51
|
Flood DT, Kingston C, Vantourout JC, Dawson PE, Baran PS. DNA Encoded Libraries: A Visitor's Guide. Isr J Chem 2020. [DOI: 10.1002/ijch.201900133] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Dillon T. Flood
- Department of ChemistryScripps Research 10550 North Torrey Pines Road La Jolla, California 93037
| | - Cian Kingston
- Department of ChemistryScripps Research 10550 North Torrey Pines Road La Jolla, California 93037
| | - Julien C. Vantourout
- Department of ChemistryScripps Research 10550 North Torrey Pines Road La Jolla, California 93037
| | - Philip E. Dawson
- Department of ChemistryScripps Research 10550 North Torrey Pines Road La Jolla, California 93037
| | - Phil S. Baran
- Department of ChemistryScripps Research 10550 North Torrey Pines Road La Jolla, California 93037
| |
Collapse
|
52
|
Abdeldayem A, Raouf YS, Constantinescu SN, Moriggl R, Gunning PT. Advances in covalent kinase inhibitors. Chem Soc Rev 2020; 49:2617-2687. [DOI: 10.1039/c9cs00720b] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This comprehensive review details recent advances, challenges and innovations in covalent kinase inhibition within a 10 year period (2007–2018).
Collapse
Affiliation(s)
- Ayah Abdeldayem
- Department of Chemical & Physical Sciences
- University of Toronto
- Mississauga
- Canada
- Department of Chemistry
| | - Yasir S. Raouf
- Department of Chemical & Physical Sciences
- University of Toronto
- Mississauga
- Canada
- Department of Chemistry
| | | | - Richard Moriggl
- Institute of Animal Breeding and Genetics
- University of Veterinary Medicine
- 1210 Vienna
- Austria
| | - Patrick T. Gunning
- Department of Chemical & Physical Sciences
- University of Toronto
- Mississauga
- Canada
- Department of Chemistry
| |
Collapse
|
53
|
Liu W, Deng W, Sun S, Yu C, Su X, Wu A, Yuan Y, Ma Z, Li K, Yang H, Peng X, Dietrich J. A Strategy for the Synthesis of Sulfonamides on DNA. Org Lett 2019; 21:9909-9913. [DOI: 10.1021/acs.orglett.9b03843] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wei Liu
- WuXi AppTec (Shanghai) Co., Ltd. 288 Middle Fu Te Road, Shanghai 200131, China
| | - Wei Deng
- WuXi AppTec (Shanghai) Co., Ltd. 288 Middle Fu Te Road, Shanghai 200131, China
| | - Saisai Sun
- WuXi AppTec (Shanghai) Co., Ltd. 288 Middle Fu Te Road, Shanghai 200131, China
| | - Chunyan Yu
- WuXi AppTec (Shanghai) Co., Ltd. 288 Middle Fu Te Road, Shanghai 200131, China
| | - Xubo Su
- WuXi AppTec (Shanghai) Co., Ltd. 288 Middle Fu Te Road, Shanghai 200131, China
| | - Aliang Wu
- WuXi AppTec (Shanghai) Co., Ltd. 288 Middle Fu Te Road, Shanghai 200131, China
| | - Youlang Yuan
- WuXi AppTec (Shanghai) Co., Ltd. 288 Middle Fu Te Road, Shanghai 200131, China
| | - Zhonglin Ma
- WuXi AppTec (Shanghai) Co., Ltd. 288 Middle Fu Te Road, Shanghai 200131, China
| | - Ke Li
- WuXi AppTec (Shanghai) Co., Ltd. 288 Middle Fu Te Road, Shanghai 200131, China
| | - Hongfang Yang
- WuXi AppTec (Shanghai) Co., Ltd. 288 Middle Fu Te Road, Shanghai 200131, China
| | - Xuanjia Peng
- WuXi AppTec (Shanghai) Co., Ltd. 288 Middle Fu Te Road, Shanghai 200131, China
| | - Justin Dietrich
- Research and Development, AbbVie, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
54
|
Xu H, Ma F, Wang N, Hou W, Xiong H, Lu F, Li J, Wang S, Ma P, Yang G, Lerner RA. DNA-Encoded Libraries: Aryl Fluorosulfonates as Versatile Electrophiles Enabling Facile On-DNA Suzuki, Sonogashira, and Buchwald Reactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901551. [PMID: 31832315 PMCID: PMC6891896 DOI: 10.1002/advs.201901551] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/04/2019] [Indexed: 05/07/2023]
Abstract
Using (hetero)aryl fluorosulfonates as versatile electrophiles, facile on-DNA cross-coupling reactions of Suzuki, Sonogashira, and Buchwald are reported here. Notably, all of these reactions show excellent functional group tolerance, mild reaction conditions (relative low temperature and open to air), rich heterocyclic coupling partners, and more importantly, DNA-compatibility. Thus, these new reactions based on efficient formation of C(sp2)-C(sp2), C(sp2)-C(sp), and C(sp2)-N bonds are highly amenable to synthesis of DNA-encoded libraries with great molecular diversity.
Collapse
Affiliation(s)
- Hongtao Xu
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Fei Ma
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Nan Wang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Wei Hou
- College of Pharmaceutical Scienceand Institute of Drug Development & Chemical Biology (IDD & CB)Zhejiang University of TechnologyHangzhou310014China
| | - Huan Xiong
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Fengping Lu
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Jie Li
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Shuyue Wang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | | |
Collapse
|
55
|
Pham MV, Bergeron-Brlek M, Heinis C. Synthesis of DNA-Encoded Disulfide- and Thioether-Cyclized Peptides. Chembiochem 2019; 21:543-549. [PMID: 31381227 DOI: 10.1002/cbic.201900390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Indexed: 12/19/2022]
Abstract
DNA-encoded chemical library technologies enable the screening of large combinatorial libraries of chemically and structurally diverse molecules, including short cyclic peptides. A challenge in the combinatorial synthesis of cyclic peptides is the final step, the cyclization of linear peptides that typically suffers from incomplete reactions and large variability between substrates. Several efficient peptide cyclization strategies rely on the modification of thiol groups, such as the formation of disulfide or thioether bonds between cysteines. In this work, we established a strategy and reaction conditions for the efficient chemical synthesis of cyclic peptide-DNA conjugates based on linking the side chains of cysteines. We tested two different thiol-protecting groups and found that tert-butylthio (S-tBu) works best for incorporating a pair of cysteines, and we show that the DNA-linked peptides can be efficiently cyclized through disulfide and thioether bond formation. In combination with established procedures for DNA encoding, the strategy for incorporation of cysteines may be readily applied for the generation and screening of disulfide- and thioether-cyclized peptide libraries.
Collapse
Affiliation(s)
- Manh V Pham
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fedérale de Lausanne, CH A3 398, Station 6, 1015, Lausanne, Switzerland
| | - Milan Bergeron-Brlek
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fedérale de Lausanne, CH A3 398, Station 6, 1015, Lausanne, Switzerland
| | - Christian Heinis
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fedérale de Lausanne, CH A3 398, Station 6, 1015, Lausanne, Switzerland
| |
Collapse
|
56
|
Ratnayake AS, Flanagan ME, Foley TL, Smith JD, Johnson JG, Bellenger J, Montgomery JI, Paegel BM. A Solution Phase Platform to Characterize Chemical Reaction Compatibility with DNA-Encoded Chemical Library Synthesis. ACS COMBINATORIAL SCIENCE 2019; 21:650-655. [PMID: 31425646 PMCID: PMC6938256 DOI: 10.1021/acscombsci.9b00113] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA-encoded chemical library (DECL) synthesis must occur in aqueous media under conditions that preserve the integrity of the DNA encoding tag. While the identification of "DNA-compatible" reaction conditions is critical for the development of DECL designs that explore previously inaccessible chemical space, reports measuring such compatibility have been largely restricted to methods that do not faithfully capture the impact of reaction conditions on DNA fidelity in solution phase. Here we report a comprehensive methodology that uses soluble DNA substrates that exactly recapitulate DNA's exposure to the chemically reactive species of DECL synthesis. This approach includes the assessment of chemical fidelity (reaction yield and purity), encoding fidelity (ligation efficiency), and readability (DNA compatibility), revealing the fate of the DNA tag during DECL chemistry from a single platform.
Collapse
Affiliation(s)
- Anokha S. Ratnayake
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Mark E. Flanagan
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Timothy L. Foley
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Justin D. Smith
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Jillian G. Johnson
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Justin Bellenger
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Justin I. Montgomery
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Brian M. Paegel
- Department of Chemistry, The Scripps Research Institute 130 Scripps Way Jupiter, Florida 33458, United States
| |
Collapse
|
57
|
Iškauskienė M, Ragaitė G, Sløk FA, Šačkus A. Facile synthesis of novel amino acid-like building blocks by N-alkylation of heterocyclic carboxylates with N-Boc-3-iodoazetidine. Mol Divers 2019; 24:1235-1251. [PMID: 31420788 DOI: 10.1007/s11030-019-09987-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/08/2019] [Indexed: 01/11/2023]
Abstract
An efficient protocol providing easy access to highly functionalized heterocyclic compounds as novel organic building blocks was developed by coupling alkyl pyrazole-, indazole- and indolecarboxylates with N-Boc-3-iodoazetidine. The synthesized compounds are representatives of constrained non-chiral synthetic azole carboxylates in their N-Boc protected ester forms. Diversification of the prepared heterocyclic building blocks was achieved via application of palladium-catalyzed Suzuki-Miyaura cross-coupling reactions. In total, 34 building blocks were obtained to form a highly diversified small molecule collection. The structure of the novel heterocyclic compounds was investigated and verified by advanced NMR spectroscopy methods.
Collapse
Affiliation(s)
- Monika Iškauskienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, 50254, Kaunas, Lithuania. .,Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, 51423, Kaunas, Lithuania.
| | - Greta Ragaitė
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, 51423, Kaunas, Lithuania
| | - Frank A Sløk
- Vipergen ApS, Gammel Kongevej 23A, 1610, Copenhagen V, Denmark
| | - Algirdas Šačkus
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, 50254, Kaunas, Lithuania.,Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, 51423, Kaunas, Lithuania
| |
Collapse
|
58
|
Cai P, Yang G, Zhao L, Wan J, Li J, Liu G. Synthesis of C3-Alkylated Indoles on DNA via Indolyl Alcohol Formation Followed by Metal-Free Transfer Hydrogenation. Org Lett 2019; 21:6633-6637. [DOI: 10.1021/acs.orglett.9b02132] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pinwen Cai
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International
Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Guanyu Yang
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International
Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Lanzhou Zhao
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International
Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jinqiao Wan
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International
Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jin Li
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International
Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Guansai Liu
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International
Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| |
Collapse
|
59
|
Application of a Substrate-Mediated Selection with c-Src Tyrosine Kinase to a DNA-Encoded Chemical Library. Molecules 2019; 24:molecules24152764. [PMID: 31366048 PMCID: PMC6695731 DOI: 10.3390/molecules24152764] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022] Open
Abstract
As aberrant activity of protein kinases is observed in many disease states, these enzymes are common targets for therapeutics and detection of activity levels. The development of non-natural protein kinase substrates offers an approach to protein substrate competitive inhibitors, a class of kinase inhibitors with promise for improved specificity. Also, kinase activity detection approaches would benefit from substrates with improved activity and specificity. Here, we apply a substrate-mediated selection to a peptidomimetic DNA-encoded chemical library for enrichment of molecules that can be phosphorylated by the protein tyrosine kinase, c-Src. Several substrates were identified and characterized for activity. A lead compound (SrcDEL10) showed both the ability to serve as a substrate and to promote ATP hydrolysis by the kinase. In inhibition assays, compounds displayed IC50's ranging from of 8-100 µM. NMR analysis of SrcDEL10 bound to the c-Src:ATP complex was conducted to characterize the binding mode. An ester derivative of the lead compound demonstrated cellular activity with inhibition of Src-dependent signaling in cell culture. Together, the results show the potential for substrate-mediated selections of DNA-encoded libraries to discover molecules with functions other than simple protein binding and offer a new discovery method for development of synthetic tyrosine kinase substrates.
Collapse
|
60
|
Stress CJ, Sauter B, Schneider LA, Sharpe T, Gillingham D. A DNA-Encoded Chemical Library Incorporating Elements of Natural Macrocycles. Angew Chem Int Ed Engl 2019; 58:9570-9574. [PMID: 30938482 DOI: 10.1002/anie.201902513] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/01/2019] [Indexed: 12/22/2022]
Abstract
Here we show a seven-step chemical synthesis of a DNA-encoded macrocycle library (DEML) on DNA. Inspired by polyketide and mixed peptide-polyketide natural products, the library was designed to incorporate rich backbone diversity. Achieving this diversity, however, comes at the cost of the custom synthesis of bifunctional building block libraries. This study outlines the importance of careful retrosynthetic design in DNA-encoded libraries, while revealing areas where new DNA synthetic methods are needed.
Collapse
Affiliation(s)
- Cedric J Stress
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056, Basel, Switzerland
| | - Basilius Sauter
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056, Basel, Switzerland
| | - Lukas A Schneider
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056, Basel, Switzerland
| | - Timothy Sharpe
- Biophysics Facility, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Basel, Switzerland
| | - Dennis Gillingham
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056, Basel, Switzerland
| |
Collapse
|
61
|
Stress CJ, Sauter B, Schneider LA, Sharpe T, Gillingham D. Eine DNA‐kodierte Molekülbibliothek mit Elementen natürlicher Makrocyclen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902513] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Cedric J. Stress
- Department ChemieUniversität Basel St. Johanns-Ring 19 4056 Basel Schweiz
| | - Basilius Sauter
- Department ChemieUniversität Basel St. Johanns-Ring 19 4056 Basel Schweiz
| | - Lukas A. Schneider
- Department ChemieUniversität Basel St. Johanns-Ring 19 4056 Basel Schweiz
| | - Timothy Sharpe
- Biophysikalisches InstitutBiozentrumUniversität Basel Klingelbergstrasse 50/70 4056 Basel Schweiz
| | - Dennis Gillingham
- Department ChemieUniversität Basel St. Johanns-Ring 19 4056 Basel Schweiz
| |
Collapse
|
62
|
Litovchick A, Tian X, Monteiro MI, Kennedy KM, Guié MA, Centrella P, Zhang Y, Clark MA, Keefe AD. Novel Nucleic Acid Binding Small Molecules Discovered Using DNA-Encoded Chemistry. Molecules 2019; 24:molecules24102026. [PMID: 31137911 PMCID: PMC6572338 DOI: 10.3390/molecules24102026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 11/16/2022] Open
Abstract
Inspired by the many reported successful applications of DNA-encoded chemical libraries in drug discovery projects with protein targets, we decided to apply this platform to nucleic acid targets. We used a 120-billion-compound set of 33 distinct DNA-encoded chemical libraries and affinity-mediated selection to discover binders to a panel of DNA targets. Here, we report the successful discovery of small molecules that specifically interacted with DNA G-quartets, which are stable structural motifs found in G-rich regions of genomic DNA, including in the promoter regions of oncogenes. For this study, we chose the G-quartet sequence found in the c-myc promoter as a primary target. Compounds enriched using affinity-mediated selection against this target demonstrated high-affinity binding and high specificity over DNA sequences not containing G-quartet motifs. These compounds demonstrated a moderate ability to discriminate between different G-quartet motifs and also demonstrated activity in a cell-based assay, suggesting direct target engagement in the cell. DNA-encoded chemical libraries and affinity-mediated selection are uniquely suited to discover binders to targets that have no inherent activity outside of a cellular context, and they may also be of utility in other nucleic acid structural motifs.
Collapse
Affiliation(s)
| | - Xia Tian
- Arrakis Therapeutics, Waltham, MA 02451, USA.
| | | | | | | | | | - Ying Zhang
- X-Chem Pharmaceuticals, Waltham, MA 02435, USA.
| | | | | |
Collapse
|
63
|
Stepek IA, Cao T, Koetemann A, Shimura S, Wollscheid B, Bode JW. Antibiotic Discovery with Synthetic Fermentation: Library Assembly, Phenotypic Screening, and Mechanism of Action of β-Peptides Targeting Penicillin-Binding Proteins. ACS Chem Biol 2019; 14:1030-1040. [PMID: 30990649 DOI: 10.1021/acschembio.9b00227] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In analogy to biosynthetic pathways leading to bioactive natural products, synthetic fermentation generates mixtures of molecules from simple building blocks under aqueous, biocompatible conditions, allowing the resulting cultures to be directly screened for biological activity. In this work, a novel β-peptide antibiotic was successfully identified using the synthetic fermentation platform. Phenotypic screening was carried out in an initially random fashion, allowing simple identification of active cultures. Subsequent deconvolution, focused screening, and structure-activity relationship studies led to the identification of a potent antimicrobial peptide, showing strong selectivity for our model system Bacillus subtilis over human HEK293 cells. To determine the antibacterial mechanism of action, a peptide probe bearing a photoaffinity tag was readily synthesized through the use of appropriate synthetic fermentation building blocks and utilized for target identification using a quantitative mass spectrometry-based strategy. The chemoproteomic approach led to the identification of a number of bacterial membrane proteins as prospective targets. These findings were validated through binding affinity studies with penicillin-binding protein 4 using microscale thermophoresis, with the bioactive peptide showing a dissociation constant ( Kd) in the nanomolar range. Through these efforts, we provide a proof of concept for the synthetic fermentation approach presented here as a new strategy for the phenotypic discovery of novel bioactive compounds.
Collapse
Affiliation(s)
- Iain A. Stepek
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH-Zürich, 8093 Zürich, Switzerland
| | - Trung Cao
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH-Zürich, 8093 Zürich, Switzerland
| | - Anika Koetemann
- Department of Health Sciences and Technology, Institute of Molecular Systems Biology, and BioMedical Proteomics Platform (BMPP), ETH Zurich, 8093 Zurich, Switzerland
| | - Satomi Shimura
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH-Zürich, 8093 Zürich, Switzerland
| | - Bernd Wollscheid
- Department of Health Sciences and Technology, Institute of Molecular Systems Biology, and BioMedical Proteomics Platform (BMPP), ETH Zurich, 8093 Zurich, Switzerland
| | - Jeffrey W. Bode
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH-Zürich, 8093 Zürich, Switzerland
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
64
|
Kunig V, Potowski M, Gohla A, Brunschweiger A. DNA-encoded libraries - an efficient small molecule discovery technology for the biomedical sciences. Biol Chem 2019; 399:691-710. [PMID: 29894294 DOI: 10.1515/hsz-2018-0119] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/12/2018] [Indexed: 12/12/2022]
Abstract
DNA-encoded compound libraries are a highly attractive technology for the discovery of small molecule protein ligands. These compound collections consist of small molecules covalently connected to individual DNA sequences carrying readable information about the compound structure. DNA-tagging allows for efficient synthesis, handling and interrogation of vast numbers of chemically synthesized, drug-like compounds. They are screened on proteins by an efficient, generic assay based on Darwinian principles of selection. To date, selection of DNA-encoded libraries allowed for the identification of numerous bioactive compounds. Some of these compounds uncovered hitherto unknown allosteric binding sites on target proteins; several compounds proved their value as chemical biology probes unraveling complex biology; and the first examples of clinical candidates that trace their ancestry to a DNA-encoded library were reported. Thus, DNA-encoded libraries proved their value for the biomedical sciences as a generic technology for the identification of bioactive drug-like molecules numerous times. However, large scale experiments showed that even the selection of billions of compounds failed to deliver bioactive compounds for the majority of proteins in an unbiased panel of target proteins. This raises the question of compound library design.
Collapse
Affiliation(s)
- Verena Kunig
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, D-44227 Dortmund, Germany
| | - Marco Potowski
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, D-44227 Dortmund, Germany
| | - Anne Gohla
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, D-44227 Dortmund, Germany
| | - Andreas Brunschweiger
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, D-44227 Dortmund, Germany
| |
Collapse
|
65
|
Liszczak G, Muir TW. Barcoding mit Nukleinsäuren: Anwendung der DNA‐Sequenzierung als molekulares Zählwerk. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201808956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Glen Liszczak
- Department of ChemistryPrinceton University Princeton NJ 08544 USA
- Aktuelle Adresse: Department of BiochemistryUT Southwestern Medical Center Dallas TX 75390 USA
| | - Tom W. Muir
- Department of ChemistryPrinceton University Princeton NJ 08544 USA
| |
Collapse
|
66
|
Liszczak G, Muir TW. Nucleic Acid-Barcoding Technologies: Converting DNA Sequencing into a Broad-Spectrum Molecular Counter. Angew Chem Int Ed Engl 2019; 58:4144-4162. [PMID: 30153374 DOI: 10.1002/anie.201808956] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Indexed: 12/17/2022]
Abstract
The emergence of high-throughput DNA sequencing technologies sparked a revolution in the field of genomics that has rippled into many branches of the life and physical sciences. The remarkable sensitivity, specificity, throughput, and multiplexing capacity that are inherent to parallel DNA sequencing have since motivated its use as a broad-spectrum molecular counter. A key aspect of extrapolating DNA sequencing to non-traditional applications is the need to append nucleic-acid barcodes to entities of interest. In this review, we describe the chemical and biochemical approaches that have enabled nucleic-acid barcoding of proteinaceous and non-proteinaceous materials and provide examples of downstream technologies that have been made possible by DNA-encoded molecules. As commercially available high-throughput sequencers were first released less than 15 years ago, we believe related applications will continue to mature and close by proposing new frontiers to support this assertion.
Collapse
Affiliation(s)
- Glen Liszczak
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA.,Present address: Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
67
|
Binan L, Drobetsky EA, Costantino S. Exploiting Molecular Barcodes in High-Throughput Cellular Assays. SLAS Technol 2019; 24:298-307. [PMID: 30707854 DOI: 10.1177/2472630318824337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Multiplexing strategies, which greatly increase the number of simultaneously measured parameters in single experiments, are now being widely implemented by both the pharmaceutical industry and academic researchers. Color has long been used to identify biological signals and, when combined with molecular barcodes, has substantially enhanced the depth of multiplexed sample characterization. Moreover, the recent advent of DNA barcodes has led to an explosion of innovative cell sequencing approaches. Novel barcoding strategies also show great promise for encoding spatial information in transcriptomic studies, and for precise assessment of molecular abundance. Both color- and DNA-based barcodes can be conveniently analyzed with either a microscope or a cytometer, or via DNA sequencing. Here we review the basic principles of several technologies used to create barcodes and detail the type of samples that can be identified with such tags.
Collapse
Affiliation(s)
- Loïc Binan
- 1 Research Center of the Maisonneuve-Rosemont Hospital, Montreal, QC, Canada.,2 Department of Ophthalmology, Université de Montréal, Montreal, QC, Canada
| | - Elliot A Drobetsky
- 1 Research Center of the Maisonneuve-Rosemont Hospital, Montreal, QC, Canada.,3 Department of Medicine & Molecular Biology Program, University of Montreal, Montreal, QC, Canada
| | - Santiago Costantino
- 1 Research Center of the Maisonneuve-Rosemont Hospital, Montreal, QC, Canada.,2 Department of Ophthalmology, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
68
|
Zhu Z, Grady LC, Ding Y, Lind KE, Davie CP, Phelps CB, Evindar G. Development of a Selection Method for Discovering Irreversible (Covalent) Binders from a DNA-Encoded Library. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2019; 24:169-174. [PMID: 30383465 PMCID: PMC7221453 DOI: 10.1177/2472555218808454] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/12/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022]
Abstract
DNA-encoded libraries (DELs) have been broadly applied to identify chemical probes for target validation and lead discovery. To date, the main application of the DEL platform has been the identification of reversible ligands using multiple rounds of affinity selection. Irreversible (covalent) inhibition offers a unique mechanism of action for drug discovery research. In this study, we report a developing method of identifying irreversible (covalent) ligands from DELs. The new method was validated by using 3C protease (3CP) and on-DNA irreversible tool compounds (rupintrivir derivatives) spiked into a library at the same concentration as individual members of that library. After affinity selections against 3CP, the irreversible tool compounds were specifically enriched compared with the library members. In addition, we compared two immobilization methods and concluded that microscale columns packed with the appropriate affinity resin gave higher tool compound recovery than magnetic beads.
Collapse
Affiliation(s)
| | | | - Yun Ding
- GlaxoSmithKline, Cambridge,
Massachusetts, USA
| | | | | | | | | |
Collapse
|
69
|
Wang X, Sun H, Liu J, Zhong W, Zhang M, Zhou H, Dai D, Lu X. Palladium-Promoted DNA-Compatible Heck Reaction. Org Lett 2019; 21:719-723. [DOI: 10.1021/acs.orglett.8b03926] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P.R. China
- Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Company, Limited, 4560 Jinke Road, Building No. 2, 13th Floor, Pudong, Shanghai 201210, P.R. China
| | - Hui Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P.R. China
| | - Jiaxiang Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P.R. China
| | - Wenge Zhong
- Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Company, Limited, 4560 Jinke Road, Building No. 2, 13th Floor, Pudong, Shanghai 201210, P.R. China
| | - Mingqiang Zhang
- Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Company, Limited, 4560 Jinke Road, Building No. 2, 13th Floor, Pudong, Shanghai 201210, P.R. China
| | - Hu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P.R. China
| | - Dongcheng Dai
- Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Company, Limited, 4560 Jinke Road, Building No. 2, 13th Floor, Pudong, Shanghai 201210, P.R. China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P.R. China
| |
Collapse
|
70
|
Zhu Z, Shaginian A, Grady LSC, Davie CP, Lind K, Pal S, Thansandote P, Simpson GL. DNA-Encoded Macrocyclic Peptide Library. Methods Mol Biol 2019; 2001:273-284. [PMID: 31134575 DOI: 10.1007/978-1-4939-9504-2_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
DNA-encoded library technology (ELT) is a cutting-edge enabling technology platform for drug discovery. Here we describe how to design and synthesize a macrocyclic DNA-encoded library; how to perform selection, sequencing, and data analysis to identify potential active peptides; and how to synthesize off-DNA peptides to confirm activity. This approach provides an effective tool for pharmaceutical research based on peptides.
Collapse
|
71
|
Abstract
The nanomaterial landscape is so vast that a high-throughput combinatorial approach is required to understand structure-function relationships. To address this challenge, an approach for the synthesis and screening of megalibraries of unique nanoscale features (>10,000,000) with tailorable location, size, and composition has been developed. Polymer pen lithography, a parallel lithographic technique, is combined with an ink spray-coating method to create pen arrays, where each pen has a different but deliberately chosen quantity and composition of ink. With this technique, gradients of Au-Cu bimetallic nanoparticles have been synthesized and then screened for activity by in situ Raman spectroscopy with respect to single-walled carbon nanotube (SWNT) growth. Au3Cu, a composition not previously known to catalyze SWNT growth, has been identified as the most active composition.
Collapse
|
72
|
An approach towards enhancement of a screening library: The Next Generation Library Initiative (NGLI) at Bayer - against all odds? Drug Discov Today 2018; 24:668-672. [PMID: 30562586 DOI: 10.1016/j.drudis.2018.12.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/26/2018] [Accepted: 12/07/2018] [Indexed: 11/22/2022]
Abstract
Pharmaceutical companies often refer to 'screening their library' when performing high-throughput screening (HTS) on a corporate compound collection to identify lead structures for small-molecule drug discovery programs. Characteristics of such a library, including the size, chemical space covered, and physicochemical properties, often determine the success of a screening campaign. Therefore, strategies to maintain and enhance the overall quality of screening collections are crucial to stay competitive and to cope with the 'novelty erosion' that is observed gradually. The Next Generation Library Initiative (NGLI), the enhancement of Bayer's HTS collection by 500000 newly designed compounds within 5 years, is addressing exactly this challenge. Here, we describe this collaborative project, which involves all internal medicinal chemists in a crowd-sourcing approach, as well as selected external partners, to reach this ambitious goal.
Collapse
|
73
|
Pan P, Cai Z, Zhuang C, Chen X, Chai Y. Methodology of drug screening and target identification for new necroptosis inhibitors. J Pharm Anal 2018; 9:71-76. [PMID: 31011462 PMCID: PMC6460297 DOI: 10.1016/j.jpha.2018.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/02/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023] Open
Abstract
Apoptosis has been considered as the only form of regulated cell death for a long time. However, a novel form of programmed cell death called necroptosis was recently reported. The process of necroptosis is regulated and plays a critical role in the occurrence and development of multiple human diseases. Thus, the study on the molecular mechanism of necroptosis and its effective inhibitors has been an attractive field for researchers. Herein, we introduce the molecular mechanism of necroptosis and focus on the literature about necroptosis drug screening in recent years. In addition, the identification of the critical drug targets of the necroptosis is also discussed.
Collapse
Affiliation(s)
- Pengchao Pan
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Zhenyu Cai
- National Center for Liver Cancer, Second Military Medical University, 366 Qianju Road, Shanghai 201805, China
| | - Chunlin Zhuang
- Research Center for Marine Drugs, and Department of Pharmacology, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Xiaofei Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Yifeng Chai
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
74
|
Zhou Y, Li C, Peng J, Xie L, Meng L, Li Q, Zhang J, Li XD, Li X, Huang X, Li X. DNA-Encoded Dynamic Chemical Library and Its Applications in Ligand Discovery. J Am Chem Soc 2018; 140:15859-15867. [DOI: 10.1021/jacs.8b09277] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yu Zhou
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road West, Shenzhen 518055, China
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Chen Li
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road West, Shenzhen 518055, China
| | - Jianzhao Peng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Liangxu Xie
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong, Hong Kong
| | - Ling Meng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Qingrong Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Jianfu Zhang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Xin Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| | - Xuhui Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong, Hong Kong
| | - Xiaoyu Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong
| |
Collapse
|
75
|
Li H, Sun Z, Wu W, Wang X, Zhang M, Lu X, Zhong W, Dai D. Inverse-Electron-Demand Diels-Alder Reactions for the Synthesis of Pyridazines on DNA. Org Lett 2018; 20:7186-7191. [PMID: 30365326 DOI: 10.1021/acs.orglett.8b03114] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The synthesis of pyridazines on DNA has been developed on the basis of inverse-electron-demand Diels-Alder (IEDDA) reactions of 1,2,4,5-tetrazines. The broad substrate scope is explored. Functionalized pyridazine products are selected for subsequent DNA-compatible Suzuki-Miyaura coupling, acylation, and SNAr substitution reactions, demonstrating the feasibility and versatility of IEDDA reactions for DNA-encoded library synthesis.
Collapse
Affiliation(s)
- Hailong Li
- Department of Discovery Modalities , Amgen Asia R&D Center, Amgen Research , 4560 Jinke Road , Pudong, Shanghai 201210 , P. R. China
| | - Zhen Sun
- Department of Discovery Modalities , Amgen Asia R&D Center, Amgen Research , 4560 Jinke Road , Pudong, Shanghai 201210 , P. R. China
| | - Wenting Wu
- Department of Discovery Modalities , Amgen Asia R&D Center, Amgen Research , 4560 Jinke Road , Pudong, Shanghai 201210 , P. R. China
| | - Xuan Wang
- Department of Discovery Modalities , Amgen Asia R&D Center, Amgen Research , 4560 Jinke Road , Pudong, Shanghai 201210 , P. R. China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica , Chinese Academy of Science , 501 Haike Road, Zhang Jiang Hi-Tech Park , Pudong, Shanghai 201203 , P. R. China
| | - Mingqiang Zhang
- Department of Discovery Modalities , Amgen Asia R&D Center, Amgen Research , 4560 Jinke Road , Pudong, Shanghai 201210 , P. R. China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica , Chinese Academy of Science , 501 Haike Road, Zhang Jiang Hi-Tech Park , Pudong, Shanghai 201203 , P. R. China
| | - Wenge Zhong
- Department of Discovery Modalities , Amgen Asia R&D Center, Amgen Research , 4560 Jinke Road , Pudong, Shanghai 201210 , P. R. China
| | - Dongcheng Dai
- Department of Discovery Modalities , Amgen Asia R&D Center, Amgen Research , 4560 Jinke Road , Pudong, Shanghai 201210 , P. R. China
| |
Collapse
|
76
|
Bergsdorf C, Wright SK. A Guide to Run Affinity Screens Using Differential Scanning Fluorimetry and Surface Plasmon Resonance Assays. Methods Enzymol 2018; 610:135-165. [PMID: 30390797 DOI: 10.1016/bs.mie.2018.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the past 30 years, drug discovery has evolved from a pure phenotypic approach to an integrated target-based strategy. The implementation of high-throughput biochemical and cellular assays has enabled the screening of large compound libraries which has become an important and often times the main source of new chemical matter that serve as starting point for medicinal chemistry efforts. In addition, biophysical methods measuring the physical interaction (affinity) between a low molecular weight ligand and a target protein became an integral part of hit validation/optimization to rule out false positives due to assay artifacts. Recent advances in throughput, robustness, and sensitivity of biophysical affinity screening methods have broadened their application in hit identification and validation such that they can now complement classical functional readouts. As a result, new target classes can be accessed that have not been amenable to functional assays. In this chapter, two affinity screening methods, differential scanning fluorimetry and surface plasmon resonance, which are broadly utilized in both academia and pharmaceutical industry are discussed in respect to their use in hit identification and validation. These methods exemplify how assays which differ in complexity, throughput, and information content can support the hit identification/validation process. This chapter focuses on the practical aspects and caveats of these techniques in order to enable the reader to establish their own affinity-based screens in both formats.
Collapse
Affiliation(s)
| | - S Kirk Wright
- Novartis Institutes for BioMedical Research, Cambridge, MA, United States
| |
Collapse
|
77
|
Wang X, Sun H, Liu J, Dai D, Zhang M, Zhou H, Zhong W, Lu X. Ruthenium-Promoted C–H Activation Reactions between DNA-Conjugated Acrylamide and Aromatic Acids. Org Lett 2018; 20:4764-4768. [DOI: 10.1021/acs.orglett.8b01837] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co., Ltd., 4560 Jinke Road, Building No. 2, 13th Floor, Pudong, Shanghai 201210, P. R. China
| | - Hui Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Jiaxiang Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Dongcheng Dai
- Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co., Ltd., 4560 Jinke Road, Building No. 2, 13th Floor, Pudong, Shanghai 201210, P. R. China
| | - Mingqiang Zhang
- Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co., Ltd., 4560 Jinke Road, Building No. 2, 13th Floor, Pudong, Shanghai 201210, P. R. China
| | - Hu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Wenge Zhong
- Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co., Ltd., 4560 Jinke Road, Building No. 2, 13th Floor, Pudong, Shanghai 201210, P. R. China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| |
Collapse
|
78
|
Jiang Y, Long H, Zhu Y, Zeng Y. Macrocyclic peptides as regulators of protein-protein interactions. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.05.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
79
|
Ruff Y, Berst F. Efficient copper-catalyzed amination of DNA-conjugated aryl iodides under mild aqueous conditions. MEDCHEMCOMM 2018; 9:1188-1193. [PMID: 30109007 PMCID: PMC6072498 DOI: 10.1039/c8md00185e] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/17/2018] [Indexed: 12/19/2022]
Abstract
Herein, we describe the development of copper-catalyzed cross-coupling of DNA-conjugated aryl iodides with aliphatic amines. This protocol leverages a novel ligand, 2-((2,6-dimethoxyphenyl)amino)-2-oxoacetic acid, to effect the transformation in aqueous DMSO, under mild conditions and in air, making it an ideal candidate for the synthesis of DNA-encoded libraries.
Collapse
Affiliation(s)
- Yves Ruff
- Novartis Institutes for BioMedical Research , Novartis Pharma AG , Novartis Campus , 4002 Basel , Switzerland .
| | - Frédéric Berst
- Novartis Institutes for BioMedical Research , Novartis Pharma AG , Novartis Campus , 4002 Basel , Switzerland .
| |
Collapse
|
80
|
|
81
|
Abstract
Modern high-throughput biological assays study pooled populations of individual members by labeling each member with a unique DNA sequence called a “barcode.” DNA barcodes are frequently corrupted by DNA synthesis and sequencing errors, leading to significant data loss and incorrect data interpretation. Here, we describe an error correction strategy to improve the efficiency and statistical power of DNA barcodes. Our strategy accurately handles insertions and deletions (indels) in DNA barcodes, the most common type of error encountered during DNA synthesis and sequencing, resulting in order-of-magnitude increases in accuracy, efficiency, and signal-to-noise ratio. The accompanying software package makes deployment of these barcodes straightforward for the broader experimental scientist community. Many large-scale, high-throughput experiments use DNA barcodes, short DNA sequences prepended to DNA libraries, for identification of individuals in pooled biomolecule populations. However, DNA synthesis and sequencing errors confound the correct interpretation of observed barcodes and can lead to significant data loss or spurious results. Widely used error-correcting codes borrowed from computer science (e.g., Hamming, Levenshtein codes) do not properly account for insertions and deletions (indels) in DNA barcodes, even though deletions are the most common type of synthesis error. Here, we present and experimentally validate filled/truncated right end edit (FREE) barcodes, which correct substitution, insertion, and deletion errors, even when these errors alter the barcode length. FREE barcodes are designed with experimental considerations in mind, including balanced guanine-cytosine (GC) content, minimal homopolymer runs, and reduced internal hairpin propensity. We generate and include lists of barcodes with different lengths and error correction levels that may be useful in diverse high-throughput applications, including >106 single-error–correcting 16-mers that strike a balance between decoding accuracy, barcode length, and library size. Moreover, concatenating two or more FREE codes into a single barcode increases the available barcode space combinatorially, generating lists with >1015 error-correcting barcodes. The included software for creating barcode libraries and decoding sequenced barcodes is efficient and designed to be user-friendly for the general biology community.
Collapse
|
82
|
Neri D, Lerner RA. DNA-Encoded Chemical Libraries: A Selection System Based on Endowing Organic Compounds with Amplifiable Information. Annu Rev Biochem 2018; 87:479-502. [PMID: 29328784 PMCID: PMC6080696 DOI: 10.1146/annurev-biochem-062917-012550] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discovery of organic ligands that bind specifically to proteins is a central problem in chemistry, biology, and the biomedical sciences. The encoding of individual organic molecules with distinctive DNA tags, serving as amplifiable identification bar codes, allows the construction and screening of combinatorial libraries of unprecedented size, thus facilitating the discovery of ligands to many different protein targets. Fundamentally, one links powers of genetics and chemical synthesis. After the initial description of DNA-encoded chemical libraries in 1992, several experimental embodiments of the technology have been reduced to practice. This review provides a historical account of important milestones in the development of DNA-encoded chemical libraries, a survey of relevant ongoing research activities, and a glimpse into the future.
Collapse
Affiliation(s)
- Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), 8093 Zürich, Switzerland;
| | - Richard A Lerner
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA;
| |
Collapse
|
83
|
Leveridge M, Chung CW, Gross JW, Phelps CB, Green D. Integration of Lead Discovery Tactics and the Evolution of the Lead Discovery Toolbox. SLAS DISCOVERY 2018; 23:881-897. [PMID: 29874524 DOI: 10.1177/2472555218778503] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There has been much debate around the success rates of various screening strategies to identify starting points for drug discovery. Although high-throughput target-based and phenotypic screening has been the focus of this debate, techniques such as fragment screening, virtual screening, and DNA-encoded library screening are also increasingly reported as a source of new chemical equity. Here, we provide examples in which integration of more than one screening approach has improved the campaign outcome and discuss how strengths and weaknesses of various methods can be used to build a complementary toolbox of approaches, giving researchers the greatest probability of successfully identifying leads. Among others, we highlight case studies for receptor-interacting serine/threonine-protein kinase 1 and the bromo- and extra-terminal domain family of bromodomains. In each example, the unique insight or chemistries individual approaches provided are described, emphasizing the synergy of information obtained from the various tactics employed and the particular question each tactic was employed to answer. We conclude with a short prospective discussing how screening strategies are evolving, what this screening toolbox might look like in the future, how to maximize success through integration of multiple tactics, and scenarios that drive selection of one combination of tactics over another.
Collapse
Affiliation(s)
- Melanie Leveridge
- 1 GlaxoSmithKline Drug Design and Selection, Platform Technology and Science, Stevenage, Hertfordshire, UK
| | - Chun-Wa Chung
- 1 GlaxoSmithKline Drug Design and Selection, Platform Technology and Science, Stevenage, Hertfordshire, UK
| | - Jeffrey W Gross
- 2 GlaxoSmithKline Drug Design and Selection, Platform Technology and Science, Collegeville, PA, USA
| | - Christopher B Phelps
- 3 GlaxoSmithKline Drug Design and Selection, Platform Technology and Science, Cambridge, MA, USA
| | - Darren Green
- 1 GlaxoSmithKline Drug Design and Selection, Platform Technology and Science, Stevenage, Hertfordshire, UK
| |
Collapse
|
84
|
Favalli N, Bassi G, Scheuermann J, Neri D. DNA-encoded chemical libraries - achievements and remaining challenges. FEBS Lett 2018; 592:2168-2180. [PMID: 29683493 PMCID: PMC6126621 DOI: 10.1002/1873-3468.13068] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 11/10/2022]
Abstract
DNA-encoded chemical libraries (DECLs) are collections of compounds, individually coupled to DNA tags serving as amplifiable identification barcodes. Since individual compounds can be identified by the associated DNA tag, they can be stored as a mixture, allowing the synthesis and screening of combinatorial libraries of unprecedented size, facilitated by the implementation of split-and-pool synthetic procedures or other experimental methodologies. In this review, we briefly present relevant concepts and technologies, which are required for the implementation and interpretation of screening procedures with DNA-encoded chemical libraries. Moreover, we illustrate some success stories, detailing how novel ligands were discovered from encoded libraries. Finally, we critically review what can realistically be achieved with the technology at the present time, highlighting challenges and opportunities for the future.
Collapse
Affiliation(s)
- Nicholas Favalli
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich (Switzerland)
| | - Gabriele Bassi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich (Switzerland)
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich (Switzerland)
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich (Switzerland)
| |
Collapse
|
85
|
Second-generation DNA-templated macrocycle libraries for the discovery of bioactive small molecules. Nat Chem 2018; 10:704-714. [PMID: 29610462 PMCID: PMC6014893 DOI: 10.1038/s41557-018-0033-8] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/28/2018] [Indexed: 12/21/2022]
Abstract
DNA-encoded libraries have emerged as a widely used resource for the discovery of bioactive small molecules, and offer substantial advantages compared with conventional small-molecule libraries. Here, we have developed and streamlined multiple fundamental aspects of DNA-encoded and DNA-templated library synthesis methodology, including computational identification and experimental validation of a 20 × 20 × 20 × 80 set of orthogonal codons, chemical and computational tools for enhancing the structural diversity and drug-likeness of library members, a highly efficient polymerase-mediated template library assembly strategy, and library isolation and purification methods. We have integrated these improved methods to produce a second-generation DNA-templated library of 256,000 small-molecule macrocycles with improved drug-like physical properties. In vitro selection of this library for insulin-degrading enzyme affinity resulted in novel insulin-degrading enzyme inhibitors, including one of unusual potency and novel macrocycle stereochemistry (IC50 = 40 nM). Collectively, these developments enable DNA-templated small-molecule libraries to serve as more powerful, accessible, streamlined and cost-effective tools for bioactive small-molecule discovery.
Collapse
|
86
|
Huang Y, Zheng W, Li X. Detection of protein targets with a single binding epitope using DNA-templated photo-crosslinking and strand displacement. Anal Biochem 2018; 545:84-90. [DOI: 10.1016/j.ab.2018.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 12/17/2022]
|
87
|
Zhu Z, Shaginian A, Grady LC, O’Keeffe T, Shi XE, Davie CP, Simpson GL, Messer JA, Evindar G, Bream RN, Thansandote PP, Prentice NR, Mason AM, Pal S. Design and Application of a DNA-Encoded Macrocyclic Peptide Library. ACS Chem Biol 2018; 13:53-59. [PMID: 29185700 DOI: 10.1021/acschembio.7b00852] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A DNA-encoded macrocyclic peptide library was designed and synthesized with 2.4 × 1012 members composed of 4-20 natural and non-natural amino acids. Affinity-based selection was performed against two therapeutic targets, VHL and RSV N protein. On the basis of selection data, some peptides were selected for resynthesis without a DNA tag, and their activity was confirmed.
Collapse
Affiliation(s)
- Zhengrong Zhu
- GlaxoSmithKline, 200 Cambridge Park Dr., Cambridge, Massachusetts 02140, United States
| | - Alex Shaginian
- GlaxoSmithKline, 200 Cambridge Park Dr., Cambridge, Massachusetts 02140, United States
| | - LaShadric C. Grady
- GlaxoSmithKline, 200 Cambridge Park Dr., Cambridge, Massachusetts 02140, United States
| | - Thomas O’Keeffe
- GlaxoSmithKline, 200 Cambridge Park Dr., Cambridge, Massachusetts 02140, United States
| | - Xiangguo E. Shi
- GlaxoSmithKline, 200 Cambridge Park Dr., Cambridge, Massachusetts 02140, United States
| | - Christopher P. Davie
- GlaxoSmithKline, 200 Cambridge Park Dr., Cambridge, Massachusetts 02140, United States
| | - Graham L. Simpson
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, United Kingdom
| | - Jeffrey A. Messer
- GlaxoSmithKline, 200 Cambridge Park Dr., Cambridge, Massachusetts 02140, United States
| | - Ghotas Evindar
- GlaxoSmithKline, 200 Cambridge Park Dr., Cambridge, Massachusetts 02140, United States
| | - Robert N. Bream
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, United Kingdom
| | | | - Naomi R. Prentice
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, United Kingdom
| | - Andrew M. Mason
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, United Kingdom
| | - Sandeep Pal
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, United Kingdom
| |
Collapse
|
88
|
Large-scale DNA Barcode Library Generation for Biomolecule Identification in High-throughput Screens. Sci Rep 2017; 7:13899. [PMID: 29066821 PMCID: PMC5654825 DOI: 10.1038/s41598-017-12825-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/14/2017] [Indexed: 01/23/2023] Open
Abstract
High-throughput screens allow for the identification of specific biomolecules with characteristics of interest. In barcoded screens, DNA barcodes are linked to target biomolecules in a manner allowing for the target molecules making up a library to be identified by sequencing the DNA barcodes using Next Generation Sequencing. To be useful in experimental settings, the DNA barcodes in a library must satisfy certain constraints related to GC content, homopolymer length, Hamming distance, and blacklisted subsequences. Here we report a novel framework to quickly generate large-scale libraries of DNA barcodes for use in high-throughput screens. We show that our framework dramatically reduces the computation time required to generate large-scale DNA barcode libraries, compared with a naїve approach to DNA barcode library generation. As a proof of concept, we demonstrate that our framework is able to generate a library consisting of one million DNA barcodes for use in a fragment antibody phage display screening experiment. We also report generating a general purpose one billion DNA barcode library, the largest such library yet reported in literature. Our results demonstrate the value of our novel large-scale DNA barcode library generation framework for use in high-throughput screening applications.
Collapse
|
89
|
Bigatti M, Dal Corso A, Vanetti S, Cazzamalli S, Rieder U, Scheuermann J, Neri D, Sladojevich F. Impact of a Central Scaffold on the Binding Affinity of Fragment Pairs Isolated from DNA-Encoded Self-Assembling Chemical Libraries. ChemMedChem 2017; 12:1748-1752. [PMID: 28944578 DOI: 10.1002/cmdc.201700569] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Indexed: 12/19/2022]
Abstract
The screening of encoded self-assembling chemical libraries allows the identification of fragment pairs that bind to adjacent pockets on target proteins of interest. For practical applications, it is necessary to link these ligand pairs into discrete organic molecules, devoid of any nucleic acid component. Here we describe the discovery of a synergistic binding pair for acid alpha-1 glycoprotein and a chemical strategy for the identification of optimal linkers, connecting the two fragments. The procedure yielded a set of small organic ligands, the best of which exhibited a dissociation constant of 9.9 nm, as measured in solution by fluorescence polarization.
Collapse
Affiliation(s)
| | - Alberto Dal Corso
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093, Zürich, Switzerland
| | | | - Samuele Cazzamalli
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093, Zürich, Switzerland
| | | | - Jörg Scheuermann
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Dario Neri
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093, Zürich, Switzerland
| | | |
Collapse
|
90
|
Petszulat H, Seitz O. A fluorogenic native chemical ligation for assessing the role of distance in peptide-templated peptide ligation. Bioorg Med Chem 2017; 25:5022-5030. [PMID: 28823838 DOI: 10.1016/j.bmc.2017.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/19/2017] [Accepted: 08/06/2017] [Indexed: 12/11/2022]
Abstract
Protein-templated reactions have been used for fragment-based drug discovery as well as for covalent labeling, detection and manipulation of proteins. In spite of the growing interest in protein-templated reactions, little is known about the design criteria. Herein we present a systematic study on the effects of proximity in peptide-templated reactions. To facilitate reaction monitoring at low concentrations we developed a fluorogenic native chemical ligation that is based on the integration of a fluorescence quencher in the thiol leaving group. The reaction system provided up to 39-fold increases of emission from a fluorescein unit. By using templates based on coiled coils as models we investigated the effect of misalignments. The distance-reactivity pattern for remotely aligned peptides was remarkably different to reaction scenarios that involved seamlessly annealed peptides with overhanging functional groups.
Collapse
Affiliation(s)
- Henrik Petszulat
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Oliver Seitz
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| |
Collapse
|
91
|
Shi B, Deng Y, Zhao P, Li X. Selecting a DNA-Encoded Chemical Library against Non-immobilized Proteins Using a “Ligate–Cross-Link–Purify” Strategy. Bioconjug Chem 2017; 28:2293-2301. [PMID: 28742329 DOI: 10.1021/acs.bioconjchem.7b00343] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Bingbing Shi
- Key
Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road West, Shenzhen 518055, China
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yuqing Deng
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Peng Zhao
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Institute
of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 64 Mianshan Road, Mianyang, Sichuan 621900, China
| | - Xiaoyu Li
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
92
|
Chan AI, McGregor LM, Jain T, Liu DR. Discovery of a Covalent Kinase Inhibitor from a DNA-Encoded Small-Molecule Library × Protein Library Selection. J Am Chem Soc 2017; 139:10192-10195. [PMID: 28689404 DOI: 10.1021/jacs.7b04880] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We previously reported interaction determination using unpurified proteins (IDUP), a method to selectively amplify DNA sequences encoding ligand:target pairs from a mixture of DNA-linked small molecules and unpurified protein targets in cell lysates. In this study, we applied IDUP to libraries of DNA-encoded bioactive compounds and DNA-tagged human kinases to identify ligand:protein binding partners out of 32 096 possible combinations in a single solution-phase library × library experiment. The results recapitulated known small molecule:protein interactions and also revealed that ethacrynic acid is a novel ligand and inhibitor of MAP2K6 kinase. Ethacrynic acid inhibits MAP2K6 in part through alkylation of a nonconserved cysteine residue. This work validates the ability of IDUP to discover ligands for proteins of biomedical relevance.
Collapse
Affiliation(s)
- Alix I Chan
- The Broad Institute of Harvard and MIT, Howard Hughes Medical Institute, and the Department of Chemistry and Chemical Biology, Harvard University , 75 Ames Street, Cambridge, Massachusetts 02142, United States
| | - Lynn M McGregor
- The Broad Institute of Harvard and MIT, Howard Hughes Medical Institute, and the Department of Chemistry and Chemical Biology, Harvard University , 75 Ames Street, Cambridge, Massachusetts 02142, United States
| | - Tara Jain
- The Broad Institute of Harvard and MIT, Howard Hughes Medical Institute, and the Department of Chemistry and Chemical Biology, Harvard University , 75 Ames Street, Cambridge, Massachusetts 02142, United States
| | - David R Liu
- The Broad Institute of Harvard and MIT, Howard Hughes Medical Institute, and the Department of Chemistry and Chemical Biology, Harvard University , 75 Ames Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
93
|
Abstract
Nucleic acid directed bioorthogonal reactions offer the fascinating opportunity to unveil and redirect a plethora of intracellular mechanisms. Nano- to picomolar amounts of specific RNA molecules serve as templates and catalyze the selective formation of molecules that 1) exert biological effects, or 2) provide measurable signals for RNA detection. Turnover of reactants on the template is a valuable asset when concentrations of RNA templates are low. The idea is to use RNA-templated reactions to fully control the biodistribution of drugs and to push the detection limits of DNA or RNA analytes to extraordinary sensitivities. Herein we review recent and instructive examples of conditional synthesis or release of compounds for in cellulo protein interference and intracellular nucleic acid imaging.
Collapse
Affiliation(s)
- Margherita Di Pisa
- Department of ChemistryHumboldt University BerlinBrook-Taylor Strasse 212489BerlinGermany
| | - Oliver Seitz
- Department of ChemistryHumboldt University BerlinBrook-Taylor Strasse 212489BerlinGermany
| |
Collapse
|
94
|
Zimmermann G, Rieder U, Bajic D, Vanetti S, Chaikuad A, Knapp S, Scheuermann J, Mattarella M, Neri D. A Specific and Covalent JNK-1 Ligand Selected from an Encoded Self-Assembling Chemical Library. Chemistry 2017; 23:8152-8155. [PMID: 28485044 PMCID: PMC5557334 DOI: 10.1002/chem.201701644] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Indexed: 01/05/2023]
Abstract
We describe the construction of a DNA-encoded chemical library comprising 148 135 members, generated through the self-assembly of two sub-libraries, containing 265 and 559 members, respectively. The library was designed to contain building blocks potentially capable of forming covalent interactions with target proteins. Selections performed with JNK1, a kinase containing a conserved cysteine residue close to the ATP binding site, revealed the preferential enrichment of a 2-phenoxynicotinic acid moiety (building block A82) and a 4-(3,4-difluorophenyl)-4-oxobut-2-enoic acid moiety (building block B272). When the two compounds were joined by a short PEG linker, the resulting bidentate binder (A82-L-B272) was able to covalently modify JNK1 in the presence of a large molar excess of glutathione (0.5 mm), used to simulate intracellular reducing conditions. By contrast, derivatives of the individual building blocks were not able to covalently modify JNK1 in the same experimental conditions. The A82-L-B272 ligand was selective over related kinases (BTK and GAK), which also contain targetable cysteine residues in the vicinity of the active site.
Collapse
Affiliation(s)
- Gunther Zimmermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich (Switzerland)
| | - Ulrike Rieder
- Philochem AG, Libernstrasse 3, CH-8112 Otelfingen (Switzerland)
| | - Davor Bajic
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich (Switzerland)
| | - Sara Vanetti
- Philochem AG, Libernstrasse 3, CH-8112 Otelfingen (Switzerland)
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry and Buchmann Institute for Life Sciences (BMLS), Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt (Germany)
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium and Target Discovery Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry and Buchmann Institute for Life Sciences (BMLS), Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt (Germany)
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium and Target Discovery Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich (Switzerland)
| | | | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich (Switzerland)
| |
Collapse
|
95
|
Li Y, Zimmermann G, Scheuermann J, Neri D. Quantitative PCR is a Valuable Tool to Monitor the Performance of DNA-Encoded Chemical Library Selections. Chembiochem 2017; 18:848-852. [PMID: 28220596 PMCID: PMC5606288 DOI: 10.1002/cbic.201600626] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Indexed: 01/25/2023]
Abstract
Phage-display libraries and DNA-encoded chemical libraries (DECLs) represent useful tools for the isolation of specific binding molecules from large combinatorial sets of compounds. With both methods, specific binders are recovered at the end of affinity capture procedures by using target proteins of interest immobilized on a solid support. However, although the efficiency of phage-display selections is routinely quantified by counting the phage titer before and after the affinity capture step, no similar quantification procedures have been reported for the characterization of DECL selections. In this article, we describe the potential and limitations of quantitative PCR (qPCR) methods for the evaluation of selection efficiency by using a combinatorial chemical library with more than 35 million compounds. In the experimental conditions chosen for the selections, a quantification of DNA input/recovery over five orders of magnitude could be performed, revealing a successful enrichment of abundant binders, which could be confirmed by DNA sequencing. qPCR provided rapid information about the performance of selections, thus facilitating the optimization of experimental conditions.
Collapse
Affiliation(s)
- Yizhou Li
- Department of Chemistry and Applied Biosciences Swiss Federal
Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 3, CH-8093
Zürich (Switzerland)
| | - Gunther Zimmermann
- Department of Chemistry and Applied Biosciences Swiss Federal
Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 3, CH-8093
Zürich (Switzerland)
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences Swiss Federal
Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 3, CH-8093
Zürich (Switzerland)
| | - Dario Neri
- Department of Chemistry and Applied Biosciences Swiss Federal
Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 3, CH-8093
Zürich (Switzerland)
| |
Collapse
|
96
|
Al Sulaiman D, Chang JYH, Ladame S. Subnanomolar Detection of Oligonucleotides through Templated Fluorogenic Reaction in Hydrogels: Controlling Diffusion to Improve Sensitivity. Angew Chem Int Ed Engl 2017; 56:5247-5251. [PMID: 28382640 PMCID: PMC5502887 DOI: 10.1002/anie.201701356] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/02/2017] [Indexed: 02/06/2023]
Abstract
Oligonucleotide-templated reactions are valuable tools for nucleic acid sensing both in vitro and in vivo. They are typically carried out under conditions that make any reaction in the absence of template highly unfavorable (most commonly by using a low concentration of reactants), which has a negative impact on the detection sensitivity. Herein, we report a novel platform for fluorogenic oligonucleotide-templated reactions between peptide nucleic acid probes embedded within permeable agarose and alginate hydrogels. We demonstrate that under conditions of restricted mobility (that is, limited diffusion), non-specific interactions between probes are prevented, thus leading to lower background signals. When applied to nucleic acid sensing, this accounts for a significant increase in sensitivity (that is, lower limit of detection). Optical nucleic acid sensors based on fluorogenic peptide nucleic acid probes embedded in permeable, physically crosslinked, alginate beads were also engineered and proved capable of detecting DNA concentrations as low as 100 pm.
Collapse
Affiliation(s)
- Dana Al Sulaiman
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Jason Y H Chang
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Sylvain Ladame
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| |
Collapse
|
97
|
Kontijevskis A. Mapping of Drug-like Chemical Universe with Reduced Complexity Molecular Frameworks. J Chem Inf Model 2017; 57:680-699. [DOI: 10.1021/acs.jcim.7b00006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
98
|
Al Sulaiman D, Chang JYH, Ladame S. Subnanomolar Detection of Oligonucleotides through Templated Fluorogenic Reaction in Hydrogels: Controlling Diffusion to Improve Sensitivity. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dana Al Sulaiman
- Department of Bioengineering; Imperial College London; South Kensington Campus London SW7 2AZ UK
| | - Jason Y. H. Chang
- Department of Bioengineering; Imperial College London; South Kensington Campus London SW7 2AZ UK
| | - Sylvain Ladame
- Department of Bioengineering; Imperial College London; South Kensington Campus London SW7 2AZ UK
| |
Collapse
|
99
|
Qian Z, Dougherty PG, Pei D. Targeting intracellular protein-protein interactions with cell-permeable cyclic peptides. Curr Opin Chem Biol 2017; 38:80-86. [PMID: 28388463 DOI: 10.1016/j.cbpa.2017.03.011] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/24/2017] [Accepted: 03/14/2017] [Indexed: 02/06/2023]
Abstract
Intracellular protein-protein interactions (PPIs) are challenging targets for conventional drug modalities, because small molecules generally do not bind to their large, flat binding sites with high affinity, whereas monoclonal antibodies cannot cross the cell membrane to reach the targets. Cyclic peptides in the 700-2000 molecular-weight range have the sufficient size and a balanced conformational flexibility/rigidity for binding to flat PPI interfaces with antibody-like affinity and specificity. Several powerful cyclic peptide library technologies were developed over the past decade to rapidly discover potent, specific cyclic peptide ligands against proteins of interest including those involved in PPIs. Methods are also being developed to enhance the membrane permeability of cyclic peptides through both passive diffusion and active transport mechanisms. Integration of the permeability-enhancing elements into cyclic peptide design has led to an increasing number of cell-permeable and biologically active cyclic peptides against intracellular PPIs. In this account, we review the recent developments in the design and synthesis of cell-permeable cyclic peptides.
Collapse
Affiliation(s)
- Ziqing Qian
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, United States
| | - Patrick G Dougherty
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, United States
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, United States.
| |
Collapse
|
100
|
Zimmermann G, Li Y, Rieder U, Mattarella M, Neri D, Scheuermann J. Hit-Validation Methodologies for Ligands Isolated from DNA-Encoded Chemical Libraries. Chembiochem 2017; 18:853-857. [PMID: 28067010 DOI: 10.1002/cbic.201600637] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Indexed: 01/13/2023]
Abstract
DNA-encoded chemical libraries (DECLs) are large collections of compounds linked to DNA fragments, serving as amplifiable barcodes, which can be screened on target proteins of interest. In typical DECL selections, preferential binders are identified by high-throughput DNA sequencing, by comparing their frequency before and after the affinity capture step. Hits identified in this procedure need to be confirmed, by resynthesis and by performing affinity measurements. In this article we present new methods based on hybridization of oligonucleotide conjugates with fluorescently labeled complementary oligonucleotides; these facilitate the determination of affinity constants and kinetic dissociation constants. The experimental procedures were demonstrated with acetazolamide, a binder to carbonic anhydrase IX with a dissociation constant in the nanomolar range. The detection of binding events was compatible not only with fluorescence polarization methodologies, but also with Alphascreen technology and with microscale thermophoresis.
Collapse
Affiliation(s)
- Gunther Zimmermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Yizhou Li
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Ulrike Rieder
- Philochem AG, Libernstrasse 3, 8112, Otelfingen, Switzerland
| | | | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| |
Collapse
|