51
|
Bone remodeling induced by mechanical forces is regulated by miRNAs. Biosci Rep 2018; 38:BSR20180448. [PMID: 29844019 PMCID: PMC6028748 DOI: 10.1042/bsr20180448] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/13/2018] [Accepted: 05/25/2018] [Indexed: 12/14/2022] Open
Abstract
The relationship between mechanical force and alveolar bone remodeling is an important issue in orthodontics because tooth movement is dependent on the response of bone tissue to the mechanical force induced by the appliances used. Mechanical cyclical stretch (MCS), fluid shear stress (FSS), compression, and microgravity play different roles in the cell differentiation and proliferation involved in bone remodeling. However, the underlying mechanisms are unclear, particularly the molecular pathways regulated by non-coding RNAs (ncRNAs) that play essential roles in bone remodeling. Amongst the various ncRNAs, miRNAs act as post-transcriptional regulators that inhibit the expression of their target genes. miRNAs are considered key regulators of many biologic processes including bone remodeling. Here, we review the role of miRNAs in mechanical force-induced bone metabolism.
Collapse
|
52
|
Antiproliferative and toxicological properties of drimanes obtained from Drimys brasiliensis stem barks. Biomed Pharmacother 2018; 103:1498-1506. [DOI: 10.1016/j.biopha.2018.04.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 01/04/2023] Open
|
53
|
Rahimi M, Shafiei-Irannejad V, D Safa K, Salehi R. Multi-branched ionic liquid-chitosan as a smart and biocompatible nano-vehicle for combination chemotherapy with stealth and targeted properties. Carbohydr Polym 2018; 196:299-312. [PMID: 29891300 DOI: 10.1016/j.carbpol.2018.05.059] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/26/2018] [Accepted: 05/17/2018] [Indexed: 01/08/2023]
Abstract
A possible approach for clinical cancer treatment is combination chemotherapy. To address this issue, many anticancer agents have been used simultaneously to achieve synergistic effects with the different mechanism of actions, however, their toxic side effects are still a big challenge. In this study, a smart, biocompatible, magnetic nanocarrier composed of multi-branched ionic liquid-chitosan grafted mPEG was designed and used for targeted multidrug delivery of DOX and MTX as model anticancer agents to MCF7 breast cancer cells. The results of hemolysis assay on human red blood cells and cytotoxicity studies indicated that blank nanocarrier has no significant hemolytic and cytotoxic effects in MCF7 cells as observed in the results of MTT assay, however, drugs-loaded nanocarrier could decrease the viability of MCF7 cells in a dose-dependent manner. To further simulate the interaction of nanocarrier with plasma proteins, the SDS-PAGE assay was performed after the nanocarrier was incubated with human plasma and the results indicated that a series of proteins were attached to the surface of nanocarrier leading protein-particle corona complex. This complex gives a stealth property as well as increasing cellular uptake process due to the presence of proteins acting as ligands for receptors in the surface of cancer cells that are suitable for drug delivery systems. The efficiency of dual-drug delivery was also confirmed by cellular uptake and DAPI staining. All these results persuade us, this nanocarrier is suitable for use in further animal studies in future investigations.
Collapse
Affiliation(s)
- Mahdi Rahimi
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166614766, Iran
| | - Vahid Shafiei-Irannejad
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran; Drug Applied Research Centre, School of Advanced Medical Science, and Department of Medical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kazem D Safa
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166614766, Iran.
| | - Roya Salehi
- Drug Applied Research Centre, School of Advanced Medical Science, and Department of Medical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
54
|
Majidinia M, Darband SG, Kaviani M, Nabavi SM, Jahanban-Esfahlan R, Yousefi B. Cross-regulation between Notch signaling pathway and miRNA machinery in cancer. DNA Repair (Amst) 2018; 66-67:30-41. [PMID: 29723707 DOI: 10.1016/j.dnarep.2018.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/03/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022]
Abstract
Despite their simple structure, the Notch family of receptors regulates a wide-spectrum of key cellular processes including development, tissue patterning, cell-fate determination, proliferation, differentiation and, cell death. On the other hand, accumulating date pinpointed the role of non-coding microRNAs, namely miRNAs in cancer initiation/progression via regulating the expression of multiple oncogenes and tumor suppressor genes, as such the Notch signaling. It is now documented that these two partners are in one or in the opposite directions and rule together the cancer fate. Here, we review the current knowledge relevant to this tricky interplay between different miRNAs and components of Notch signaling pathway. Further, we discuss the implication of this crosstalk in cancer progression/regression in the context of cancer stem cells, tumor angiogenesis, metastasis and emergence of multi-drug resistance. Understanding the molecular cues and mechanisms that occur at the interface of miRNA and Notch signaling would open new avenues for development of novel and effective strategies for cancer therapy.
Collapse
Affiliation(s)
- Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Saber Ghazizadeh Darband
- Danesh Pey Hadi Co., Health Technology Development Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Rana Jahanban-Esfahlan
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran; Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
55
|
Darband SG, Kaviani M, Yousefi B, Sadighparvar S, Pakdel FG, Attari JA, Mohebbi I, Naderi S, Majidinia M. Quercetin: A functional dietary flavonoid with potential chemo-preventive properties in colorectal cancer. J Cell Physiol 2018; 233:6544-6560. [PMID: 29663361 DOI: 10.1002/jcp.26595] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/12/2018] [Indexed: 02/06/2023]
Abstract
Recently, an intense attention has been paid to the application of natural compounds as a novel therapeutic strategy for cancer treatment. Quercetin, a natural flavonol present in many commonly consumed food items, is widely demonstrated to exert inhibitory effects on cancer progression through various mechanisms. Since there is a strong association with diets containing abundant vegetables, fruits, and grains, and significant decline in the risk of colon cancer, accumulation studies have focused on the anticancer potential of quercetin in colorectal cancer. Cell cycle arrest, increase in apoptosis, antioxidant replication, modulation of estrogen receptors, regulation of signaling pathways, inhibition of and metastasis and angiogenesis are among various mechanisms underlying the chemo-preventive effects of quercetin in colorectal cancer. This review covers various therapeutic interactions of Quercetin as to how targets cellular involved in cancer treatment.
Collapse
Affiliation(s)
- Saber G Darband
- Danesh Pey Hadi Co., Health Technology, Development Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Sadighparvar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Firouz G Pakdel
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Javad A Attari
- Department of Neurosurgery, Urmia University of Medical Sciences, Urmia, Iran
| | - Iraj Mohebbi
- Social Determinants of Health Center, Occupational Medicine Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Somayeh Naderi
- Danesh Pey Hadi Co., Health Technology, Development Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
56
|
Hu WL, Jin L, Xu A, Wang YF, Thorne RF, Zhang XD, Wu M. GUARDIN is a p53-responsive long non-coding RNA that is essential for genomic stability. Nat Cell Biol 2018; 20:492-502. [DOI: 10.1038/s41556-018-0066-7] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 02/15/2018] [Indexed: 12/11/2022]
|
57
|
Majidinia M, Aghazadeh J, Jahanban‐Esfahlani R, Yousefi B. The roles of Wnt/β‐catenin pathway in tissue development and regenerative medicine. J Cell Physiol 2018; 233:5598-5612. [DOI: 10.1002/jcp.26265] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Maryam Majidinia
- Solid Tumor Research CenterUrmia University of Medical SciencesUrmiaIran
| | - Javad Aghazadeh
- Department of NeurosurgeryUrmia University of Medical SciencesUrmiaIran
| | - Rana Jahanban‐Esfahlani
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
| | - Bahman Yousefi
- Stem Cell and Regenerative Medicine InstituteTabriz University of Medical SciencesTabrizIran
- Molecular Targeting Therapy Research GroupFaculty of MedicineTabriz University ofMedical SciencesTabrizIran
| |
Collapse
|
58
|
Inhibition of HAX-1 by miR-125a reverses cisplatin resistance in laryngeal cancer stem cells. Oncotarget 2018; 7:86446-86456. [PMID: 27880721 PMCID: PMC5349925 DOI: 10.18632/oncotarget.13424] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 11/07/2016] [Indexed: 12/26/2022] Open
Abstract
Chemoresistance is a major obstacle in chemotherapy of laryngeal carcinoma. Recently, studies indicate that cancer stem cells are responsible for chemotherapy failure. In addition, microRNAs play important roles in tumor initiation, development and multidrug resistance. In the present study, we found that the expression of microRNA-125a was decreased in laryngeal carcinoma tissues and Hep-2 laryngeal cancer stem cells (Hep-2-CSCs). MicroRNA-125a gain-of-function significantly increased the sensitivity of Hep-2-CSCs to cisplatin in vitro and in vivo. Combination with microRNA-125a mimics can decrease the half maximal inhibitory concentration of Hep-2-CSCs to cisplatin. Mechanically, we found that microRNA-125a reverses cisplatin resistance in Hep-2-CSCs by targeting Hematopoietic cell-specific protein 1-associated protein X-1 (HAX-1). Inhibition of HAX-1 by microRNA-125a significantly promotes the cisplatin-induced apoptosis in Hep-2-CSCs through mitochondrial pathway. In addition, multidrug resistance of Hep-2-CSCs to vincristine, etoposide and doxorubicin was greatly improved after the cells were transfected with microRNA-125a mimics. These dates strongly suggested the promotion of microRNA-125a/HAX-1 axis on chemotherapy of laryngeal carcinoma.
Collapse
|
59
|
Ghorbani M, Mahmoodzadeh F, Nezhad-Mokhtari P, Hamishehkar H. A novel polymeric micelle-decorated Fe3O4/Au core–shell nanoparticle for pH and reduction-responsive intracellular co-delivery of doxorubicin and 6-mercaptopurine. NEW J CHEM 2018. [DOI: 10.1039/c8nj03310b] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synergistic antitumor activity against MCF-7 cells was confirmed by co-delivery of doxorubicin and 6-mercaptopurine via dual pH/reduction-responsive nanoparticles.
Collapse
Affiliation(s)
- Marjan Ghorbani
- Stem Cell Research Center
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| | | | | | - Hamed Hamishehkar
- Drug Applied Research Center
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| |
Collapse
|
60
|
Tehrani SS, Karimian A, Parsian H, Majidinia M, Yousefi B. Multiple Functions of Long Non-Coding RNAs in Oxidative Stress, DNA Damage Response and Cancer Progression. J Cell Biochem 2018; 119:223-236. [PMID: 28608608 DOI: 10.1002/jcb.26217] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/12/2017] [Indexed: 12/24/2022]
Abstract
In addition to aberrant alternation of transcriptome, it is now suggested that dysregulation of the non-coding transcripts, particularly long non-coding RNAs (lncRNAs), which comprise the majority of the genome, is contributed to cancer initiation and progression. As the result of recent huge efforts, the possible roles of numerous lncRNAs in the human cancers were characterized, as well as various strategies with inhibitory effects to target these transcripts on the transformed cells. Moreover, DNA damage response (DDR) pathway is a complex regulatory network responsible for the identification of disruptions in DNA structure, integrity and stability- it is reported to be associated with the up-regulation and down-regulation of lncRNAs. This review explores the involvement of the various lncRNAs in different human cancers, afterwards discusses the association of the lncRNAs expression with the DDR and oxidative stress, which are implicated in a myriad pathophysiological and physiological intra- and extracellular damages. J. Cell. Biochem. 119: 223-236, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sadra Samavarchi Tehrani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Medicine, Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Medicine, Molecular Targeting Therapy Research Group, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
61
|
Majidinia M, Sadeghpour A, Mehrzadi S, Reiter RJ, Khatami N, Yousefi B. Melatonin: A pleiotropic molecule that modulates DNA damage response and repair pathways. J Pineal Res 2017; 63. [PMID: 28439991 DOI: 10.1111/jpi.12416] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/20/2017] [Indexed: 02/06/2023]
Abstract
DNA repair is responsible for maintaining the integrity of the genome. Perturbations in the DNA repair pathways have been identified in several human cancers. Thus, compounds targeting DNA damage response (DDR) hold great promise in cancer therapy. A great deal of effort, in pursuit of new anticancer drugs, has been devoted to understanding the basic mechanisms and functions of the cellular DNA repair machinery. Melatonin, a widely produced indoleamine in all organisms, is associated with a reduced risk of cancer and has multiple regulatory roles on the different aspects of the DDR and DNA repair. Herein, we have mainly discussed how defective components in different DNA repair machineries, including homologous recombination (HR), nonhomologous end-joining (NHEJ), base excision repair (BER), nucleotide excision repair (NER), and finally DNA mismatch repair (MMR), can contribute to the risk of cancer. Melatonin biosynthesis, mode of action, and antioxidant effects are reviewed along with the means by which the indoleamine regulates DDR at the transduction, mediation, and functional levels. Finally, we summarize recent studies that illustrate how melatonin can be combined with DNA-damaging agents to improve their efficacy in cancer therapy.
Collapse
Affiliation(s)
- Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Alireza Sadeghpour
- Department of Orthopedic Surgery, School of Medicine and Shohada Educational Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Mehrzadi
- Health Promotion Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Nasrin Khatami
- Institute for Stem Cell and Regenerative Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Targeting Therapy Research Group, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
62
|
Antoniali G, Malfatti MC, Tell G. Unveiling the non-repair face of the Base Excision Repair pathway in RNA processing: A missing link between DNA repair and gene expression? DNA Repair (Amst) 2017. [DOI: 10.1016/j.dnarep.2017.06.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
63
|
Nickoloff JA, Boss MK, Allen CP, LaRue SM. Translational research in radiation-induced DNA damage signaling and repair. Transl Cancer Res 2017; 6:S875-S891. [PMID: 30574452 PMCID: PMC6298755 DOI: 10.21037/tcr.2017.06.02] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Radiotherapy is an effective tool in the fight against cancer. It is non-invasive and painless, and with advanced tumor imaging and beam control systems, radiation can be delivered to patients safely, generally with minor or no adverse side effects, accounting for its increasing use against a broad range of tumors. Tumors and normal cells respond to radiation-induced DNA damage by activating a complex network of DNA damage signaling and repair pathways that determine cell fate including survival, death, and genome stability. DNA damage response (DDR) proteins represent excellent targets to augment radiotherapy, and many agents that inhibit key response proteins are being combined with radiation and genotoxic chemotherapy in clinical trials. This review focuses on how insights into molecular mechanisms of DDR pathways are translated to small animal preclinical studies, to clinical studies of naturally occurring tumors in companion animals, and finally to human clinical trials. Companion animal studies, under the umbrella of comparative oncology, have played key roles in the development of clinical radiotherapy throughout its >100-year history. There is growing appreciation that rapid translation of basic knowledge of DNA damage and repair systems to improved radiotherapy practice requires a comprehensive approach that embraces the full spectrum of cancer research, with companion animal clinical trials representing a critical bridge between small animal preclinical studies, and human clinical trials.
Collapse
Affiliation(s)
- Jac A Nickoloff
- Department of Environmental and Radiological Health Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Mary-Keara Boss
- Department of Environmental and Radiological Health Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Christopher P Allen
- Department of Environmental and Radiological Health Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Susan M LaRue
- Department of Environmental and Radiological Health Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
64
|
Yang J, Yuan Y, Yang X, Hong Z, Yang L. Decreased expression of microRNA-122 is associated with an unfavorable prognosis in childhood acute myeloid leukemia and function analysis indicates a therapeutic potential. Pathol Res Pract 2017; 213:1166-1172. [PMID: 28822593 DOI: 10.1016/j.prp.2017.06.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/15/2017] [Accepted: 06/25/2017] [Indexed: 12/15/2022]
Abstract
MicroRNA (miR)-122 functions as a tumor suppressor in various human cancers. However, its involvement in childhood acute myeloid leukemia (AML) remains unknown. In this study, quantitative real-time PCR assay demonstrated that miR-122 expression in bone marrow specimens from AML children were significantly lower than that in non-malignant controls (P<0.001). Statistically, AML children with low miR-122 expression more frequently had large white blood cell count (P=0.022), French-American-British classification subtype M7 (P<0.001), unfavorable cytogenetics (P=0.002) and day 7 response to the treatment (P=0.036), short relapse-free (P=0.001) and overall (P=0.008) survivals than those with high expression. Multivariate analysis also determined that miR-122 expression was an independent prognostic factor for both relapse-free and overall survivals. Functionally, the enforced expression of miR-122 in AML cell lines efficiently suppressed cell proliferation and reduced the ratio of S-phase cells in vitro (all P<0.05). In conclusion, the abnormal expression of miR-122 may be a marker of the aggressive progression in childhood AML. Importantly, its downregulation may serve as a prognostic factor to predict poor outcome. Our study also reveal that miR-122 may function as a tumor suppressor in childhood AML, highlighting a new therapeutic strategy for this malignancy.
Collapse
Affiliation(s)
- Juan Yang
- Department of Pediatrics, Huai'an Hospital Affiliated to Xuzhou Medical College and Huai'an Second People's Hospital, 62 Huaihai Road South, Huai'an 223002, China
| | - Yufang Yuan
- Department of Pediatrics, Huai'an Hospital Affiliated to Xuzhou Medical College and Huai'an Second People's Hospital, 62 Huaihai Road South, Huai'an 223002, China
| | - Xiaochun Yang
- Department of Pediatrics, Huai'an Hospital Affiliated to Xuzhou Medical College and Huai'an Second People's Hospital, 62 Huaihai Road South, Huai'an 223002, China
| | - Ze Hong
- Department of Pediatrics, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300, China
| | - Lijuan Yang
- Department of Pediatrics, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300, China.
| |
Collapse
|
65
|
Majidinia M, Yousefi B. DNA repair and damage pathways in breast cancer development and therapy. DNA Repair (Amst) 2017; 54:22-29. [DOI: 10.1016/j.dnarep.2017.03.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 12/22/2022]
|
66
|
Jahanban-Esfahlan R, de la Guardia M, Ahmadi D, Yousefi B. Modulating tumor hypoxia by nanomedicine for effective cancer therapy. J Cell Physiol 2017; 233:2019-2031. [PMID: 28198007 DOI: 10.1002/jcp.25859] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/10/2017] [Indexed: 12/13/2022]
Abstract
Hypoxia, a characteristic feature of tumors, is indispensable to tumor angiogenesis, metastasis, and multi drug resistance. Hypoxic avascular regions, deeply embedded inside the tumors significantly hinder delivery of therapeutic agents. The low oxygen tension results in resistance to the current applied anti-cancer therapeutics including radiotherapy, chemotherapy, and photodynamic therapy, the efficacy of which is firmly tied to the level of tumor oxygen supply. However, emerging data indicate that nanocarriers/nanodrugs can offer substantial benefits to improve the efficacy of current therapeutics, through modulation of tumor hypoxia. This review aims to introduce the most recent advances made in nanocarrier mediated targeting of tumor hypoxia. The first part is dedicated to the approaches by which nanocarriers could be designed to target/leverage hypoxia. These approaches include i) inhibiting Hypoxia Inducer Factor (HIF-1α); ii) hypoxia activated prodrugs/linkers; and iii) obligate anaerobe mediated targeting of tumor hypoxia. The second part, details novel nanosystems proposed to modulate tumor hypoxia through tumor oxygenation. These methods seek to lessen tumor hypoxia through vascular normalization, or reoxygenation therapy. The reoxygenation of tumor could be accomplished by: i) generation of oxygen filled nanocarriers; ii) natural/artificial oxygen nanocarriers; and iii) oxygen generators. The efficacy of each approach and their potential in cancer therapy is further discussed.
Collapse
Affiliation(s)
- Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Delshad Ahmadi
- Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Targeting Therapy Research Group, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
67
|
Reiter RJ, Rosales-Corral SA, Tan DX, Acuna-Castroviejo D, Qin L, Yang SF, Xu K. Melatonin, a Full Service Anti-Cancer Agent: Inhibition of Initiation, Progression and Metastasis. Int J Mol Sci 2017; 18:E843. [PMID: 28420185 PMCID: PMC5412427 DOI: 10.3390/ijms18040843] [Citation(s) in RCA: 313] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022] Open
Abstract
There is highly credible evidence that melatonin mitigates cancer at the initiation, progression and metastasis phases. In many cases, the molecular mechanisms underpinning these inhibitory actions have been proposed. What is rather perplexing, however, is the large number of processes by which melatonin reportedly restrains cancer development and growth. These diverse actions suggest that what is being observed are merely epiphenomena of an underlying more fundamental action of melatonin that remains to be disclosed. Some of the arresting actions of melatonin on cancer are clearly membrane receptor-mediated while others are membrane receptor-independent and involve direct intracellular actions of this ubiquitously-distributed molecule. While the emphasis of melatonin/cancer research has been on the role of the indoleamine in restraining breast cancer, this is changing quickly with many cancer types having been shown to be susceptible to inhibition by melatonin. There are several facets of this research which could have immediate applications at the clinical level. Many studies have shown that melatonin's co-administration improves the sensitivity of cancers to inhibition by conventional drugs. Even more important are the findings that melatonin renders cancers previously totally resistant to treatment sensitive to these same therapies. Melatonin also inhibits molecular processes associated with metastasis by limiting the entrance of cancer cells into the vascular system and preventing them from establishing secondary growths at distant sites. This is of particular importance since cancer metastasis often significantly contributes to death of the patient. Another area that deserves additional consideration is related to the capacity of melatonin in reducing the toxic consequences of anti-cancer drugs while increasing their efficacy. Although this information has been available for more than a decade, it has not been adequately exploited at the clinical level. Even if the only beneficial actions of melatonin in cancer patients are its ability to attenuate acute and long-term drug toxicity, melatonin should be used to improve the physical wellbeing of the patients. The experimental findings, however, suggest that the advantages of using melatonin as a co-treatment with conventional cancer therapies would far exceed improvements in the wellbeing of the patients.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA.
| | - Sergio A Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Del Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico.
| | - Dun-Xian Tan
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA.
| | | | - Lilan Qin
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA.
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan, Medical University, Taichung 40201, Taiwan.
| | - Kexin Xu
- Department of Molecular Medicine, UT Health, San Antonio, TX 78229, USA.
| |
Collapse
|
68
|
The crosstalk between Wnt/β-catenin signaling pathway with DNA damage response and oxidative stress: Implications in cancer therapy. DNA Repair (Amst) 2017; 51:14-19. [PMID: 28108274 DOI: 10.1016/j.dnarep.2017.01.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 01/09/2017] [Indexed: 01/01/2023]
Abstract
DNA repair is essential for maintaining genomic integrity in cells. The dependence of cancer cell survival on proper DNA repair provides an opportunity to treat defective tumors by DNA damaging agents. Not only Wnt signaling has important functions in controlling gene expression, as well as cell polarity, adhesion and behavior, it also highly interacts with DNA damage response (DDR) in different levels. Furthermore, oxidative stress, which is responsible for majority of DNA lesions, affects Wnt signaling in different ways. A better understanding of the cross-talk between these pathways and events could provide strategies for treatment of cancer cells with deficient DNA repair capacity. As such, we will give a brief overview of the importance of the DNA repair machinery, signaling mechanisms of Wnt/β-catenin pathway, and DDR. We will further review the interactions between Wnt signaling and DDR, and the impact of oxidative stress on Wnt signaling. Finally, Wnt signaling is discussed as a potential treatment strategy for cancer.
Collapse
|
69
|
Majidinia M, Yousefi B. Breast tumor stroma: A driving force in the development of resistance to therapies. Chem Biol Drug Des 2017; 89:309-318. [PMID: 28042683 DOI: 10.1111/cbdd.12893] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 09/15/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022]
Abstract
Breast cancer is the most common cancer and the second leading cause of cancer-related death in women worldwide. In spite of huge advancements in early detection and ever-increasing knowledge of breast cancer biology, approximately 30% of patients with early-stage breast cancer experience disease recurrence. Most patients are chemosensitive and cancer free immediately after the treatment. About 50% to 70% of breast cancer patients, however, will relapse within 1 year. Such a relapse is usually concomitant with adenocarcinoma cells acquiring a chemoresistant phenotype. Both de novo and acquired chemoresistance are poorly understood and present a major burden in the treatment of breast cancer. Although, previously, chemoresistance was largely linked to genetic alterations within the cancer cells, recent investigations are indicating that chemoresistance can also be associated with the tumor microenvironment. Nowadays, it is widely believed that tumor microenvironment is a key player in tumor progression and response to treatment. In this study, we will review the interactions of breast tumor cells with their microenvironment, present the latest research on the resistance mediated by the stromal component in breast cancer, and discuss the potential therapeutic strategies that can be exploited to treat breast cancers by targeting tumor microenvironment.
Collapse
Affiliation(s)
- Maryam Majidinia
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University Medical Sciences, Urmia, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
70
|
Fang Y, Zhang L, Li Z, Li Y, Huang C, Lu X. MicroRNAs in DNA Damage Response, Carcinogenesis, and Chemoresistance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 333:1-49. [DOI: 10.1016/bs.ircmb.2017.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
71
|
Dong Z, Qi R, Guo X, Zhao X, Li Y, Zeng Z, Bai W, Chang X, Hao L, Chen Y, Lou M, Li Z, Lu Y. MiR-223 modulates hepatocellular carcinoma cell proliferation through promoting apoptosis via the Rab1-mediated mTOR activation. Biochem Biophys Res Commun 2016; 483:630-637. [PMID: 27998765 DOI: 10.1016/j.bbrc.2016.12.091] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/13/2016] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common digestive malignancy. MiR-223, a well-identified miRNA, exhibits diverse properties in different cancers. In this study, we demonstrated that miR-223 could suppress cell growth and promote apoptosis in HepG2 and Bel-7402 HCC cell lines. We screened and identified a novel miR-223 target, Ras-related protein Rab-1(Rab1). Upregulation of miR-223 would specifically and markedly down-regulate Rab1 expression. In addition, miR-223-overexpressing subclones showed significant cell growth inhibition by increasing cell apoptosis in HepG2 and Bel-7402 cells. To identify the mechanisms, we firstly investigated the mTOR pathway and found that pmTOR, p70S6K and Bcl-2 were dramatically down-regulated after miR-223 transfection, while no changes in the level of Bax was visualized. Furthermore, our data showed that the anti-tumor effects arising from miR-223 transfection in HCC cells may be due to the deactivation of mTOR pathway caused by the suppression of Rab1 expression when miR-223 is overexpressed. In summary, our results indicate that miR-223 functions as a tumor suppressor and plays a critical role in inhibiting the tumorigenesis and promoting the apoptosis of HCC through the mTOR signaling pathway in vitro. By targeting Rab1, miR-223 efficiently mediates the mTOR pathway. Given these, miR-223 may be a potential therapeutic target for treating HCC.
Collapse
Affiliation(s)
- Zheng Dong
- Comprehensive Liver Cancer Center, The 302 Hospital, Beijing, China
| | - Ruizhao Qi
- Department of General Surgery, The 302 Hospital, Beijing, China
| | - Xiaodong Guo
- Department of Pathology, The 302 Hospital, Beijing, China
| | - Xin Zhao
- Department of General Surgery, The 302 Hospital, Beijing, China
| | - Yinyin Li
- Comprehensive Liver Cancer Center, The 302 Hospital, Beijing, China
| | - Zhen Zeng
- Comprehensive Liver Cancer Center, The 302 Hospital, Beijing, China
| | - Wenlin Bai
- Comprehensive Liver Cancer Center, The 302 Hospital, Beijing, China
| | - Xiujuan Chang
- Comprehensive Liver Cancer Center, The 302 Hospital, Beijing, China
| | - Liyan Hao
- Department of Nursing, The 302 Hospital, Beijing, China
| | - Yan Chen
- Comprehensive Liver Cancer Center, The 302 Hospital, Beijing, China
| | - Min Lou
- Comprehensive Liver Cancer Center, The 302 Hospital, Beijing, China
| | - Zhiwei Li
- Department of General Surgery, The 302 Hospital, Beijing, China.
| | - Yinying Lu
- Comprehensive Liver Cancer Center, The 302 Hospital, Beijing, China.
| |
Collapse
|