understanding of C-NHEJ and A-EJ in the context of V(D)J recombination, CSR, and the formation of chromosomal translocations.
Collapse
Affiliation(s)
- Cristian Boboila
- Howard Hughes Medical Institute, Immune Disease Institute, Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, Massachusetts, USA
| | | | | |
Collapse
|
53
|
Kitada K, Aikawa S, Aida S. Alu-Alu fusion sequences identified at junction sites of copy number amplified regions in cancer cell lines. Cytogenet Genome Res 2012; 139:1-8. [PMID: 22986581 DOI: 10.1159/000342885] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2012] [Indexed: 12/13/2022] Open
Abstract
Alu elements are short, ∼300-bp stretches of DNA and are the most abundant repetitive elements in the human genome. A large number of chromosomal rearrangements mediated by Alu-Alu recombination have been reported in germline cells, but only a few in somatic cells. Cancer development is frequently accompanied by various chromosomal rearrangements including gene amplification. To explore an involvement of Alu-Alu fusion in gene amplification events, we determined 20 junction site sequences of 5 highly amplified regions in 4 cancer cell lines. The amplified regions exhibited a common copy number profile: a stair-like increase with multiple segments, which is implicated in the breakage-fusion-bridge (BFB) cycle-mediated amplification. All of the sequences determined were characterized as head-to-head or tail-to-tail fusion of sequences separated by 1-5 kb in the genome sequence. Of these, 4 junction site sequences were identified as Alu-Alu fusions between inverted, paired Alu elements with relatively long overlapping sequences of 17, 21, 22, and 24 bp. Together with genome mapping data of Alu elements, these findings suggest that when breakages occur at or near inverted, paired Alu elements in the process of BFB cycle-mediated amplification, sequence homology of Alu elements is frequently used to repair the broken ends.
Collapse
Affiliation(s)
- K Kitada
- Kamakura Research Laboratories, Chugai Pharmaceutical Co. Ltd., Kamakura, Japan.
| | | | | |
Collapse
|
54
|
Transposable elements and human cancer: a causal relationship? Biochim Biophys Acta Rev Cancer 2012; 1835:28-35. [PMID: 22982062 DOI: 10.1016/j.bbcan.2012.09.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/30/2012] [Accepted: 09/04/2012] [Indexed: 12/18/2022]
Abstract
Transposable elements are present in almost all genomes including that of humans. These mobile DNA sequences are capable of invading genomes and their impact on genome evolution is substantial as they contribute to the genetic diversity of organisms. The mobility of transposable elements can cause deleterious mutations, gene disruption and chromosome rearrangements that may lead to several pathologies including cancer. This mini-review aims to give a brief overview of the relationship that transposons and retrotransposons may have in the genetic cause of human cancer onset, or conversely creating protection against cancer. Finally, the cause of TE mobility may also be the cancer cell environment itself.
Collapse
|
55
|
Robbiani DF, Nussenzweig MC. Chromosome translocation, B cell lymphoma, and activation-induced cytidine deaminase. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2012; 8:79-103. [PMID: 22974238 DOI: 10.1146/annurev-pathol-020712-164004] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Studies of B cell lymphomas in the early 1980s led to the cloning of genes (c-MYC and IGH) at a chromosome translocation breakpoint. A rush followed to identify recurrently translocated genes in all types of cancer, which led to remarkable advances in our understanding of cancer genetics. B lymphocyte tumors commonly bear chromosome translocations to immunoglobulin genes, which points to a role for antibody gene diversification processes in tumorigenesis. The discovery of activation-induced cytidine deaminase (AID) and the use of murine models to study translocation have led to a new understanding of how these events contribute to the genesis of lymphomas. Here, we review these advances with a focus on AID and insights gained from the study of translocations in primary cells.
Collapse
Affiliation(s)
- Davide F Robbiani
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | | |
Collapse
|
56
|
Chapman JR, Taylor MRG, Boulton SJ. Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 2012; 47:497-510. [PMID: 22920291 DOI: 10.1016/j.molcel.2012.07.029] [Citation(s) in RCA: 1189] [Impact Index Per Article: 99.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/08/2012] [Accepted: 07/26/2012] [Indexed: 12/31/2022]
Abstract
DNA double-strand breaks (DSBs) are highly toxic lesions that can drive genetic instability. To preserve genome integrity, organisms have evolved several DSB repair mechanisms, of which nonhomologous end-joining (NHEJ) and homologous recombination (HR) represent the two most prominent. It has recently become apparent that multiple layers of regulation exist to ensure these repair pathways are accurate and restricted to the appropriate cellular contexts. Such regulation is crucial, as failure to properly execute DSB repair is known to accelerate tumorigenesis and is associated with several human genetic syndromes. Here, we review recent insights into the mechanisms that influence the choice between competing DSB repair pathways, how this is regulated during the cell cycle, and how imbalances in this equilibrium result in genome instability.
Collapse
Affiliation(s)
- J Ross Chapman
- London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms EN6 3LD, UK
| | | | | |
Collapse
|
57
|
Pannunzio NR, Manthey GM, Liddell LC, Fu BXH, Roberts CM, Bailis AM. Rad59 regulates association of Rad52 with DNA double-strand breaks. Microbiologyopen 2012; 1:285-97. [PMID: 23170228 PMCID: PMC3496973 DOI: 10.1002/mbo3.31] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/06/2012] [Accepted: 07/02/2012] [Indexed: 11/25/2022] Open
Abstract
Homologous recombination among repetitive sequences is an important mode of DNA repair in eukaryotes following acute radiation exposure. We have developed an assay in Saccharomyces cerevisiae that models how multiple DNA double-strand breaks form chromosomal translocations by a nonconservative homologous recombination mechanism, single-strand annealing, and identified the Rad52 paralog, Rad59, as an important factor. We show through genetic and molecular analyses that Rad59 possesses distinct Rad52-dependent and -independent functions, and that Rad59 plays a critical role in the localization of Rad52 to double-strand breaks. Our analysis further suggests that Rad52 and Rad59 act in multiple, sequential processes that determine genome structure following acute exposure to DNA damaging agents.
Collapse
Affiliation(s)
- Nicholas R Pannunzio
- Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope Duarte, California, 91010, USA ; The Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope Duarte, California, 91010, USA
| | | | | | | | | | | |
Collapse
|
58
|
Muvarak N, Nagaria P, Rassool FV. Genomic instability in chronic myeloid leukemia: targets for therapy? Curr Hematol Malig Rep 2012; 7:94-102. [PMID: 22427031 DOI: 10.1007/s11899-012-0119-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Philadelphia positive (Ph+) chronic myeloid leukemia (CML) is characterized by the occurrence of nonrandom genetic and cytogenetic abnormalities during disease progression. Many of these abnormalities are markers for genes which, when altered, can drive the blastic transformation process. Thus, such genetic alterations may be manifestations of an underlying genomic instability resulting from a compromised DNA damage and repair response, leading to advanced stages of CML and resistance to therapy. This article examines the molecular pathways that may lead to genomic instability in CML and the potential of these pathway constituents to be therapeutic targets.
Collapse
Affiliation(s)
- N Muvarak
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21230, USA
| | | | | |
Collapse
|
59
|
Nishikawa S, Dewi DL, Ishii H, Konno M, Haraguchi N, Kano Y, Fukusumi T, Ohta K, Noguchi Y, Ozaki M, Sakai D, Satoh T, Doki Y, Mori M. Transcriptomic study of dormant gastrointestinal cancer stem cells. Int J Oncol 2012; 41:979-84. [PMID: 22735680 DOI: 10.3892/ijo.2012.1531] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/16/2012] [Indexed: 11/06/2022] Open
Abstract
We previously discovered the coexistence of dormant and proliferating cancer stem cells (CSCs) in gastrointestinal cancer, which leads to chemoradiation resistance. CD13-/CD90+ proliferating liver CSCs are sensitive to chemotherapy, and CD13+/CD90- dormant CSCs have a limited proliferation ability, survive in hypoxic areas with reduced oxidative stress, and relapse and metastasize to other organs. In such CD13+ dormant cells, non-homologous end-joining, an error-prone repair mechanism, is dominant after DNA damage, whereas high-fidelity homologous recombination is apparent in CD13- proliferating cells, suggesting the significance of dormancy as an essential protective mechanism of therapy resistance. However, this mechanism may also play a role in the generation and accumulation of heterogeneity during cancer progression, although the exact mechanism remains to be understood. Through transcriptomic study, we elucidated the underlying epigenetic mechanism for malignant behavior of dormant CSCs, i.e., simultaneous activation of several pathways including EZH2- and TP53-related proteins in response to microRNA101, suggesting that a pharmacogenomic approach would open an era to novel molecular targeting cancer therapy.
Collapse
Affiliation(s)
- Shimpei Nishikawa
- Department of Frontier Science for Cancer and Chemotherapy, Osaka University, Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Nishikawa S, Ishii H, Haraguchi N, Kano Y, Fukusumi T, Ohta K, Ozaki M, Sakai D, Satoh T, Nagano H, Doki Y, Mori M. Genotoxic therapy stimulates error-prone DNA repair in dormant hepatocellular cancer stem cells. Exp Ther Med 2012; 3:959-962. [PMID: 22969999 DOI: 10.3892/etm.2012.522] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 01/06/2012] [Indexed: 12/29/2022] Open
Abstract
Previous studies have described distinct dormant and proliferating populations of cancer stem cells in hepatocellular carcinoma. The CD13 protein is involved in the scavenging of reactive oxygen species through the glutathione reductase pathway and is associated with resistance to chemotherapy. Whereas CD13(-) proliferating cancer stem cells are sensitive to chemotherapy, CD13(+) dormant cancer stem cells are associated with the development of resistance to chemotherapy. CD13(+) cells in hypoxic areas of the tumour survive chemotherapy, leading to subsequent disease relapse and metastasis. Whether CD13(+) dormant cells simply resume proliferation following therapy or whether they also acquire greater malignant potential, remains unknown. The mechanisms involved also remain unclear. In the present study, we investigated the repair of DNA damage in CD13(+) dormant and CD13(-) proliferating cells. Total RNA was extracted from tissues, and quantitative real-time polymerase chain reaction (PCR) was performed for specific genes and GAPDH following PCR. Products were then subjected to a temperature gradient of 55-95°C with continuous fluorescence monitoring to generate a melting curve. Cells were incubated with primary antibodies, washed twice, incubated with fluorescent-labelled secondary antibodies for 30 min on ice and analyzed by flow cytometry. The results revealed that the repair of DNA damage in CD13(+) dormant cells occurs predominantly through non-homologous end-joining, a repair process that is error-prone, whereas CD13(-) proliferating cells primarily utilise high-fidelity homologous recombination for DNA repair. These data indicate that not only is dormancy a protective mechanism for cancer stem cells to survive therapy, but it also enhances the generation and accumulation of mutations following DNA damage. Therefore, the CD13(+) dormant cancer stem cells must be eradicated fully to achieve complete remission of cancer.
Collapse
|
61
|
Porteus M. Homologous recombination-based gene therapy for the primary immunodeficiencies. Ann N Y Acad Sci 2012; 1246:131-40. [PMID: 22236437 DOI: 10.1111/j.1749-6632.2011.06314.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The devastating nature of primary immunodeficiencies, the ability to cure primary immunodeficiencies by bone marrow transplantation, the ability of a small number of gene-corrected cells to reconstitute the immune system, and the overall suboptimal results of bone marrow transplantation for most patients with primary immunodeficiencies make the development of gene therapy for this class of diseases important. While there has been clear clinical benefit for a number of patients from viral-based gene therapy strategies, there have also been a significant number of serious adverse events, including the development of leukemia, from the approach. In this review, I discuss the development of nuclease-stimulated, homologous recombination-based approaches as a novel gene therapy strategy for the primary immunodeficiencies.
Collapse
Affiliation(s)
- Matthew Porteus
- Department of Pediatrics, Divisions of Cancer Biology, Hematology/Oncology, Human Gene Therapy, Stanford University, Stanford, California, USA.
| |
Collapse
|
62
|
Simian virus 40 strains with novel properties generated by replacing the viral enhancer with synthetic oligonucleotides. J Virol 2012; 86:3135-42. [PMID: 22238322 DOI: 10.1128/jvi.06293-11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Typical enhancers of viral or cellular genes are approximately 100 to 400 bp long and contain several transcription factor binding sites. Previously, we have shown that simian virus 40 (SV40) genomic DNA that lacks its own enhancer can be used as an "enhancer trap" since it reacquires infectivity upon incorporation of heterologous enhancers. Here, we show that SV40 infectivity can be restored with synthetic enhancers that are assembled by the host cell. We found that several oligonucleotides, cotransfected with enhancerless SV40 DNA into host cells, were incorporated into the viral genome via cellular DNA end joining. The oligonucleotides tested included metal response elements (MREs), the binding sites for the transcription factor MTF-1, which induces gene activity in response to heavy metals. These recombinant SV40 strains showed preferential growth on cells overloaded with zinc or cadmium. We also cotransfected enhancerless SV40 DNA with oligonucleotides corresponding to enhancer motifs of human and mouse cytomegalovirus (HCMV and MCMV, respectively). In contrast to SV40 wild type, the viruses with cytomegalovirus-derived patchwork enhancers strongly expressed T-antigen in human HEK293 cells, accompanied by viral DNA replication. Occasionally, we also observed the assembly of functional viral genomes by incorporation of fragments of bovine DNA, an ingredient of the fetal calf serum in the medium. These fragments contained, among other sites, binding sites for AP-1 and CREB transcription factors. Taken together, our studies show that viruses with novel properties can be generated by intracellular incorporation of synthetic enhancer DNA motifs.
Collapse
|
63
|
Liu T, Wan L, Wu Y, Chen J, Huang J. hSWS1·SWSAP1 is an evolutionarily conserved complex required for efficient homologous recombination repair. J Biol Chem 2011; 286:41758-41766. [PMID: 21965664 DOI: 10.1074/jbc.m111.271080] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Shu complex in yeast plays an important role in the homologous recombination pathway, which is critical for the maintenance of genomic integrity. The identification of human SWS1 (hSWS1) as the homolog of budding yeast Shu2 implicated that the Shu complex is evolutionarily conserved. However, the human counterparts of other components in this complex have not yet been identified and characterized. Here we describe the characterization of a novel human component of this complex, SWSAP1 (hSWS1-associated protein 1)/C19orf39. We show that hSWS1 and SWSAP1 form a stable complex in vivo and in vitro. hSWS1 and SWSAP1 are mutually interdependent for their stability. We further demonstrate that the purified hSWS1·SWSAP1 complex possesses single-stranded DNA-binding activity and DNA-stimulated ATPase activity. Moreover, SWSAP1 interacts with RAD51 and RAD51 paralogs, and depletion of SWSAP1 causes defects in homologous recombination repair. Thus, our results suggest that the human Shu complex (hSWS1·SWSAP1) has an evolutionarily conserved function in homologous recombination.
Collapse
Affiliation(s)
- Ting Liu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Li Wan
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yue Wu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030.
| | - Jun Huang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
64
|
Wang J, Geesman GJ, Hostikka SL, Atallah M, Blackwell B, Lee E, Cook PJ, Pasaniuc B, Shariat G, Halperin E, Dobke M, Rosenfeld MG, Jordan IK, Lunyak VV. Inhibition of activated pericentromeric SINE/Alu repeat transcription in senescent human adult stem cells reinstates self-renewal. Cell Cycle 2011; 10:3016-30. [PMID: 21862875 PMCID: PMC3218602 DOI: 10.4161/cc.10.17.17543] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 07/28/2011] [Indexed: 01/01/2023] Open
Abstract
Cellular aging is linked to deficiencies in efficient repair of DNA double strand breaks and authentic genome maintenance at the chromatin level. Aging poses a significant threat to adult stem cell function by triggering persistent DNA damage and ultimately cellular senescence. Senescence is often considered to be an irreversible process. Moreover, critical genomic regions engaged in persistent DNA damage accumulation are unknown. Here we report that 65% of naturally occurring repairable DNA damage in self-renewing adult stem cells occurs within transposable elements. Upregulation of Alu retrotransposon transcription upon ex vivo aging causes nuclear cytotoxicity associated with the formation of persistent DNA damage foci and loss of efficient DNA repair in pericentric chromatin. This occurs due to a failure to recruit of condensin I and cohesin complexes. Our results demonstrate that the cytotoxicity of induced Alu repeats is functionally relevant for the human adult stem cell aging. Stable suppression of Alu transcription can reverse the senescent phenotype, reinstating the cells' self-renewing properties and increasing their plasticity by altering so-called "master" pluripotency regulators.
Collapse
Affiliation(s)
- Jianrong Wang
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Tyrosine phosphorylation enhances RAD52-mediated annealing by modulating its DNA binding. EMBO J 2011; 30:3368-82. [PMID: 21804533 PMCID: PMC3160658 DOI: 10.1038/emboj.2011.238] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 06/27/2011] [Indexed: 11/09/2022] Open
Abstract
The DNA recombination mediator and annealing factor RAD52 is a target of c-ABL activated in response to DNA damage. Engineering of recombinant tyrosine-phosphomimetic RAD52 facilitated studying the consequences of this phosphorylation. RAD52 protein has an important role in homology-directed DNA repair by mediating RAD51 nucleoprotein filament formation on single-stranded DNA (ssDNA) protected by replication protein-A (RPA) and annealing of RPA-coated ssDNA. In human, cellular response to DNA damage includes phosphorylation of RAD52 by c-ABL kinase at tyrosine 104. To address how this phosphorylation modulates RAD52 function, we used an amber suppressor technology to substitute tyrosine 104 with chemically stable phosphotyrosine analogue (p-Carboxymethyl-L-phenylalanine, pCMF). The RAD52Y104pCMF retained ssDNA-binding activity characteristic of unmodified RAD52 but showed lower affinity for double-stranded DNA (dsDNA) binding. Single-molecule analyses revealed that RAD52Y104pCMF specifically targets and wraps ssDNA. While RAD52Y104pCMF is confined to ssDNA region, unmodified RAD52 readily diffuses into dsDNA region. The Y104pCMF substitution also increased the ssDNA annealing rate and allowed overcoming the inhibitory effect of dsDNA. We propose that phosphorylation at Y104 enhances ssDNA annealing activity of RAD52 by attenuating dsDNA binding. Implications of phosphorylation-mediated activation of RAD52 annealing activity are discussed.
Collapse
|
66
|
Abstract
Adult stem cells exist in most mammalian organs and tissues and are indispensable for normal tissue homeostasis and repair. In most tissues, there is an age-related decline in stem cell functionality but not a depletion of stem cells. Such functional changes reflect deleterious effects of age on the genome, epigenome, and proteome, some of which arise cell autonomously and others of which are imposed by an age-related change in the local milieu or systemic environment. Notably, some of the changes, particularly epigenomic and proteomic, are potentially reversible, and both environmental and genetic interventions can result in the rejuvenation of aged stem cells. Such findings have profound implications for the stem cell–based therapy of age-related diseases.
Collapse
Affiliation(s)
- Ling Liu
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
67
|
Hawkins AJ, Golding SE, Khalil A, Valerie K. DNA double-strand break - induced pro-survival signaling. Radiother Oncol 2011; 101:13-7. [PMID: 21726915 DOI: 10.1016/j.radonc.2011.05.074] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 05/29/2011] [Accepted: 05/29/2011] [Indexed: 11/18/2022]
Abstract
Radiation and other types of DNA damaging agents induce a plethora of signaling events simultaneously originating from the nucleus, cytoplasm, and plasma membrane. As a result, this presents a dilemma when seeking to determine causal relationships and better insight into the intricacies of stress signaling. ATM plays critical roles in both nuclear and cytoplasmic signaling, of which, the DNA damage response (DDR) is the best characterized. We have recently created experimental conditions where the DNA damage signal alone can be studied while minimizing the influence from the extranuclear compartment. We have been able to document pro-survival and growth promoting signaling (via ATM-AKT-ERK) resulting from low levels of DSBs (equivalent to ≤2 Gy). More extensive DSBs (>2 Gy eq.) result in phosphatase-mediated ERK dephosphorylation, and thus shutdown of ERK signaling. In contrast, radiation does not result in such dephosphorylation even at very high doses. We propose that phosphatases are inactivated perhaps as a result of reactive oxygen species, which does not occur in response to 'pure' DNA damage. Our findings suggest that clinically relevant radiation doses, which are intended to halt tumor growth and induce cell death, are unable to inhibit tumor pro-survival signaling via ERK dephosphorylation.
Collapse
Affiliation(s)
- Amy J Hawkins
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA 23298-0058, USA
| | | | | | | |
Collapse
|
68
|
Abstract
Deinococcus radiodurans is a robust bacterium best known for its capacity to repair massive DNA damage efficiently and accurately. It is extremely resistant to many DNA-damaging agents, including ionizing radiation and UV radiation (100 to 295 nm), desiccation, and mitomycin C, which induce oxidative damage not only to DNA but also to all cellular macromolecules via the production of reactive oxygen species. The extreme resilience of D. radiodurans to oxidative stress is imparted synergistically by an efficient protection of proteins against oxidative stress and an efficient DNA repair mechanism, enhanced by functional redundancies in both systems. D. radiodurans assets for the prevention of and recovery from oxidative stress are extensively reviewed here. Radiation- and desiccation-resistant bacteria such as D. radiodurans have substantially lower protein oxidation levels than do sensitive bacteria but have similar yields of DNA double-strand breaks. These findings challenge the concept of DNA as the primary target of radiation toxicity while advancing protein damage, and the protection of proteins against oxidative damage, as a new paradigm of radiation toxicity and survival. The protection of DNA repair and other proteins against oxidative damage is imparted by enzymatic and nonenzymatic antioxidant defense systems dominated by divalent manganese complexes. Given that oxidative stress caused by the accumulation of reactive oxygen species is associated with aging and cancer, a comprehensive outlook on D. radiodurans strategies of combating oxidative stress may open new avenues for antiaging and anticancer treatments. The study of the antioxidation protection in D. radiodurans is therefore of considerable potential interest for medicine and public health.
Collapse
|
69
|
Allen C, Ashley AK, Hromas R, Nickoloff JA. More forks on the road to replication stress recovery. J Mol Cell Biol 2011; 3:4-12. [PMID: 21278446 DOI: 10.1093/jmcb/mjq049] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
High-fidelity replication of DNA, and its accurate segregation to daughter cells, is critical for maintaining genome stability and suppressing cancer. DNA replication forks are stalled by many DNA lesions, activating checkpoint proteins that stabilize stalled forks. Stalled forks may eventually collapse, producing a broken DNA end. Fork restart is typically mediated by proteins initially identified by their roles in homologous recombination repair of DNA double-strand breaks (DSBs). In recent years, several proteins involved in DSB repair by non-homologous end joining (NHEJ) have been implicated in the replication stress response, including DNA-PKcs, Ku, DNA Ligase IV-XRCC4, Artemis, XLF and Metnase. It is currently unclear whether NHEJ proteins are involved in the replication stress response through indirect (signaling) roles, and/or direct roles involving DNA end joining. Additional complexity in the replication stress response centers around RPA, which undergoes significant post-translational modification after stress, and RAD52, a conserved HR protein whose role in DSB repair may have shifted to another protein in higher eukaryotes, such as BRCA2, but retained its role in fork restart. Most cancer therapeutic strategies create DNA replication stress. Thus, it is imperative to gain a better understanding of replication stress response proteins and pathways to improve cancer therapy.
Collapse
Affiliation(s)
- Chris Allen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft Collins, CO 80523, USA
| | | | | | | |
Collapse
|
70
|
Murnane JP. Telomere dysfunction and chromosome instability. Mutat Res 2011; 730:28-36. [PMID: 21575645 DOI: 10.1016/j.mrfmmm.2011.04.008] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/22/2011] [Accepted: 04/28/2011] [Indexed: 01/07/2023]
Abstract
The ends of chromosomes are composed of a short repeat sequence and associated proteins that together form a cap, called a telomere, that keeps the ends from appearing as double-strand breaks (DSBs) and prevents chromosome fusion. The loss of telomeric repeat sequences or deficiencies in telomeric proteins can result in chromosome fusion and lead to chromosome instability. The similarity between chromosome rearrangements resulting from telomere loss and those found in cancer cells implicates telomere loss as an important mechanism for the chromosome instability contributing to human cancer. Telomere loss in cancer cells can occur through gradual shortening due to insufficient telomerase, the protein that maintains telomeres. However, cancer cells often have a high rate of spontaneous telomere loss despite the expression of telomerase, which has been proposed to result from a combination of oncogene-mediated replication stress and a deficiency in DSB repair in telomeric regions. Chromosome fusion in mammalian cells primarily involves nonhomologous end joining (NHEJ), which is the major form of DSB repair. Chromosome fusion initiates chromosome instability involving breakage-fusion-bridge (B/F/B) cycles, in which dicentric chromosomes form bridges and break as the cell attempts to divide, repeating the process in subsequent cell cycles. Fusion between sister chromatids results in large inverted repeats on the end of the chromosome, which amplify further following additional B/F/B cycles. B/F/B cycles continue until the chromosome acquires a new telomere, most often by translocation of the end of another chromosome. The instability is not confined to a chromosome that loses its telomere, because the instability is transferred to the chromosome donating a translocation. Moreover, the amplified regions are unstable and form extrachromosomal DNA that can reintegrate at new locations. Knowledge concerning the factors promoting telomere loss and its consequences is therefore important for understanding chromosome instability in human cancer.
Collapse
Affiliation(s)
- John P Murnane
- Department of Radiation Oncology, University of California, San Francisco, CA 94143-1331, USA.
| |
Collapse
|
71
|
Hu Y, Scully R, Sobhian B, Xie A, Shestakova E, Livingston DM. RAP80-directed tuning of BRCA1 homologous recombination function at ionizing radiation-induced nuclear foci. Genes Dev 2011; 25:685-700. [PMID: 21406551 PMCID: PMC3070932 DOI: 10.1101/gad.2011011] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 02/07/2011] [Indexed: 01/12/2023]
Abstract
In response to DNA double-strand breaks (DSBs), BRCA1 forms biochemically distinct complexes with certain other DNA damage response proteins. These structures, some of which are required for homologous recombination (HR)-type DSB repair, concentrate at distinct nuclear foci that demarcate sites of genome breakage. Polyubiquitin binding by one of these structures, the RAP80/BRCA1 complex, is required for efficient BRCA1 focal recruitment, but the relationship of this process to the execution of HR has been unclear. We found that this complex actively suppresses otherwise exaggerated, BRCA1-driven HR. By controlling the kinetics by which other BRCA1-interacting proteins that promote HR concentrate together with BRCA1 in nuclear foci, RAP80/BRCA1 complexes suppress excessive DSB end processing, HR-type DSB repair, and overt chromosomal instability. Since chromosomal instability emerges when BRCA1 HR function is either unbridled or absent, active tuning of BRCA1 activity, executed in nuclear foci, is important to genome integrity maintenance.
Collapse
Affiliation(s)
- Yiduo Hu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Ralph Scully
- Department of Medicine, Harvard Medical School, Boston Massachusetts 02215, USA
- Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - Bijan Sobhian
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Anyong Xie
- Department of Medicine, Harvard Medical School, Boston Massachusetts 02215, USA
- Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - Elena Shestakova
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - David M. Livingston
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
72
|
Abstract
Because cancer at its origin must acquire permanent genomic mutations, it is by definition a disease of DNA repair. Yet for cancer cells to replicate their DNA and divide, which is the fundamental phenotype of cancer, multiple DNA repair pathways are required. This produces a paradox for the cancer cell, where its origin is at the same time its weakness. To overcome this difficulty, a cancer cell often becomes addicted to DNA repair pathways other than the one that led to its initial mutability. The best example of this is in breast or ovarian cancers with mutated BRCA1 or 2, essential components of a repair pathway for repairing DNA double-strand breaks. Because replicating DNA requires repair of DNA double-strand breaks, these cancers have become reliant on another DNA repair component, PARP1, for replication fork progression. The inhibition of PARP1 in these cells results in catastrophic double-strand breaks during replication, and ultimately cell death. The exploitation of the addiction of cancer cells to a DNA repair pathway is based on synthetic lethality and has wide applicability to the treatment of many types of malignancies, including those of hematologic origin. There is a large number of novel compounds in clinical trials that use this mechanism for their antineoplastic activity, making synthetic lethality one of the most important new concepts in recent drug development.
Collapse
|
73
|
Takaku M, Kainuma T, Ishida-Takaku T, Ishigami S, Suzuki H, Tashiro S, van Soest RWM, Nakao Y, Kurumizaka H. Halenaquinone, a chemical compound that specifically inhibits the secondary DNA binding of RAD51. Genes Cells 2011; 16:427-36. [PMID: 21375680 DOI: 10.1111/j.1365-2443.2011.01494.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mutations and single-nucleotide polymorphisms affecting RAD51 gene function have been identified in several tumors, suggesting that the inappropriate expression of RAD51 activity may cause tumorigenesis. RAD51 is an essential enzyme for the homologous recombinational repair (HRR) of DNA double-strand breaks. In the HRR pathway, RAD51 catalyzes the homologous pairing between single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA), which is the central step of the HRR pathway. To identify a chemical compound that regulates the homologous-pairing activity of RAD51, in the present study, we screened crude extract fractions from marine sponges by the RAD51-mediated homologous-pairing assay. Halenaquinone was identified as an inhibitor of the RAD51 homologous-pairing activity. A surface plasmon resonance analysis indicated that halenaquinone directly bound to RAD51. Intriguingly, halenaquinone specifically inhibited dsDNA binding by RAD51 alone or the RAD51-ssDNA complex, but only weakly affected the RAD51-ssDNA binding. In vivo, halenaquinone significantly inhibited the retention of RAD51 at double-strand break sites. Therefore, halenaquinone is a novel type of RAD51 inhibitor that specifically inhibits the RAD51-dsDNA binding.
Collapse
Affiliation(s)
- Motoki Takaku
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Siebzehnrubl FA, Reynolds BA, Vescovi A, Steindler DA, Deleyrolle LP. The origins of glioma: E Pluribus Unum? Glia 2011; 59:1135-47. [DOI: 10.1002/glia.21143] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 12/17/2010] [Indexed: 01/19/2023]
|
75
|
Giguère A, Hébert J. Microhomologies and topoisomerase II consensus sequences identified near the breakpoint junctions of the recurrent t(7;21)(p22;q22) translocation in acute myeloid leukemia. Genes Chromosomes Cancer 2011; 50:228-38. [PMID: 21319259 DOI: 10.1002/gcc.20848] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 11/30/2010] [Indexed: 12/14/2022] Open
Abstract
RUNX1 rearrangements are common genetic abnormalities in acute leukemia. The t(7;21)(p22;q22) translocation, recently described in three cases of myeloid neoplasias, fuses the ubiquitin specific peptidase 42 gene, USP42, a member of the deubiquitinating enzyme family, to RUNX1. In this study, we characterized the semicryptic t(7;21)(p22;q22) translocation, identified by fluorescent in situ hybridization and spectral karyotyping, in a novel case of acute myeloid leukemia. Sequence analysis of the reverse transcription-polymerase chain reaction products confirmed the presence of two in-frame RUNX1-USP42 and one reciprocal in-frame USP42-RUNX1 fusion transcripts. Bioinformatic analysis of the genomic translocation breakpoints revealed microhomologies and insertion of shared nucleotides at the junctions. A topoisomerase II sequence was also detected near the break site. Additionally, we demonstrated a significant overexpression of the rearranged USP42 gene in t(7;21) positive cells using quantitative real-time PCR. Our results provide the first evidence of the possible involvement of the nonhomologous end-joining mechanism in the origin of the recurrent t(7;21) translocation. Moreover, presence of the complete catalytic USP site in the putative chimeric proteins and the upregulated expression of USP42 suggest a role of the deubiquitinating enzyme in the pathogenesis of this leukemia.
Collapse
Affiliation(s)
- Amélie Giguère
- Quebec Leukemia Cell Bank and Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada, H1T 2M4; Department of Medicine, University of Montreal, Quebec, Canada, H3C 3J7
| | | |
Collapse
|
76
|
Ting L, Jun H, Junjie C. RAD18 lives a double life: Its implication in DNA double-strand break repair. DNA Repair (Amst) 2010; 9:1241-8. [DOI: 10.1016/j.dnarep.2010.09.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2010] [Indexed: 11/26/2022]
|
77
|
Bennardo N, Stark JM. ATM limits incorrect end utilization during non-homologous end joining of multiple chromosome breaks. PLoS Genet 2010; 6:e1001194. [PMID: 21079684 PMCID: PMC2973825 DOI: 10.1371/journal.pgen.1001194] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 10/01/2010] [Indexed: 01/24/2023] Open
Abstract
Chromosome rearrangements can form when incorrect ends are matched during end joining (EJ) repair of multiple chromosomal double-strand breaks (DSBs). We tested whether the ATM kinase limits chromosome rearrangements via suppressing incorrect end utilization during EJ repair of multiple DSBs. For this, we developed a system for monitoring EJ of two tandem DSBs that can be repaired using correct ends (Proximal-EJ) or incorrect ends (Distal-EJ, which causes loss of the DNA between the DSBs). In this system, two DSBs are induced in a chromosomal reporter by the meganuclease I-SceI. These DSBs are processed into non-cohesive ends by the exonuclease Trex2, which leads to the formation of I-SceI–resistant EJ products during both Proximal-EJ and Distal-EJ. Using this method, we find that genetic or chemical disruption of ATM causes a substantial increase in Distal-EJ, but not Proximal-EJ. We also find that the increase in Distal-EJ caused by ATM disruption is dependent on classical non-homologous end joining (c-NHEJ) factors, specifically DNA-PKcs, Xrcc4, and XLF. We present evidence that Nbs1-deficiency also causes elevated Distal-EJ, but not Proximal-EJ, to a similar degree as ATM-deficiency. In addition, to evaluate the roles of these factors on end processing, we examined Distal-EJ repair junctions. We found that ATM and Xrcc4 limit the length of deletions, whereas Nbs1 and DNA-PKcs promote short deletions. Thus, the regulation of end processing appears distinct from that of end utilization. In summary, we suggest that ATM is important to limit incorrect end utilization during c-NHEJ. When a chromosome is fragmented by multiple double-strand breaks (DSBs), each set of DSB ends needs to be matched correctly during repair to avoid chromosomal rearrangements. Considering the case of two tandem DSBs, if the ends of different breaks (incorrect ends) are used for repair, loss of the intervening DNA can occur. Alternatively, when the ends of a single DSB (correct ends) are used for repair, the original order of the chromosome is restored. Deficiencies in the factors ATM and Nbs1, as seen in patients with Ataxia Telangiectasia and Nijmegen Breakage Syndrome, respectively, have been associated with elevated chromosome rearrangements and cancer predisposition. Hence, we examined the possibility that these factors may be important for the usage of correct ends during repair of multiple DSBs. For this, we developed a reporter system to examine end usage during repair of two tandem DSBs in mammalian chromosomes and found that disruption of ATM or Nbs1 leads to elevated usage of incorrect ends. Furthermore, we found that the role of ATM during end usage depends on a repair pathway called classical non-homologous end joining (c-NHEJ). We suggest that ATM suppresses genome rearrangements via limiting incorrect end utilization during c-NHEJ.
Collapse
Affiliation(s)
- Nicole Bennardo
- Department of Cancer Biology and Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Jeremy M. Stark
- Department of Cancer Biology and Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
78
|
The role of mechanistic factors in promoting chromosomal translocations found in lymphoid and other cancers. Adv Immunol 2010; 106:93-133. [PMID: 20728025 DOI: 10.1016/s0065-2776(10)06004-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recurrent chromosomal abnormalities, especially chromosomal translocations, are strongly associated with certain subtypes of leukemia, lymphoma and solid tumors. The appearance of particular translocations or associated genomic alterations can be important indicators of disease prognosis, and in some cases, certain translocations may indicate appropriate therapy protocols. To date, most of our knowledge about chromosomal translocations has derived from characterization of the highly selected recurrent translocations found in certain cancers. Until recently, mechanisms that promote or suppress chromosomal translocations, in particular, those responsible for their initiation, have not been addressed. For translocations to occur, two distinct chromosomal loci must be broken, brought together (synapsed) and joined. Here, we discuss recent findings on processes and pathways that influence the initiation of chromosomal translocations, including the generation fo DNA double strand breaks (DSBs) by general factors or in the context of the Lymphocyte-specific V(D)J and IgH class-switch recombination processes. We also discuss the role of spatial proximity of DSBs in the interphase nucleus with respect to how DSBs on different chromosomes are justaposed for joining. In addition, we discuss the DNA DSB response and its role in recognizing and tethering chromosomal DSBs to prevent translocations, as well as potential roles of the classical and alternative DSB end-joining pathways in suppressing or promoting translocations. Finally, we discuss the potential roles of long range regulatory elements, such as the 3'IgH enhancer complex, in promoting the expression of certain translocations that are frequent in lymphomas and, thereby, contributing to their frequent appearance in tumors.
Collapse
|
79
|
Different aneuploidies arise from the same bridge-induced chromosomal translocation event in Saccharomyces cerevisiae. Genetics 2010; 186:775-90. [PMID: 20805555 DOI: 10.1534/genetics.110.120683] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Chromosome translocations are gross chromosomal rearrangements that have often been associated with cancer development in mammalian cells. The feasibility of drastically reshaping the genome with a single translocation event also gives this molecular event a powerful capacity to drive evolution. Despite these implications and their role in genome instability, very little is known about the molecular mechanisms that promote and accompany these events. Here, at the molecular level, we describe 10 morphologically and physiologically different translocants ensuing from the induction of the same bridge-induced translocation (BIT) event in the budding yeast Saccharomyces cerevisiae. We have demonstrated that, despite their common origin from the integration of the same linear DNA construct, all 10 translocation mutant strains have different phenotypes and the ability to sporulate and regulate gene expression and morphology. We also provide insights into how heterogeneous phenotypic variations originate from the same initial genomic event. Here we show eight different ways in which yeast cells have dealt with a single initial event inducing translocation. Our results are in agreement with the formation of complex rearrangements and abnormal karyotypes described in many leukemia patients, thus confirming the modellistic value of the yeast BIT system for mammalian cells.
Collapse
|
80
|
Mohrin M, Bourke E, Alexander D, Warr MR, Barry-Holson K, Le Beau MM, Morrison CG, Passegué E. Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell 2010; 7:174-85. [PMID: 20619762 DOI: 10.1016/j.stem.2010.06.014] [Citation(s) in RCA: 461] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 05/17/2010] [Accepted: 06/04/2010] [Indexed: 12/20/2022]
Abstract
Most adult stem cells, including hematopoietic stem cells (HSCs), are maintained in a quiescent or resting state in vivo. Quiescence is widely considered to be an essential protective mechanism for stem cells that minimizes endogenous stress caused by cellular respiration and DNA replication. We demonstrate that HSC quiescence can also have detrimental effects. We found that HSCs have unique cell-intrinsic mechanisms ensuring their survival in response to ionizing irradiation (IR), which include enhanced prosurvival gene expression and strong activation of p53-mediated DNA damage response. We show that quiescent and proliferating HSCs are equally radioprotected but use different types of DNA repair mechanisms. We describe how nonhomologous end joining (NHEJ)-mediated DNA repair in quiescent HSCs is associated with acquisition of genomic rearrangements, which can persist in vivo and contribute to hematopoietic abnormalities. Our results demonstrate that quiescence is a double-edged sword that renders HSCs intrinsically vulnerable to mutagenesis following DNA damage.
Collapse
Affiliation(s)
- Mary Mohrin
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Mladinic M, Kopjar N, Milic M, Buljevic Dasovic A, Huzak M, Zeljezic D. Genomic instability in a healthy elderly population: a pilot study of possible cytogenetic markers related to ageing. Mutagenesis 2010; 25:455-62. [DOI: 10.1093/mutage/geq027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
82
|
Nussenzweig A, Nussenzweig MC. Origin of chromosomal translocations in lymphoid cancer. Cell 2010; 141:27-38. [PMID: 20371343 DOI: 10.1016/j.cell.2010.03.016] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 01/13/2010] [Accepted: 03/16/2010] [Indexed: 11/26/2022]
Abstract
Aberrant fusions between heterologous chromosomes are among the most prevalent cytogenetic abnormalities found in cancer cells. Oncogenic chromosomal translocations provide cells with a proliferative or survival advantage. They may either initiate transformation or be acquired secondarily as a result of genomic instability. Here, we highlight recent advances toward understanding the origin of chromosomal translocations in incipient lymphoid cancers and how tumor-suppressive pathways normally limit the frequency of these aberrant recombination events. Deciphering the mechanisms that mediate chromosomal fusions will open new avenues for developing therapeutic strategies aimed at eliminating lesions that lead to the initiation, maintenance, and progression of cancer.
Collapse
Affiliation(s)
- André Nussenzweig
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
83
|
Konkel MK, Batzer MA. A mobile threat to genome stability: The impact of non-LTR retrotransposons upon the human genome. Semin Cancer Biol 2010; 20:211-21. [PMID: 20307669 DOI: 10.1016/j.semcancer.2010.03.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/04/2010] [Accepted: 03/16/2010] [Indexed: 02/06/2023]
Abstract
It is now commonly agreed that the human genome is not the stable entity originally presumed. Deletions, duplications, inversions, and insertions are common, and contribute significantly to genomic structural variations (SVs). Their collective impact generates much of the inter-individual genomic diversity observed among humans. Not only do these variations change the structure of the genome; they may also have functional implications, e.g. altered gene expression. Some SVs have been identified as the cause of genetic disorders, including cancer predisposition. Cancer cells are notorious for their genomic instability, and often show genomic rearrangements at the microscopic and submicroscopic level to which transposable elements (TEs) contribute. Here, we review the role of TEs in genome instability, with particular focus on non-LTR retrotransposons. Currently, three non-LTR retrotransposon families - long interspersed element 1 (L1), SVA (short interspersed element (SINE-R), variable number of tandem repeats (VNTR), and Alu), and Alu (a SINE) elements - mobilize in the human genome, and cause genomic instability through both insertion- and post-insertion-based mutagenesis. Due to the abundance and high sequence identity of TEs, they frequently mislead the homologous recombination repair pathway into non-allelic homologous recombination, causing deletions, duplications, and inversions. While less comprehensively studied, non-LTR retrotransposon insertions and TE-mediated rearrangements are probably more common in cancer cells than in healthy tissue. This may be at least partially attributed to the commonly seen global hypomethylation as well as general epigenetic dysfunction of cancer cells. Where possible, we provide examples that impact cancer predisposition and/or development.
Collapse
Affiliation(s)
- Miriam K Konkel
- Department of Biological Sciences, Biological Computation and Visualization Center, Louisiana State University, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
84
|
Role of Ku80-dependent end-joining in delayed genomic instability in mammalian cells surviving ionizing radiation. Mutat Res 2010; 683:29-34. [PMID: 19822159 DOI: 10.1016/j.mrfmmm.2009.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 09/17/2009] [Accepted: 10/02/2009] [Indexed: 11/20/2022]
Abstract
Ionizing radiation induces delayed destabilization of the genome in the progenies of surviving cells. This phenomenon, which is called radiation-induced genomic instability, is manifested by delayed induction of radiation effects, such as cell death, chromosome aberration, and mutation in the progeny of cells surviving radiation exposure. Previously, there was a report showing that delayed cell death was absent in Ku80-deficient Chinese hamster ovary (CHO) cells, however, the mechanism of their defect has not been determined. We found that delayed induction of DNA double strand breaks and chromosomal breaks were intact in Ku80-deficient cells surviving X-irradiation, whereas there was no sign for the production of chromosome bridges between divided daughter cells. Moreover, delayed induction of dicentric chromosomes was significantly compromised in those cells compared to the wild-type CHO cells. Reintroduction of the human Ku86 gene complimented the defective DNA repair and recovered delayed induction of dicentric chromosomes and delayed cell death, indicating that defective Ku80-dependent dicentric induction was the cause of the absence of delayed cell death. Since DNA-PKcs-defective cells showed delayed phenotypes, Ku80-dependent illegitimate rejoining is involved in delayed impairment of the integrity of the genome in radiation-survived cells.
Collapse
|
85
|
Defective DNA double-strand break repair underlies enhanced tumorigenesis and chromosomal instability in p27-deficient mice with growth factor-induced oligodendrogliomas. Oncogene 2010; 29:1720-31. [PMID: 20062078 PMCID: PMC2845739 DOI: 10.1038/onc.2009.465] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The tumor suppressive activities of the Kip-family of cdk inhibitors often go beyond their role in regulating the cell cycle. Here, we demonstrate that p27 enhances Rad51 accumulation during repair of double-strand DNA breaks. Progression of PDGF-induced oligodendrogliomas was accelerated in mice lacking the cyclin-cdk binding activities of p27kip1. Cell lines were developed from RCAS-PDGF infection of nestin-tv-a brain progenitor cells in culture. p27 deficiency did not affect cell proliferation in early passage cell lines; however, the absence of p27 affected chromosomal stability. In p27 deficient cells, the activation of Atm and Chk2, and the accumulation of γH2AX was unaffected compared to wild type cells, and the number of phospho-histone H3 staining mitotic cells was decreased, consistent with a robust G2/M checkpoint activation. However, the percentage of Rad51 foci positive cells was decreased, and the kinase activity that targets the C-terminus of BRCA2, regulating BRCA2/Rad51 interactions, was increased in lysates derived from p27 deficient cells. Increased numbers of chromatid breaks in p27 deficient cells that adapted to the checkpoint were also observed. These findings suggest that Rad51-dependent repair of double stranded breaks was hindered in p27 deficient cells, leading to chromosomal instability, a hallmark of cancers with poor prognosis.
Collapse
|
86
|
Pannunzio NR, Manthey GM, Bailis AM. RAD59 and RAD1 cooperate in translocation formation by single-strand annealing in Saccharomyces cerevisiae. Curr Genet 2009; 56:87-100. [PMID: 20012294 PMCID: PMC2808509 DOI: 10.1007/s00294-009-0282-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 11/24/2009] [Accepted: 11/25/2009] [Indexed: 11/30/2022]
Abstract
Studies in the budding yeast, Saccharomyces cerevisiae, have demonstrated that a substantial fraction of double-strand break repair following acute radiation exposure involves homologous recombination between repetitive genomic elements. We have previously described an assay in S. cerevisiae that allows us to model how repair of multiple breaks leads to the formation of chromosomal translocations by single-strand annealing (SSA) and found that Rad59, a paralog of the single-stranded DNA annealing protein Rad52, is critically important in this process. We have constructed several rad59 missense alleles to study its function more closely. Characterization of these mutants revealed proportional defects in both translocation formation and spontaneous direct-repeat recombination, which is also thought to occur by SSA. Combining the rad59 missense alleles with a null allele of RAD1, which encodes a subunit of a nuclease required for the removal of non-homologous tails from annealed intermediates, substantially suppressed the low frequency of translocations observed in rad1-null single mutants. These data suggest that at least one role of Rad59 in translocation formation by SSA is supporting the machinery required for cleavage of non-homologous tails.
Collapse
Affiliation(s)
- Nicholas R Pannunzio
- Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| | | | | |
Collapse
|
87
|
Jeggo PA. Risks from low dose/dose rate radiation: what an understanding of DNA damage response mechanisms can tell us. HEALTH PHYSICS 2009; 97:416-425. [PMID: 19820451 DOI: 10.1097/hp.0b013e3181aff9c8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The DNA damage response (DDR) mechanisms represent a vital line of defense against exogenous and endogenous DNA damage to enhance two distinct outcomes, survival and the maintenance of genomic stability. The latter is critical for cancer avoidance. DDR processes encompass repair pathways and signal transduction mechanisms that activate cell cycle checkpoint arrest and apoptosis. DNA double strand breaks (DSBs) represent important radiation-induced lesions. The major DSB repair pathways are DNA non-homologous end-joining (NHEJ) and homologous recombination (HR) and ataxia telangiectasia mutated (ATM) activates the DSB signaling response. To evaluate the ability of these pathways to protect against low doses or dose rate radiation exposure, it is important to consider the fidelity of DSB repair and the sensitivity of checkpoint arrest and apoptosis. Radiation-induced DSBs are more complex than endogenously-induced DSBs, with the potential for multiple lesions to arise in close proximity. NHEJ, the major DSB repair pathway, cannot accurately reconstitute sequence information lost at DSBs. Both pathways have the potential to cause translocations by rejoining erroneous DNA ends. Thus, complete accuracy of repair cannot be guaranteed and the formation of translocations, which have the potential to initiate carcinogenesis, can arise. Additionally, the G2/M checkpoint has a defined sensitivity, allowing some chromosome breakage to occur. Thus, genomic rearrangements can potentially arise even if the G1/S checkpoint is efficient. The sensitivity of apoptosis is currently unclear but will likely differ between tissues. In summary, it is unlikely that the DDR mechanisms can fully protect cells from genomic rearrangements following exposure to low doses or dose rate radiation.
Collapse
Affiliation(s)
- Penny A Jeggo
- Genome Damage and Stability Centre, University of Sussex; Brighton BN1 9RQ, UK.
| |
Collapse
|
88
|
Manthey GM, Naik N, Bailis AM. Msh2 blocks an alternative mechanism for non-homologous tail removal during single-strand annealing in Saccharomyces cerevisiae. PLoS One 2009; 4:e7488. [PMID: 19834615 PMCID: PMC2759526 DOI: 10.1371/journal.pone.0007488] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 09/25/2009] [Indexed: 11/19/2022] Open
Abstract
Chromosomal translocations are frequently observed in cells exposed to agents that cause DNA double-strand breaks (DSBs), such as ionizing radiation and chemotherapeutic drugs, and are often associated with tumors in mammals. Recently, translocation formation in the budding yeast, Saccharomyces cerevisiae, has been found to occur at high frequencies following the creation of multiple DSBs adjacent to repetitive sequences on non-homologous chromosomes. The genetic control of translocation formation and the chromosome complements of the clones that contain translocations suggest that translocation formation occurs by single-strand annealing (SSA). Among the factors important for translocation formation by SSA is the central mismatch repair (MMR) and homologous recombination (HR) factor, Msh2. Here we describe the effects of several msh2 missense mutations on translocation formation that suggest that Msh2 has separable functions in stabilizing annealed single strands, and removing non-homologous sequences from their ends. Additionally, interactions between the msh2 alleles and a null allele of RAD1, which encodes a subunit of a nuclease critical for the removal of non-homologous tails suggest that Msh2 blocks an alternative mechanism for removing these sequences. These results suggest that Msh2 plays multiple roles in the formation of chromosomal translocations following acute levels of DNA damage.
Collapse
Affiliation(s)
- Glenn M. Manthey
- Division of Molecular Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Nilan Naik
- Scripps College Post-Baccalaureate Premedical Program, Claremont, California, United States of America
| | - Adam M. Bailis
- Division of Molecular Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
89
|
Aberrantly resolved RAG-mediated DNA breaks in Atm-deficient lymphocytes target chromosomal breakpoints in cis. Proc Natl Acad Sci U S A 2009; 106:18339-44. [PMID: 19820166 DOI: 10.1073/pnas.0902545106] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Canonical chromosomal translocations juxtaposing antigen receptor genes and oncogenes are a hallmark of many lymphoid malignancies. These translocations frequently form through the joining of DNA ends from double-strand breaks (DSBs) generated by the recombinase activating gene (RAG)-1 and -2 proteins at lymphocyte antigen receptor loci and breakpoint targets near oncogenes. Our understanding of chromosomal breakpoint target selection comes primarily from the analyses of these lesions, which are selected based on their transforming properties. RAG DSBs are rarely resolved aberrantly in wild-type developing lymphocytes. However, in ataxia telangiectasia mutated (ATM)-deficient lymphocytes, RAG breaks are frequently joined aberrantly, forming chromosomal lesions such as translocations that predispose (ATM)-deficient mice and humans to the development of lymphoid malignancies. Here, an approach that minimizes selection biases is used to isolate a large cohort of breakpoint targets of aberrantly resolved RAG DSBs in Atm-deficient lymphocytes. Analyses of this cohort revealed that frequently, the breakpoint targets for aberrantly resolved RAG breaks are other DSBs. Moreover, these nonselected lesions exhibit a bias for using breakpoints in cis, forming small chromosomal deletions, rather than breakpoints in trans, forming chromosomal translocations.
Collapse
|
90
|
SOSS complexes participate in the maintenance of genomic stability. Mol Cell 2009; 35:384-93. [PMID: 19683501 DOI: 10.1016/j.molcel.2009.06.011] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 05/21/2009] [Accepted: 06/08/2009] [Indexed: 11/20/2022]
Abstract
Proteins that bind to single-stranded DNA (ssDNA) are essential for DNA replication, recombinational repair, and maintenance of genomic stability. Here, we describe the characterization of an ssDNA-binding heterotrimeric complex, SOSS (sensor of ssDNA) in human, which consists of human SSB homologs hSSB1/2 (SOSS-B1/2) and INTS3 (SOSS-A) and a previously uncharacterized protein C9orf80 (SOSS-C). We have shown that SOSS-A serves as a central adaptor required not only for SOSS complex assembly and stability, but also for facilitating the accumulation of SOSS complex to DNA ends. Moreover, SOSS-depleted cells display increased ionizing radiation sensitivity, defective G2/M checkpoint, and impaired homologous recombination repair. Thus, our study defines a pathway involving the sensing of ssDNA by SOSS complex and suggests that this SOSS complex is likely involved in the maintenance of genome stability.
Collapse
|
91
|
Takaku M, Machida S, Nakayama S, Takahashi D, Kurumizaka H. Biochemical analysis of the human EVL domains in homologous recombination. FEBS J 2009; 276:5841-8. [DOI: 10.1111/j.1742-4658.2009.07265.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
92
|
Haley B, Paunesku T, Protić M, Woloschak GE. Response of heterogeneous ribonuclear proteins (hnRNP) to ionising radiation and their involvement in DNA damage repair. Int J Radiat Biol 2009; 85:643-55. [PMID: 19579069 DOI: 10.1080/09553000903009548] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE To determine the relationship between heterogeneous nuclear ribonucleoproteins (hnRNP) and DNA repair, particularly in response to ionising radiation (IR). MATERIALS AND METHODS The literature was examined for papers related to the topics of hnRNP, IR and DNA repair. RESULTS HnRNP orchestrate the processing of mRNA to which they are bound in response to IR. HnRNP A18, B1, C1/C2 and K interact with important proteins from DNA Damage Response (DDR) pathways, binding DNA-dependent protein kinase (DNA-PK), the Ku antigen (Ku) and tumour suppressor protein 53 (p53) respectively. Notably, irregularities in the expression of hnRNP A18, B1, K, P2 and L have been linked to cancer and radiosensitivity. Sixteen different hnRNP proteins have been reported to show either mRNA transcript or protein quantity changes following IR. Various protein modifications of hnRNP in response to IR have also been noted: hnRNP A18, C1/C2 and K are phosphorylated; hnRNP C1/C2 is a target of apoptotic proteases; and hnRNP K degradation is controlled by murine double minute ubiquitin ligase (MDM2). Evidence points to a role for hnRNP A1, A18, A2/B1, C1/C2, K and P2 in regulating double-stranded break (DSB) repair pathways by promoting either homologous recombination (HR) or non-homologous end rejoining (NHEJ) repair pathways following IR. CONCLUSIONS HnRNP proteins play a pivotal role in coordinating repair pathways following exposure to IR, through protein-protein interactions and transcript regulation of key repair and stress response mRNA. In particular, several hnRNP proteins are critical in coordinating the choice of HR or NHEJ to repair DSB caused by IR.
Collapse
Affiliation(s)
- Benjamin Haley
- Department of Radiation Oncology, Northwestern University, Chicago, Illinois, USA
| | | | | | | |
Collapse
|
93
|
Faithful after break-up: suppression of chromosomal translocations. Cell Mol Life Sci 2009; 66:3149-60. [PMID: 19547915 DOI: 10.1007/s00018-009-0068-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 05/31/2009] [Accepted: 06/08/2009] [Indexed: 10/20/2022]
Abstract
Chromosome integrity in response to chemically or radiation-induced chromosome breaks and the perturbation of ongoing replication forks relies on multiple DNA repair mechanisms. However, repair of these lesions may lead to unwanted chromosome rearrangement if not properly executed or regulated. As these types of chromosomal alterations threaten the cell's and the organism's very own survival, multiple systems are developed to avoid or at least limit break-induced chromosomal rearrangements. In this review, we highlight cellular strategies for repressing DNA break-induced chromosomal translocations in multiple model systems including yeast, mouse, and human. These pathways select proper homologous templates or broken DNA ends for the faithful repair of DNA breaks to avoid undesirable chromosomal translocations.
Collapse
|
94
|
XRCC2 and XRCC3 regulate the balance between short- and long-tract gene conversions between sister chromatids. Mol Cell Biol 2009; 29:4283-94. [PMID: 19470754 DOI: 10.1128/mcb.01406-08] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sister chromatid recombination (SCR) is a potentially error-free pathway for the repair of DNA lesions associated with replication and is thought to be important for suppressing genomic instability. The mechanisms regulating the initiation and termination of SCR in mammalian cells are poorly understood. Previous work has implicated all the Rad51 paralogs in the initiation of gene conversion and the Rad51C/XRCC3 complex in its termination. Here, we show that hamster cells deficient in the Rad51 paralog XRCC2, a component of the Rad51B/Rad51C/Rad51D/XRCC2 complex, reveal a bias in favor of long-tract gene conversion (LTGC) during SCR. This defect is corrected by expression of wild-type XRCC2 and also by XRCC2 mutants defective in ATP binding and hydrolysis. In contrast, XRCC3-mediated homologous recombination and suppression of LTGC are dependent on ATP binding and hydrolysis. These results reveal an unexpectedly general role for Rad51 paralogs in the control of the termination of gene conversion between sister chromatids.
Collapse
|
95
|
Huang J, Huen MSY, Kim H, Leung CCY, Glover JNM, Yu X, Chen J. RAD18 transmits DNA damage signalling to elicit homologous recombination repair. Nat Cell Biol 2009; 11:592-603. [PMID: 19396164 PMCID: PMC2743127 DOI: 10.1038/ncb1865] [Citation(s) in RCA: 239] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 01/09/2009] [Indexed: 12/29/2022]
Abstract
To maintain genome stability, cells respond to DNA damage by activating signalling pathways that govern cell-cycle checkpoints and initiate DNA repair. Cell-cycle checkpoint controls should connect with DNA repair processes, however, exactly how such coordination occurs in vivo is largely unknown. Here we describe a new role for the E3 ligase RAD18 as the integral component in translating the damage response signal to orchestrate homologous recombination repair (HRR). We show that RAD18 promotes homologous recombination in a manner strictly dependent on its ability to be recruited to sites of DNA breaks and that this recruitment relies on a well-defined DNA damage signalling pathway mediated by another E3 ligase, RNF8. We further demonstrate that RAD18 functions as an adaptor to facilitate homologous recombination through direct interaction with the recombinase RAD51C. Together, our data uncovers RAD18 as a key factor that orchestrates HRR through surveillance of the DNA damage signal.
Collapse
Affiliation(s)
- Jun Huang
- Department of Therapeutic Radiology, Yale University School of Medicine, P.O. Box 208040, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
96
|
McConnell Smith A, Takeuchi R, Pellenz S, Davis L, Maizels N, Monnat RJ, Stoddard BL. Generation of a nicking enzyme that stimulates site-specific gene conversion from the I-AniI LAGLIDADG homing endonuclease. Proc Natl Acad Sci U S A 2009; 106:5099-104. [PMID: 19276110 PMCID: PMC2664052 DOI: 10.1073/pnas.0810588106] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Indexed: 11/18/2022] Open
Abstract
Homing endonucleases stimulate gene conversion by generating site-specific DNA double-strand breaks that are repaired by homologous recombination. These enzymes are potentially valuable tools for targeted gene correction and genome engineering. We have engineered a variant of the I-AniI homing endonuclease that nicks its cognate target site. This variant contains a mutation of a basic residue essential for proton transfer and solvent activation in one active site. The cleavage mechanism, DNA-binding affinity, and substrate specificity profile of the nickase are similar to the wild-type enzyme. I-AniI nickase stimulates targeted gene correction in human cells, in cis and in trans, at approximately 1/4 the efficiency of the wild-type enzyme. The development of sequence-specific nicking enzymes like the I-AniI nickase will facilitate comparative analyses of DNA repair and mutagenesis induced by single- or double-strand breaks.
Collapse
Affiliation(s)
- Audrey McConnell Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue, North Seattle, WA 98109
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195
- Northwest Genome Engineering Consortium, Seattle, WA 98101; and
| | - Ryo Takeuchi
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue, North Seattle, WA 98109
- Northwest Genome Engineering Consortium, Seattle, WA 98101; and
| | - Stefan Pellenz
- Northwest Genome Engineering Consortium, Seattle, WA 98101; and
- Departments of Pathology and Genome Sciences, and
| | - Luther Davis
- Northwest Genome Engineering Consortium, Seattle, WA 98101; and
- Immunology and Biochemisty, University of Washington Medical School, Seattle, WA 98195
| | - Nancy Maizels
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195
- Northwest Genome Engineering Consortium, Seattle, WA 98101; and
- Immunology and Biochemisty, University of Washington Medical School, Seattle, WA 98195
| | - Raymond J. Monnat
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195
- Northwest Genome Engineering Consortium, Seattle, WA 98101; and
- Departments of Pathology and Genome Sciences, and
| | - Barry L. Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue, North Seattle, WA 98109
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195
- Northwest Genome Engineering Consortium, Seattle, WA 98101; and
| |
Collapse
|
97
|
Takaku M, Machida S, Hosoya N, Nakayama S, Takizawa Y, Sakane I, Shibata T, Miyagawa K, Kurumizaka H. Recombination activator function of the novel RAD51- and RAD51B-binding protein, human EVL. J Biol Chem 2009; 284:14326-36. [PMID: 19329439 DOI: 10.1074/jbc.m807715200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The RAD51 protein is a central player in homologous recombinational repair. The RAD51B protein is one of five RAD51 paralogs that function in the homologous recombinational repair pathway in higher eukaryotes. In the present study, we found that the human EVL (Ena/Vasp-like) protein, which is suggested to be involved in actin-remodeling processes, unexpectedly binds to the RAD51 and RAD51B proteins and stimulates the RAD51-mediated homologous pairing and strand exchange. The EVL knockdown cells impaired RAD51 assembly onto damaged DNA after ionizing radiation or mitomycin C treatment. The EVL protein alone promotes single-stranded DNA annealing, and the recombination activities of the EVL protein are further enhanced by the RAD51B protein. The expression of the EVL protein is not ubiquitous, but it is significantly expressed in breast cancer-derived MCF7 cells. These results suggest that the EVL protein is a novel recombination factor that may be required for repairing specific DNA lesions, and that may cause tumor malignancy by its inappropriate expression.
Collapse
Affiliation(s)
- Motoki Takaku
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, and Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Recombination at DNA replication fork barriers is not universal and is differentially regulated by Swi1. Proc Natl Acad Sci U S A 2009; 106:4770-5. [PMID: 19273851 DOI: 10.1073/pnas.0807739106] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
DNA replication stress has been implicated in the etiology of genetic diseases, including cancers. It has been proposed that genomic sites that inhibit or slow DNA replication fork progression possess recombination hotspot activity and can form potential fragile sites. Here we used the fission yeast, Schizosaccharomyces pombe, to demonstrate that hotspot activity is not a universal feature of replication fork barriers (RFBs), and we propose that most sites within the genome that form RFBs do not have recombination hotspot activity under nonstressed conditions. We further demonstrate that Swi1, the TIMELESS homologue, differentially controls the recombination potential of RFBs, switching between being a suppressor and an activator of recombination in a site-specific fashion.
Collapse
|
99
|
D'Angelo CS, Gajecka M, Kim CA, Gentles AJ, Glotzbach CD, Shaffer LG, Koiffmann CP. Further delineation of nonhomologous-based recombination and evidence for subtelomeric segmental duplications in 1p36 rearrangements. Hum Genet 2009; 125:551-63. [PMID: 19271239 DOI: 10.1007/s00439-009-0650-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 02/25/2009] [Indexed: 12/23/2022]
Abstract
The mechanisms involved in the formation of subtelomeric rearrangements are now beginning to be elucidated. Breakpoint sequencing analysis of 1p36 rearrangements has made important contributions to this line of inquiry. Despite the unique architecture of segmental duplications inherent to human subtelomeres, no common mechanism has been identified thus far and different nonexclusive recombination-repair mechanisms seem to predominate. In order to gain further insights into the mechanisms of chromosome breakage, repair, and stabilization mediating subtelomeric rearrangements in humans, we investigated the constitutional rearrangements of 1p36. Cloning of the breakpoint junctions in a complex rearrangement and three non-reciprocal translocations revealed similarities at the junctions, such as microhomology of up to three nucleotides, along with no significant sequence identity in close proximity to the breakpoint regions. All the breakpoints appeared to be unique and their occurrence was limited to non-repetitive, unique DNA sequences. Several recombination- or cleavage-associated motifs that may promote non-homologous recombination were observed in close proximity to the junctions. We conclude that NHEJ is likely the mechanism of DNA repair that generates these rearrangements. Additionally, two apparently pure terminal deletions were also investigated, and the refinement of the breakpoint regions identified two distinct genomic intervals ~25-kb apart, each containing a series of 1p36 specific segmental duplications with 90-98% identity. Segmental duplications can serve as substrates for ectopic homologous recombination or stimulate genomic rearrangements.
Collapse
Affiliation(s)
- Carla S D'Angelo
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano, Instituto de Biociências, Universidade de São Paulo, SP CEP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
100
|
Bignold L. Mechanisms of clastogen-induced chromosomal aberrations: A critical review and description of a model based on failures of tethering of DNA strand ends to strand-breaking enzymes. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2009; 681:271-298. [DOI: 10.1016/j.mrrev.2008.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 11/26/2008] [Accepted: 11/26/2008] [Indexed: 01/15/2023]
|