51
|
Nagaraja Shastri P, Zhu J, Skidmore L, Liang X, Ji Y, Gu Y, Tian F, Yao S, Xia G. Nonclinical Development of Next-generation Site-specific HER2-targeting Antibody-drug Conjugate (ARX788) for Breast Cancer Treatment. Mol Cancer Ther 2020; 19:1822-1832. [PMID: 32499302 DOI: 10.1158/1535-7163.mct-19-0692] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/01/2019] [Accepted: 06/02/2020] [Indexed: 11/16/2022]
Abstract
Conventional antibody-drug conjugates (ADC) utilize native surface-exposed lysines or cysteines on the antibody of interest to conjugate cytotoxic payload. The nonspecific conjugation results in a mixture with variable drug-to-antibody ratios (DAR), conjugation sites, and ADCs that are often unstable in systemic circulation. ARX788 is an ADC consisting of a HER2-targeting antibody site-specifically conjugated with a potent antitubulin cytotoxic drug-linker, AS269. The site-specific conjugation is achieved by first incorporating the nonnatural amino acid, para-acetyl phenylalanine (pAF), into the antibody, followed by covalent conjugation of AS269 to the pAF to form a highly stable oxime bond resulting in a DAR 2 ADC. ARX788 exhibits significant, dose-dependent antitumor activity against HER2- expressing breast and gastric xenograft tumors. Pharmacokinetic (PK) studies in multiple species showed the highly stable nature of ARX788 with overlapping PK profiles for the intact ADC and total antibody. Metabolism studies demonstrated that pAF-AS269 was the sole major metabolite of ARX788, with no evidence for the release of free drug often observed in conventional ADCs and responsible for adverse side effects. Furthermore, ARX788 demonstrated a favorable safety profile in monkeys with a highest nonseverely toxic dose of 10 mg/kg, which was well above the efficacious dose level observed in preclinical tumor models, thus supporting clinical development of ARX788.
Collapse
Affiliation(s)
| | - Jingjing Zhu
- NovoCodex Biopharmaceuticals Co., Shaoxing, China
| | | | - Xuejun Liang
- NovoCodex Biopharmaceuticals Co., Shaoxing, China
| | - Yanping Ji
- NovoCodex Biopharmaceuticals Co., Shaoxing, China
| | - Yi Gu
- Ambrx, La Jolla, California
| | | | | | - Gang Xia
- NovoCodex Biopharmaceuticals Co., Shaoxing, China.
| |
Collapse
|
52
|
Antibody-Drug Conjugates: The New Frontier of Chemotherapy. Int J Mol Sci 2020; 21:ijms21155510. [PMID: 32752132 PMCID: PMC7432430 DOI: 10.3390/ijms21155510] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
In recent years, antibody-drug conjugates (ADCs) have become promising antitumor agents to be used as one of the tools in personalized cancer medicine. ADCs are comprised of a drug with cytotoxic activity cross-linked to a monoclonal antibody, targeting antigens expressed at higher levels on tumor cells than on normal cells. By providing a selective targeting mechanism for cytotoxic drugs, ADCs improve the therapeutic index in clinical practice. In this review, the chemistry of ADC linker conjugation together with strategies adopted to improve antibody tolerability (by reducing antigenicity) are examined, with particular attention to ADCs approved by the regulatory agencies (the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA)) for treating cancer patients. Recent developments in engineering Immunoglobulin (Ig) genes and antibody humanization have greatly reduced some of the problems of the first generation of ADCs, beset by problems, such as random coupling of the payload and immunogenicity of the antibody. ADC development and clinical use is a fast, evolving area, and will likely prove an important modality for the treatment of cancer in the near future.
Collapse
|
53
|
Antibody-Drug Conjugates and Targeted Treatment Strategies for Hepatocellular Carcinoma: A Drug-Delivery Perspective. Molecules 2020; 25:molecules25122861. [PMID: 32575828 PMCID: PMC7356544 DOI: 10.3390/molecules25122861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
Increased understanding of cancer biology, pharmacology and drug delivery has provided a new framework for drug discovery and product development that relies on the unique expression of specific macromolecules (i.e., antigens) on the surface of tumour cells. This has enabled the development of anti-cancer treatments that combine the selectivity of antibodies with the efficacy of highly potent chemotherapeutic small molecules, called antibody-drug conjugates (ADCs). ADCs are composed of a cytotoxic drug covalently linked to an antibody which then selectively binds to a highly expressed antigen on a cancer cell; the conjugate is then internalized by the cell where it releases the potent cytotoxic drug and efficiently kills the tumour cell. There are, however, many challenges in the development of ADCs, mainly around optimizing the therapeutic/safety benefits. These challenges are discussed in this review; they include issues with the plasma stability and half-life of the ADC, its transport from blood into and distribution throughout the tumour compartment, cancer cell antigen expression and the ADC binding affinity to the target antigen, the cell internalization process, cleaving of the cytotoxic drug from the ADC, and the cytotoxic effect of the drug on the target cells. Finally, we present a summary of some of the experimental ADC strategies used in the treatment of hepatocellular carcinoma, from the recent literature.
Collapse
|
54
|
Tatiparti K, Rauf MA, Sau S, Iyer AK. Carbonic Anhydrase-IX Guided Albumin Nanoparticles for Hypoxia-mediated Triple-Negative Breast Cancer Cell Killing and Imaging of Patient-derived Tumor. Molecules 2020; 25:molecules25102362. [PMID: 32438691 PMCID: PMC7287925 DOI: 10.3390/molecules25102362] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 11/16/2022] Open
Abstract
Triple-Negative Breast Cancer (TNBC) is considered as the most onerous cancer subtype, lacking the estrogen, progesterone, and HER2 receptors. Evaluating new markers is an unmet need for improving targeted therapy against TNBC. TNBC depends on several factors, including hypoxia development, which contributes to therapy resistance, immune evasion, and tumor stroma formation. In this study, we studied the curcumin analogue (3,4-Difluorobenzylidene Curcumin; CDF) encapsulated bovine serum albumin (BSA) nanoparticle for tumor targeting. For tumor targeting, we conjugated Acetazolamide (ATZ) with CDF and encapsulated it in the BSA to form a nanoparticle (namely BSA-CDF-ATZ). The in vitro cytotoxicity study suggested that BSA-CDF-ATZ is more efficient when compared to free CDF. The BSA-CDF-ATZ nanoparticles showed significantly higher cell killing in hypoxic conditions compared to normoxic conditions, suggesting better internalization of the nanoparticles into cancer cells under hypoxia. Fluorescent-dye labeled BSA-CDF-ATZ revealed higher cell uptake of the nanoparticle compared to free dye indicative of better delivery, substantiated by a high rate of apoptosis-mediated cell death compared to free CDF. The significantly higher tumor accumulation and low liver and spleen uptake in TNBC patient-derived tumor xenograft models confirm the significant potential of BSA-CDF-ATZ for targeted TNBC imaging and therapy.
Collapse
Affiliation(s)
- Katyayani Tatiparti
- Department of Pharmaceutical Sciences, Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (K.T.); (M.A.R.); (S.S.)
| | - Mohd Ahmar Rauf
- Department of Pharmaceutical Sciences, Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (K.T.); (M.A.R.); (S.S.)
| | - Samaresh Sau
- Department of Pharmaceutical Sciences, Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (K.T.); (M.A.R.); (S.S.)
| | - Arun K. Iyer
- Department of Pharmaceutical Sciences, Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (K.T.); (M.A.R.); (S.S.)
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Correspondence: ; Tel.: +1-313-577-5875
| |
Collapse
|
55
|
Akaiwa M, Dugal-Tessier J, Mendelsohn BA. Antibody-Drug Conjugate Payloads; Study of Auristatin Derivatives. Chem Pharm Bull (Tokyo) 2020; 68:201-211. [PMID: 32115527 DOI: 10.1248/cpb.c19-00853] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Auristatins are important payloads used in antibody drug conjugates (ADCs), and the most well-known compound family member, monomethyl auristatin (MMAE), is used in two Food and Drug Administration (FDA)-approved ADCs, Adcetris® and Polivy®. Multiple other auristatin-based ADCs are currently being evaluated in human clinical trials and further studies on this class of molecule are underway by several academic and industrial research groups. Our group's main focus is to investigate the structure-activity relationships (SAR) of novel auristatins with the goal of applying these to next generation ADCs. Modifications of the auristatin backbone scaffold have been widely reported in the chemical literature focusing on the terminal subunits: P1 (N-terminus) and P5 (C-terminus). Our approach was to modulate the activity and hydrophilic character through modifications of the central subunits P2-P3-P4 and thorough SAR study on the P5 subunit. Novel hydrophilic auristatins were observed to have greater potency in vitro and displayed enhanced in vivo antitumor activity when conjugated via protease-cleavable linkers and delivered intracellularly. Analysis of ADC aggregation also indicated that novel hydrophilic payloads enabled the synthesis of high-drug-to-antibody ratio (DAR) ADCs that were resistant to aggregation. Modification of the central peptide subunits also resulted in auristatins with potent cytotoxic activity in vitro and these azide-modified auristatins contain a handle for linker attachment from the central portion of the auristatin backbone.
Collapse
|
56
|
Shen Y, Wei X, Jin S, Wu Y, Zhao W, Xu Y, Pan L, Zhou Z, Chen S. TCR-mimic antibody-drug conjugates targeting intracellular tumor-specific mutant antigen KRAS G12V mutation. Asian J Pharm Sci 2020; 15:777-785. [PMID: 33363632 PMCID: PMC7750800 DOI: 10.1016/j.ajps.2020.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/29/2019] [Accepted: 01/22/2020] [Indexed: 12/22/2022] Open
Abstract
Limited clinical application of antibody-drug conjugates (ADCs) targeting tumor associated antigens (TAAs) is usually caused by on-target off-tumor side effect. Tumor-specific mutant antigens (TSMAs) only expressed in tumor cells which are ideal targets for ADCs. In addition, intracellular somatic mutant proteins can be presented on the cell surface by human leukocyte antigen class I (HLA I)molecules forming tumor-specific peptide/HLA I complexes. KRAS G12V mutation frequently occurred in varied cancer and was verified as a promising target for cancer therapy. In this study, we generated two TCR-mimic antibody-drug conjugates (TCRm-ADCs), 2E8-MMAE and 2A5-MMAE, targeting KRAS G12V/HLA-A*0201 complex, which mediated specific antitumor activity in vitro and in vivo without obvious toxicity. Our findings are the first time validate the strategy of TCRm-ADCs targeting intracellular TSMAs, which improves the safety of antibody-based drugs and provides novel strategy for precision medicine in cancer therapy.
Collapse
Affiliation(s)
- Ying Shen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyue Wei
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Huabo Biopharm Co., Ltd., Shanghai 201203, China
| | - Shijie Jin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yue Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenbin Zhao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingchun Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liqiang Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhan Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuqing Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
57
|
Ahmed F, Ijaz B, Ahmad Z, Farooq N, Sarwar MB, Husnain T. Modification of miRNA Expression through plant extracts and compounds against breast cancer: Mechanism and translational significance. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 68:153168. [PMID: 31982837 DOI: 10.1016/j.phymed.2020.153168] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Cancer is hyper-proliferative, multi-factorial and multi-step, heterogeneous group of molecular disorders. It is the second most reported disease after heart diseases. Breast carcinoma is the foremost death causing disease in female population worldwide. Cancer can be controlled by regulating the gene expression. Current therapeutic options are associated with severe side effects and are expensive for the people living in under-developed countries. Plant derived substances have potential application against different diseases like cancer, inflammation and viral infections. HYPOTHESIS The mechanism of action of the medicinal plants is largely unknown. Targeting gene network and miRNA using medicinal plants could help in improving the therapeutic options against cancer. METHODS The literature from 135 articles was reviewed by using PubMed, google scholar, Science direct to find out the plants and plant-based compounds against breast cancer and also the studies reporting their mechanistic route of action both at coding and noncoding RNA levels. RESULTS Natural products act as selective inhibitors of the cancerous cells by targeting oncogenes and tumor suppressor genes or altering miRNA expression. Natural compounds like EGCG from tea, Genistein from fava beans, curcumin from turmeric, DIM found in cruciferous, Resveratrol a polyphenol and Quercetin a flavonoid is found in various plants have been studied for their anticancer activity. The EGCG was found to inhibit proliferative activity by modulating miR-16 and miR-21. Similarly, DIM was found to down regulate miR-92a which results to modulate NFkB and stops cancer development. Another plant-based compound Glyceollins found to upregulate miR-181c and miR-181d having role in tumor suppression. It also found to regulate miR-22, 29b and c, miR-30d, 34a and 195. Quercetin having anti-cancer activity induce the apoptosis through regulating miR-16, 26b, 34a, let-7g, 125a and miR-605 and reduce the miRNA expression like miR-146a/b, 503 and 194 which are involved in metastasis. CONCLUSION Targeting miRNA expression using natural plant extracts can have a reverse effect on cell proliferation; turning on and off tumor-inducing and suppressing genes. It can be efficiently adopted as an adjuvant with the conventional form of therapies to increase their efficacy against cancer progression.
Collapse
Affiliation(s)
- Fayyaz Ahmed
- National Center of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| | - Bushra Ijaz
- National Center of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan.
| | - Zarnab Ahmad
- National Center of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| | - Nadia Farooq
- Department of Surgery, Sir Gangaram Hospital Lahore Punjab, Pakistan
| | - Muhammad Bilal Sarwar
- National Center of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| | - Tayyab Husnain
- National Center of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| |
Collapse
|
58
|
Qi T, Shi Y, Huang Y, Fu X, Qiu S, Sun Q, Lin G. The role of antibody delivery formation in cancer therapy. J Drug Target 2020; 28:574-584. [PMID: 32037905 DOI: 10.1080/1061186x.2020.1728537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer has become one of the major threats to human survival. Because of antibodies specificity and low toxicity, it is the primary choice to diagnose and treat cancer. It is easy to be cleared from the blood circulation or distributing throughout the body and causes unnecessary side effects. It is necessary to delivery antibodies to the tumour region in a stable, safe and effective manner. In this review, we discuss the latest studies that aimed to delivery antibodies to tumour sites via several vector forms, such as liposomes, carbon nanomaterials, and gold nanomaterials. How to deliver antibodies to the target site is a difficulty for antibody therapy. This review summarises the antibody's therapeutic forms and carrier materials in recent years, and to explore how antibodies can be safely and stably delivered to the target site.
Collapse
Affiliation(s)
- Tongtong Qi
- School of Pharmaceutical Science, Shandong University, Jinan, PR China
| | - Yanbin Shi
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yi Huang
- School of Pharmaceutical Science, Shandong University, Jinan, PR China
| | - Xianglei Fu
- School of Pharmaceutical Science, Shandong University, Jinan, PR China
| | - Shengnan Qiu
- School of Pharmaceutical Science, Shandong University, Jinan, PR China
| | - Qifeng Sun
- Department of Thoracic Surgery, Second Hospital of Shandong University, Jinan, PR China
| | - Guimei Lin
- School of Pharmaceutical Science, Shandong University, Jinan, PR China
| |
Collapse
|
59
|
Huang R, Sheng Y, Wei D, Yu J, Chen H, Jiang B. Bis(vinylsulfonyl)piperazines as efficient linkers for highly homogeneous antibody-drug conjugates. Eur J Med Chem 2020; 190:112080. [PMID: 32018094 DOI: 10.1016/j.ejmech.2020.112080] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/18/2022]
Abstract
Disulfide re-bridging strategy has demonstrated significant advantages in the construction of homogeneous antibody drug conjugates (ADCs). However, a major issue that disulfide scrambling at the hinge region of antibody leads to the formation of "half-antibody" has appeared for many re-bridging linkers. We present bis(vinylsulfonyl)piperazines (BVP) as efficient linkers to selectively re-bridge disulfides at the antigen-binding fragment (Fab) regions and produce highly homogeneous conjugates with a loading of two drugs without disulfide scrambling. We also found that optically active (S)-configuration linkers led to more sufficient conjugation compared with (R)-configuration. The BVP-linked ADCs demonstrated superior efficacy and antigen-selectivity in vitro cytotoxicity.
Collapse
Affiliation(s)
- Rong Huang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Yao Sheng
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Ding Wei
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Jianghui Yu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Hongli Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China.
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China.
| |
Collapse
|
60
|
Amani N, Dorkoosh FA, Mobedi H. ADCs, as Novel Revolutionary Weapons for Providing a Step Forward in Targeted Therapy of Malignancies. Curr Drug Deliv 2020; 17:23-51. [DOI: 10.2174/1567201816666191121145109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/01/2019] [Accepted: 10/29/2019] [Indexed: 11/22/2022]
Abstract
:Antibody drug conjugates (ADCs), as potent pharmaceutical trojan horses for cancer treatment, provide superior efficacy and specific targeting along with low risk of adverse reactions compared to traditional chemotherapeutics. In fact, the development of these agents combines the selective targeting capability of monoclonal antibody (mAb) with high cytotoxicity of chemotherapeutics for controlling the neoplastic mass growth. Different ADCs (more than 60 ADCs) in preclinical and clinical trials were introduced in this novel pharmaceutical field. Various design-based factors must be taken into account for improving the functionality of ADC technology, including selection of appropriate target antigen and high binding affinity of fragment (miniaturized ADCs) or full mAbs (preferentially use of humanized or fully human antibodies compared to murine and chimeric ones), use of bispecific antibodies for dual targeting effect, linker engineering and conjugation method efficacy to obtain more controlled drug to antibody ratio (DAR). Challenging issues affecting therapeutic efficacy and safety of ADCs, including bystander effect, on- and off-target toxicities, multi drug resistance (MDR) are also addressed. 4 FDA-approved ADCs in the market, including ADCETRIS ®, MYLOTARG®, BESPONSA ®, KADCYLA®. The goal of the current review is to evaluate the key parameters affecting ADCs development.
Collapse
Affiliation(s)
- Nooshafarin Amani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Abedin Dorkoosh
- Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Mobedi
- Novel Drug Delivery Systems (NDDS) Department, Iran Polymer and Petrochemical Institute, Tehran, Iran
| |
Collapse
|
61
|
Kotapati S, Passmore D, Yamazoe S, Sanku RKK, Cong Q, Poudel YB, Chowdari NS, Gangwar S, Rao C, Rangan VS, Cardarelli PM, Deshpande S, Strop P, Dollinger G, Rajpal A. Universal Affinity Capture Liquid Chromatography-Mass Spectrometry Assay for Evaluation of Biotransformation of Site-Specific Antibody Drug Conjugates in Preclinical Studies. Anal Chem 2019; 92:2065-2073. [DOI: 10.1021/acs.analchem.9b04572] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
62
|
Dragovich PS, Adhikari P, Blake RA, Blaquiere N, Chen J, Cheng YX, den Besten W, Han J, Hartman SJ, He J, He M, Rei Ingalla E, Kamath AV, Kleinheinz T, Lai T, Leipold DD, Li CS, Liu Q, Lu J, Lu Y, Meng F, Meng L, Ng C, Peng K, Lewis Phillips G, Pillow TH, Rowntree RK, Sadowsky JD, Sampath D, Staben L, Staben ST, Wai J, Wan K, Wang X, Wei B, Wertz IE, Xin J, Xu K, Yao H, Zang R, Zhang D, Zhou H, Zhao Y. Antibody-mediated delivery of chimeric protein degraders which target estrogen receptor alpha (ERα). Bioorg Med Chem Lett 2019; 30:126907. [PMID: 31902710 DOI: 10.1016/j.bmcl.2019.126907] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/31/2022]
Abstract
Chimeric molecules which effect intracellular degradation of target proteins via E3 ligase-mediated ubiquitination (e.g., PROTACs) are currently of high interest in medicinal chemistry. However, these entities are relatively large compounds that often possess molecular characteristics which may compromise oral bioavailability, solubility, and/or in vivo pharmacokinetic properties. Accordingly, we explored whether conjugation of chimeric degraders to monoclonal antibodies using technologies originally developed for cytotoxic payloads might provide alternate delivery options for these novel agents. In this report we describe the construction of several degrader-antibody conjugates comprised of two distinct ERα-targeting degrader entities and three independent ADC linker modalities. We subsequently demonstrate the antigen-dependent delivery to MCF7-neo/HER2 cells of the degrader payloads that are incorporated into these conjugates. We also provide evidence for efficient intracellular degrader release from one of the employed linkers. In addition, preliminary data are described which suggest that reasonably favorable in vivo stability properties are associated with the linkers utilized to construct the degrader conjugates.
Collapse
Affiliation(s)
| | - Pragya Adhikari
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Robert A Blake
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | - Jinhua Chen
- WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
| | - Yun-Xing Cheng
- Pharmaron Beijing, Co. Ltd., BDA Beijing, 6 Tai He Road, 100176, China
| | | | - Jinping Han
- Pharmaron Beijing, Co. Ltd., BDA Beijing, 6 Tai He Road, 100176, China
| | | | - Jintang He
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Mingtao He
- Pharmaron Beijing, Co. Ltd., BDA Beijing, 6 Tai He Road, 100176, China
| | | | - Amrita V Kamath
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | - Tommy Lai
- WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
| | | | - Chun Sing Li
- WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
| | - Qi Liu
- Pharmaron Beijing, Co. Ltd., BDA Beijing, 6 Tai He Road, 100176, China
| | - Jiawei Lu
- WuXi Biologics, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
| | - Ying Lu
- WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
| | - Fanwei Meng
- Pharmaron Beijing, Co. Ltd., BDA Beijing, 6 Tai He Road, 100176, China
| | - Lingyao Meng
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Carl Ng
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kaishan Peng
- WuXi Biologics, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
| | | | - Thomas H Pillow
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | - Jack D Sadowsky
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Deepak Sampath
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Leanna Staben
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Steven T Staben
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - John Wai
- WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
| | - Kunpeng Wan
- WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
| | - Xinxin Wang
- WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
| | - BinQing Wei
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ingrid E Wertz
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jianfeng Xin
- Pharmaron Beijing, Co. Ltd., BDA Beijing, 6 Tai He Road, 100176, China
| | - Keyang Xu
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hui Yao
- WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
| | - Richard Zang
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Donglu Zhang
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hao Zhou
- WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
| | - Yongxin Zhao
- WuXi AppTec, Waigaoqiao Free Trade Zone, 288 Fute Zhong Road, Shanghai 200131, China
| |
Collapse
|
63
|
Malviya N, Sonkar C, Ganguly R, Bhattacherjee D, Bhabak KP, Mukhopadhyay S. Novel Approach to Generate a Self-Deliverable Ru(II)-Based Anticancer Agent in the Self-Reacting Confined Gel Space. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47606-47618. [PMID: 31755256 DOI: 10.1021/acsami.9b17075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Finding the most effective method for cancer treatment is one of the thought-provoking tasks. Drug delivery by collapsing of metallogel to the cancer cell is an appealing way out. Cancer cells have an acidic environment due to excessive accumulation of lactic acid. In this work, the novel G5 gelator with a strategically free carboxylic acid arm has been designed and fabricated and characterized by several spectroscopic and microscopic techniques. These experiments suggest the formation of an ordered supramolecular gel with clover-leaf-like morphology. Mechanical properties from rheological measurements suggest the viscoelastic nature of the gel. Furthermore, we have obtained crystals of G5 from the pure dimethyl sulfoxide solution, whereas gelation gets induced by addition of water. This G5 gelator loses its gelation capability once the carboxylate is esterified by layering with methanol, which furnished the crystals of Me-G5' (G5' = G5-H). Further, the G5 gelator is used for the formation of ruthenium metallogel. Interestingly, we obtained the monomeric species [Ru(G5')(η6-p-cymene)Cl] [Ru(II)G5] only in confined gel space upon addition of a [Ru2(η6-p-cymene)2Cl4] dimer to G5. The Ru(II)G5 metallogel has an inherent anticancer property with an IC50 value of 10.53 μM for the A549 cancer cell line. Treatment of the Ru(II)G5 metallogel by lactic acid for mimicking the acidic environment of the malignant cell results in collapsing of the gel by releasing the ruthenium metal ion. This released ruthenium ion binds with the lactic acid derivative making the gelator G5 free and producing a new compound Ru(II)L, which has also shown the anticancer property. The molecular docking study revealed that the released G5 could interact with a monocarboxylate transporter to disrupt the lactate transport chain, which might induce apoptosis.
Collapse
Affiliation(s)
| | | | - Rakesh Ganguly
- Division of Chemistry and Biological Chemistry , Nanyang Technological University , 639798 Singapore
| | - Debojit Bhattacherjee
- Department of Chemistry , Indian Institute of Technology Guwahati , Guwahati 781039 , India
| | - Krishna Pada Bhabak
- Department of Chemistry , Indian Institute of Technology Guwahati , Guwahati 781039 , India
| | | |
Collapse
|
64
|
Castelli MS, McGonigle P, Hornby PJ. The pharmacology and therapeutic applications of monoclonal antibodies. Pharmacol Res Perspect 2019; 7:e00535. [PMID: 31859459 PMCID: PMC6923804 DOI: 10.1002/prp2.535] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/26/2019] [Accepted: 10/10/2019] [Indexed: 12/27/2022] Open
Abstract
Monoclonal antibodies (mAbs) have emerged as a major class of therapeutic agents on the market. To date, approximately 80 mAbs have been granted marketing approval. In 2018, 12 new mAbs were approved by the FDA, representing 20% of the total number of approved drugs. The majority of mAb therapeutics are for oncological and immunological/infectious diseases, but these are expanding into other disease areas. Over 100 monoclonal antibodies are in development, and their unique features ensure that these will remain a part of the therapeutic pipeline. Thus, the therapeutic value and the elucidation of their pharmacological properties supporting clinical development of these large molecules are unquestioned. However, their utilization as pharmacological tools in academic laboratories has lagged behind their small molecule counterparts. Early therapeutic mAbs targeted soluble cytokines, but now that mAbs also target membrane-bound receptors and have increased circulating half-life, their pharmacology is more complex. The principles of pharmacology have enabled the development of high affinity, potent and selective small molecule therapeutics with reduced off-target effects and drug-drug interactions. This review will discuss how the same basic principles can be applied to mAbs, with some important differences. Monoclonal antibodies have several benefits, such as fewer off-target adverse effects, fewer drug-drug interactions, higher specificity, and potentially increased efficacy through targeted therapy. Modifications to decrease the immunogenicity and increase the efficacy are described, with examples of optimizing their pharmacokinetic properties and enabling oral bioavailability. Increased awareness of these advances may help to increase their use in exploratory research and further understand and characterize their pharmacological properties.
Collapse
Affiliation(s)
- María Sofía Castelli
- Department of Physiology and PharmacologyCollege of MedicineDrexel UniversityPhiladelphiaPAUSA
| | - Paul McGonigle
- Department of Physiology and PharmacologyCollege of MedicineDrexel UniversityPhiladelphiaPAUSA
| | - Pamela J. Hornby
- Department of Physiology and PharmacologyCollege of MedicineDrexel UniversityPhiladelphiaPAUSA
- Cardiovascular & Metabolic Disease DiscoveryJanssen R&DLLCSpring HousePAUSA
| |
Collapse
|
65
|
Improving the therapeutic efficiency of noncoding RNAs in cancers using targeted drug delivery systems. Drug Discov Today 2019; 25:718-730. [PMID: 31758914 DOI: 10.1016/j.drudis.2019.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022]
Abstract
The delivery of noncoding (nc)RNA to target cancer stem cells and metastatic tumors has shown many positive outcomes, resulting in improved and more efficient treatment strategies. The success of therapeutic RNA depends solely on passing cellular barriers to reach the target site, where it binds to the mRNA of the interest. By 2018, 20 clinical trials had been initiated, most focusing on cancer and diabetes, with some progressing to Phase II clinical trials testing the safety and efficacy of small interfering (si)RNA. Many challenges limit RNA interference (RNAi) and miRNA usage in vivo; therefore, various approaches have been developed to promote ncRNA efficiency and stability. In this review, we focus on targeting the tumor microenvironment (TME) via the modification of delivery systems utilizing nanotechnology-based delivery approaches.
Collapse
|
66
|
Pillow TH, Adhikari P, Blake RA, Chen J, Del Rosario G, Deshmukh G, Figueroa I, Gascoigne KE, Kamath AV, Kaufman S, Kleinheinz T, Kozak KR, Latifi B, Leipold DD, Sing Li C, Li R, Mulvihill MM, O'Donohue A, Rowntree RK, Sadowsky JD, Wai J, Wang X, Wu C, Xu Z, Yao H, Yu S, Zhang D, Zang R, Zhang H, Zhou H, Zhu X, Dragovich PS. Antibody Conjugation of a Chimeric BET Degrader Enables
in vivo
Activity. ChemMedChem 2019; 15:17-25. [DOI: 10.1002/cmdc.201900497] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/11/2019] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | - Jinhua Chen
- Wuxi Apptec 288 Fute Zhong Road Waigaoqiao Free Trade Zone Shanghai 200131 China
| | | | - Gauri Deshmukh
- Genentech Inc. 1 DNA Way South San Francisco CA 94080 USA
| | | | | | | | - Susan Kaufman
- Genentech Inc. 1 DNA Way South San Francisco CA 94080 USA
| | | | | | - Brandon Latifi
- Genentech Inc. 1 DNA Way South San Francisco CA 94080 USA
| | | | - Chun Sing Li
- Wuxi Apptec 288 Fute Zhong Road Waigaoqiao Free Trade Zone Shanghai 200131 China
| | - Ruina Li
- Genentech Inc. 1 DNA Way South San Francisco CA 94080 USA
| | | | | | | | | | - John Wai
- Wuxi Apptec 288 Fute Zhong Road Waigaoqiao Free Trade Zone Shanghai 200131 China
| | - Xinxin Wang
- Wuxi Apptec 288 Fute Zhong Road Waigaoqiao Free Trade Zone Shanghai 200131 China
| | - Cong Wu
- Genentech Inc. 1 DNA Way South San Francisco CA 94080 USA
| | - Zijin Xu
- Wuxi Apptec 288 Fute Zhong Road Waigaoqiao Free Trade Zone Shanghai 200131 China
| | - Hui Yao
- Wuxi Apptec 288 Fute Zhong Road Waigaoqiao Free Trade Zone Shanghai 200131 China
| | - Shang‐Fan Yu
- Genentech Inc. 1 DNA Way South San Francisco CA 94080 USA
| | - Donglu Zhang
- Genentech Inc. 1 DNA Way South San Francisco CA 94080 USA
| | - Richard Zang
- Genentech Inc. 1 DNA Way South San Francisco CA 94080 USA
| | - Hongyan Zhang
- Wuxi Apptec 288 Fute Zhong Road Waigaoqiao Free Trade Zone Shanghai 200131 China
| | - Hao Zhou
- Wuxi Apptec 288 Fute Zhong Road Waigaoqiao Free Trade Zone Shanghai 200131 China
| | - Xiaoyu Zhu
- Wuxi Apptec 288 Fute Zhong Road Waigaoqiao Free Trade Zone Shanghai 200131 China
| | | |
Collapse
|
67
|
Deweid L, Avrutina O, Kolmar H. Microbial transglutaminase for biotechnological and biomedical engineering. Biol Chem 2019; 400:257-274. [PMID: 30291779 DOI: 10.1515/hsz-2018-0335] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/04/2018] [Indexed: 12/17/2022]
Abstract
Research on bacterial transglutaminase dates back to 1989, when the enzyme has been isolated from Streptomyces mobaraensis. Initially discovered during an extensive screening campaign to reduce costs in food manufacturing, it quickly appeared as a robust and versatile tool for biotechnological and pharmaceutical applications due to its excellent activity and simple handling. While pioneering attempts to make use of its extraordinary cross-linking ability resulted in heterogeneous polymers, currently it is applied to site-specifically ligate diverse biomolecules yielding precisely modified hybrid constructs comprising two or more components. This review covers the extensive and rapidly growing field of microbial transglutaminase-mediated bioconjugation with the focus on pharmaceutical research. In addition, engineering of the enzyme by directed evolution and rational design is highlighted. Moreover, cumbersome drawbacks of this technique mainly caused by the enzyme's substrate indiscrimination are discussed as well as the ways to bypass these limitations.
Collapse
Affiliation(s)
- Lukas Deweid
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, D-64287 Darmstadt, Germany
| | - Olga Avrutina
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, D-64287 Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, D-64287 Darmstadt, Germany
| |
Collapse
|
68
|
Khongorzul P, Ling CJ, Khan FU, Ihsan AU, Zhang J. Antibody–Drug Conjugates: A Comprehensive Review. Mol Cancer Res 2019; 18:3-19. [DOI: 10.1158/1541-7786.mcr-19-0582] [Citation(s) in RCA: 248] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/22/2019] [Accepted: 10/22/2019] [Indexed: 11/16/2022]
|
69
|
Systematic Meta-Analysis Identifies Co-Expressed Kinases and GPCRs in Ovarian Cancer Tissues Revealing a Potential for Targeted Kinase Inhibitor Delivery. Pharmaceutics 2019; 11:pharmaceutics11090454. [PMID: 31480803 PMCID: PMC6781325 DOI: 10.3390/pharmaceutics11090454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/12/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022] Open
Abstract
The use of many anticancer drugs is problematic due to severe adverse effects. While the recent clinical launch of several kinase inhibitors led to tremendous progress, these targeted agents tend to be of non-specific nature within the kinase target class. Moreover, target mediated adverse effects limit the exploitation of some very promising kinase targets, including mitotic kinases. A future strategy will be the development of nanocarrier-based systems for the active delivery of kinase inhibitors using cancer specific surface receptors. The G-protein-coupled-receptors (GPCRs) represent the largest cell surface receptor family and some members are known to be frequently overexpressed in various cancer types. In the presented study, we used ovarian cancer tissues as an example to systematically identify concurrently overexpressed GPCRs and kinases. The rationale of this approach will guide the future design of nanoparticles, which will dock to GPCRs on cancer cells via specific ligands and deliver anticancer compounds after receptor mediated internalization. In addition to this, the approach is expected to be most effective by matching the inhibitor profiles of the delivered kinase inhibitors to the observed kinase gene expression profiles. We validated the suggested strategy in a meta-analysis, revealing overexpression of selected GPCRs and kinases in individual samples of a large ovarian cancer data set. The presented data demonstrate a large untapped potential for personalized cancer therapy using high-end targeted nanopharmaceuticals with kinase inhibitors.
Collapse
|
70
|
Yasunaga M. Antibody therapeutics and immunoregulation in cancer and autoimmune disease. Semin Cancer Biol 2019; 64:1-12. [PMID: 31181267 DOI: 10.1016/j.semcancer.2019.06.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/03/2019] [Indexed: 02/04/2023]
Abstract
Cancer and autoimmune disease are closely related, and many therapeutic antibodies are widely used in clinics for the treatment of both diseases. Among them, the anti-CD20 antibody has proven to be effective against both lymphoid malignancy and autoimmune disease. Moreover, immune checkpoint blockade using the anti-PD1/PD-L1/CTLA4 antibody has improved the prognosis of patients with refractory solid tumors. At the same time, however, over-enhancement of immunoreaction can induce autoimmune reaction. Although anti-TNF antibody therapies represent a breakthrough in the treatment of autoimmune diseases, optimal management is required to control the serious associated issues, including development and progression of cancer, and it is becoming more and more important to control the immunoreaction. In addition, next-generation antibody therapeutics such as antibody-drug conjugates and bispecific antibodies, are anticipated to treat uncontrolled cancer and autoimmune disease. IL-7R signaling plays an important role in the development and progression of both lymphoid malignancy and autoimmune disease. In addition, abnormal homing activity and steroid resistance caused by IL-7R signaling may worsen prognosis. Therefore, anti-IL-7R targeting antibody therapies that enable suppression of such pathophysiological status have the potential to be beneficial for the treatment of both diseases. In this review, we discuss current antibody therapeutics in cancer and autoimmune disease, and describe a new therapeutic strategy for immunoregulation including IL-7R targeting antibodies.
Collapse
Affiliation(s)
- Masahiro Yasunaga
- Division of Developmental Therapeutics, EPOC, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa-shi, Chiba, 277-8577, Japan.
| |
Collapse
|
71
|
Lin F, Chen L, Zhang H, Ching Ngai WS, Zeng X, Lin J, Chen PR. Bioorthogonal Prodrug–Antibody Conjugates for On-Target and On-Demand Chemotherapy. CCS CHEMISTRY 2019. [DOI: 10.31635/ccschem.019.20180038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Current antibody–drug conjugates (ADCs) suffer from low tissue penetration and significant side effects, largely due to the permanent linkage and/or premature release of cytotoxic payloads. Herein, we developed a prodrug–antibody conjugate (ProADC) strategy by conjugating a bioorthogonal-activatable prodrug with an antibody that allowed on-target release and on-demand activation of cytotoxic drugs at a tumor site. The bioorthogonal-caged prodrug exhibited an enhanced permeability into and on-demand activation within cancer cells, while the pH-sensitive ADC linker allowed on-target release of the anticancer agent. Together, the ProADCs showed enhanced tumor penetration and alleviated side effects for use as an on-target and on-demand chemotherapy agents.
Collapse
|
72
|
Duerr C, Friess W. Antibody-drug conjugates- stability and formulation. Eur J Pharm Biopharm 2019; 139:168-176. [DOI: 10.1016/j.ejpb.2019.03.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 01/01/2023]
|
73
|
Kiss K, Biri-Kovács B, Szabó R, Ranđelović I, Enyedi KN, Schlosser G, Orosz Á, Kapuvári B, Tóvári J, Mező G. Sequence modification of heptapeptide selected by phage display as homing device for HT-29 colon cancer cells to improve the anti-tumour activity of drug delivery systems. Eur J Med Chem 2019; 176:105-116. [PMID: 31100648 DOI: 10.1016/j.ejmech.2019.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 02/28/2019] [Accepted: 05/06/2019] [Indexed: 11/16/2022]
Abstract
Development of peptide-based conjugates for targeted tumour therapy is a current research topic providing new possibilities in cancer treatment. In this study, VHLGYAT heptapeptide selected by phage display technique for HT-29 human colon cancer was investigated as homing peptide for drug delivery. Daunomycin was conjugated to the N-terminus of the peptide directly or through Cathepsin B cleavable spacers. Conjugates showed moderate in vitro cytostatic effect. Therefore, sequence modifications were performed by Ala-scan and positional scanning resulting in conjugates with much higher bioactivity. Conjugates in which Gly was replaced by amino acids with bulky apolaric side chains provided the best efficacy. The influence of the cellular uptake, stability and drug release on the anti-tumour activity was investigated. It was found that mainly the difference in the cellular uptake of the conjugates generated the distinct effect on cell viability. One of the most efficient conjugate Dau = Aoa-LRRY-VHLFYAT-NH2 showed tumour growth inhibition on orthotopically developed HT-29 colon cancer in mice with negligible toxic side effect compared to the free drug. We also indicate that this sequence is not specific to HT-29 cells, but it has a remarkable effect on many other cancer cells. Nevertheless, the Phe-containing conjugate was more active in all cases compared to the conjugate with the parent sequence. The literature data suggested that this sequence is highly overlapped with peptides that recognize Hsp70 membrane bound protein overexpressed in many types of tumours.
Collapse
Affiliation(s)
- Krisztina Kiss
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, 1117, Budapest, Hungary; Institute of Chemistry, Eötvös L. University, 1117, Budapest, Hungary
| | - Beáta Biri-Kovács
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, 1117, Budapest, Hungary; Institute of Chemistry, Eötvös L. University, 1117, Budapest, Hungary
| | - Rita Szabó
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, 1117, Budapest, Hungary
| | - Ivan Ranđelović
- Department of Experimental Pharmacology, National Institute of Oncology, 1122, Budapest, Hungary
| | - Kata Nóra Enyedi
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, 1117, Budapest, Hungary; Institute of Chemistry, Eötvös L. University, 1117, Budapest, Hungary
| | - Gitta Schlosser
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, 1117, Budapest, Hungary; Institute of Chemistry, Eötvös L. University, 1117, Budapest, Hungary
| | - Ádám Orosz
- Institute of Biophysics and Radiation Biology, Semmelweis University, 1444, Budapest, Hungary
| | - Bence Kapuvári
- Department of Experimental Pharmacology, National Institute of Oncology, 1122, Budapest, Hungary
| | - József Tóvári
- Department of Experimental Pharmacology, National Institute of Oncology, 1122, Budapest, Hungary
| | - Gábor Mező
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, 1117, Budapest, Hungary; Institute of Chemistry, Eötvös L. University, 1117, Budapest, Hungary.
| |
Collapse
|
74
|
Rezhdo A, Islam M, Huang M, Van Deventer JA. Future prospects for noncanonical amino acids in biological therapeutics. Curr Opin Biotechnol 2019; 60:168-178. [PMID: 30974337 DOI: 10.1016/j.copbio.2019.02.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/22/2019] [Indexed: 12/12/2022]
Abstract
There is growing evidence that noncanonical amino acids (ncAAs) can be utilized in the creation of biological therapeutics ranging from protein conjugates to cell-based therapies. However, when does genetically encoding ncAAs yield biologics with unique properties compared to other approaches? In this review, we attempt to answer this question in the broader context of therapeutic development, emphasizing advances within the past two years. In several areas, ncAAs add valuable routes to therapeutically relevant entities, but application-specific needs ultimately determine whether ncAA-mediated or alternative solutions are preferred. Looking forward, using ncAAs to perform 'protein medicinal chemistry,' in which atomic-level changes to proteins dramatically enhance therapeutic properties, is a promising emerging area. Further upgrades to the performance of ncAA incorporation technologies will be essential to realizing the full potential of ncAAs in biological therapeutics.
Collapse
Affiliation(s)
- Arlinda Rezhdo
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, United States
| | - Mariha Islam
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, United States
| | - Manjie Huang
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, United States
| | - James A Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, United States; Biomedical Engineering Department, Tufts University, Medford, MA 02155, United States.
| |
Collapse
|
75
|
Dong W, Shi J, Yuan T, Qi B, Yu J, Dai J, He L. Antibody-drug conjugates of 7-ethyl-10-hydroxycamptothecin: Sacituzumab govitecan and labetuzumab govitecan. Eur J Med Chem 2019; 167:583-593. [DOI: 10.1016/j.ejmech.2019.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/27/2022]
|
76
|
Abstract
Antibodies are immunoglobulins that play essential roles in immune systems. All antibodies are glycoproteins that carry at least one or more conserved N-linked oligosaccharides (N-glycans) at the Fc domain. Many studies have demonstrated that both the presence and fine structures of the attached glycans can exert a profound impact on the biological functions and therapeutic efficacy of antibodies. However, antibodies usually exist as mixtures of heterogeneous glycoforms that are difficult to separate in pure glycoforms. Recent progress in glycoengineering has provided useful methods that enable production of glycan-defined and site-selectively modified antibodies for functional studies and for improved therapeutic efficacy. This review highlights major approaches in glycoengineering of antibodies with a focus on recent advances in three areas: glycoengineering through glycan biosynthetic pathway manipulation, glycoengineering through in vitro chemoenzymatic glycan remodeling, and glycoengineering of antibodies for site-specific antibody-drug conjugation.
Collapse
Affiliation(s)
- Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA; , , , ,
| | - Xin Tong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA; , , , ,
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA; , , , ,
| | - John P Giddens
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA; , , , ,
| | - Tiezheng Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA; , , , ,
| |
Collapse
|
77
|
Li C, Dong L, Kamali A, Sugimoto H, Abdul-Hadi K, Chen S, Abu-Yousif A, Qian MG. An LC/MS based method to quantify DNA adduct in tumor and organ tissues. Anal Biochem 2019; 568:1-6. [DOI: 10.1016/j.ab.2018.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 01/09/2023]
|
78
|
PDL-1 Antibody Drug Conjugate for Selective Chemo-Guided Immune Modulation of Cancer. Cancers (Basel) 2019; 11:cancers11020232. [PMID: 30781490 PMCID: PMC6406713 DOI: 10.3390/cancers11020232] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 12/31/2022] Open
Abstract
Targeting immune checkpoint molecules such as programmed death ligand-1 (PDL1) is an emerging strategy for anti-cancer therapy. However, transient expression of PDL1 and difficulty in tumor stroma penetration has limited the utility of anti-PDL1 therapy. To overcome these limitations, we report a new conjugate between the clinically approved PDL1 antibody (PDL1 AB) and drug Doxorubicin (Dox), named PDL1-Dox. We conjugated PDL1-Dox through a hydrazone linker containing a polyethylene glycol (PEG) spacer, which allows it to dissociate in a tumor environment and improves solubility. The purpose of using Dox is to disrupt the tumor extracellular environment so that PDL-1 antibody can penetrate the tumor core. PDL1-Dox demonstrates significant cell killing, disruption of tumor spheroid and induction of apoptosis in a breast cancer cell line. Significant release of IFN-γ suggests PDL1-Dox can upmodulate T cell activation. Optical imaging of dye conjugate supports the selective tumor targeting ability and core penetration of the construct.
Collapse
|
79
|
Seth PP, Tanowitz M, Bennett CF. Selective tissue targeting of synthetic nucleic acid drugs. J Clin Invest 2019; 129:915-925. [PMID: 30688661 DOI: 10.1172/jci125228] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Antisense oligonucleotides (ASOs) are chemically synthesized nucleic acid analogs designed to bind to RNA by Watson-Crick base pairing. Following binding to the targeted RNA, the ASO perturbs RNA function by promoting selective degradation of the targeted RNA, altering RNA intermediary metabolism, or disrupting function of the RNA. Most antisense drugs are chemically modified to enhance their pharmacological properties and for passive targeting of the tissues of therapeutic interest. Recent advances in selective tissue targeting have resulted in a newer generation of ASO drugs that are more potent and better tolerated than previous generations, spawning renewed interest in identifying selective ligands that enhance targeted delivery of ASOs to tissues.
Collapse
|
80
|
Liu H, Sun M, Liu Z, Kong C, Kong W, Ye J, Gong J, Huang DCS, Qian F. KRAS-enhanced macropinocytosis and reduced FcRn-mediated recycling sensitize pancreatic cancer to albumin-conjugated drugs. J Control Release 2019; 296:40-53. [PMID: 30653981 DOI: 10.1016/j.jconrel.2019.01.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 11/26/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a dominantly (~95%) KRAS-mutant cancer that has extremely poor prognosis, in part this is due to its strong intrinsic resistance towards almost all therapeutic agents. PDAC relies heavily on KRAS-transformed metabolism, including enhanced macropinocytosis and catabolism of extracellular albumin, to maintain its proliferation and progression. However, it has yet to be validated that whether such transformed metabolism could be exploited for the drug delivery to open therapeutic windows of cytotoxic agents in KRAS-mutant PDAC. In this study, we attempt to answer this question by focusing on the impact of two critical regulators of albumin catabolism, KRAS and the neonatal Fc receptor (FcRn), on the sensitivity of PDAC to doxorubicin (DOX, a model cytotoxic agent) and albumin-conjugated doxorubicin (DOX-ALB). Using cell lines and cell-derived xenografts with different KRAS genotypes and FcRn levels, we demonstrated that KRAS-enhanced macropinocytosis and reduced FcRn expression sensitize PDAC to DOX-ALB but not free DOX. In both in vitro and in vivo comparsion, the DOX-ALB demonstrated ~10 times enlarged therapeutic window compared with free DOX, in PDAC with KRAS mutation and reduced FcRn level, two events appear to occur simultaneously in the investigated PDAC. In summary, we conclude that albumin conjugation is an exploitable drug delivery strategy that significantly opens the therapeutic windows of otherwise undevelopable anti-cancer agents for KRAS-mutant PDAC therapy, and creates a new landscape for clinical evaluation and future translation of such compounds.
Collapse
Affiliation(s)
- Huiqin Liu
- School of Pharmaceutical Sciences and Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Mengnan Sun
- School of Pharmaceutical Sciences and Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Zhengsheng Liu
- School of Pharmaceutical Sciences and Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Chao Kong
- School of Pharmaceutical Sciences and Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Weijian Kong
- School of Pharmaceutical Sciences and Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Junxiao Ye
- School of Pharmaceutical Sciences and Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Jianan Gong
- Departments of Medical Biology, University of Melbourne, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - David C S Huang
- Departments of Medical Biology, University of Melbourne, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Feng Qian
- School of Pharmaceutical Sciences and Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
81
|
Tang F, LeBlanc ME, Wang W, Liang D, Chen P, Chou TH, Tian H, Li W. Anti-secretogranin III therapy of oxygen-induced retinopathy with optimal safety. Angiogenesis 2019; 22:369-382. [PMID: 30644010 DOI: 10.1007/s10456-019-09662-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/07/2019] [Indexed: 12/17/2022]
Abstract
Retinopathy of prematurity (ROP) with pathological retinal neovascularization is the most common cause of blindness in children. ROP is currently treated with laser therapy or cryotherapy, both of which may adversely affect the peripheral vision with limited efficacy. Owing to the susceptibility of the developing retina and vasculatures to pharmacological intervention, there is currently no approved drug therapy for ROP in preterm infants. Secretogranin III (Scg3) was recently discovered as a highly disease-restricted angiogenic factor, and a Scg3-neutralizing monoclonal antibody (mAb) was reported with high efficacy to alleviate oxygen-induced retinopathy (OIR) in mice, a surrogate model of ROP. Herein we independently investigated the efficacy of anti-Scg3 mAb in OIR mice and characterized its safety in neonatal mice. We developed a new Scg3-neutralizing mAb recognizing a distinct epitope and independently established the therapeutic activity of anti-Scg3 therapy to alleviate OIR-induced pathological retinal neovascularization in mice. Importantly, anti-Scg3 mAb showed no detectable adverse effects on electroretinography and developing retinal vasculature. Furthermore, systemic anti-Scg3 mAb induced no renal tubular injury or abnormality in kidney vessel development and body weight gain of neonatal mice. In contrast, anti-vascular endothelial growth factor drug aflibercept showed significant side effects in neonatal mice. These results suggest that anti-Scg3 mAb may have the safety and efficacy profiles required for ROP therapy.
Collapse
Affiliation(s)
- Fen Tang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Michelle E LeBlanc
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA
| | - Weiwen Wang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA
| | - Dan Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Ping Chen
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA
- Department of Ophthalmology, Renji Hospital of Shanghai Jiaotong University, Shanghai, China
| | - Tsung-Han Chou
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA
| | - Hong Tian
- Everglades Biopharma, LLC, Miami, FL, USA
| | - Wei Li
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA.
| |
Collapse
|
82
|
Secretogranin III as a novel target for the therapy of choroidal neovascularization. Exp Eye Res 2019; 181:120-126. [PMID: 30633921 DOI: 10.1016/j.exer.2019.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 12/20/2018] [Accepted: 01/07/2019] [Indexed: 01/08/2023]
Abstract
Wet age-related macular degeneration (AMD) with choroidal neovascularization (CNV) is a leading cause of vision loss in the elderly. The advent of anti-vascular endothelial growth factor (VEGF) drugs represents a major breakthrough in wet AMD therapy but with limited efficacy to improve visual acuity. Secretogranin III (Scg3, SgIII) was recently discovered as a novel angiogenic factor with VEGF-independent mechanisms. Scg3-neutralizing monoclonal antibody (mAb) was reported to alleviate pathological retinal neovascularization in oxygen-induced retinopathy mice and retinal vascular leakage in diabetic mice with high efficacy and disease selectivity. Herein we investigated whether Scg3 is a novel angiogenic target for CNV therapy in mouse models. We found that anti-Scg3 ML49.3 mAb inhibited Scg3-induced proliferation and Src phosphorylation in human retinal microvascular endothelial cells. Intravitreal injection of Scg3-neutralizing polyclonal antibodies (pAb) or mAb significantly attenuated laser-induced CNV leakage, CNV 3D volume, lesion area and vessel density. Furthermore, subcutaneous administration of Scg3-neutralizing pAb or mAb significantly prevented Matrigel-induced CNV. The efficacy of anti-Scg3 pAb or mAb was comparable to VEGF inhibitor aflibercept. These findings suggest that Scg3 plays an important role in CNV pathogenesis and that anti-Scg3 mAb efficiently ameliorates laser- or Matrigel-induced CNV.
Collapse
|
83
|
Nagai Y, Oitate M, Shiozawa H, Ando O. Comprehensive preclinical pharmacokinetic evaluations of trastuzumab deruxtecan (DS-8201a), a HER2-targeting antibody-drug conjugate, in cynomolgus monkeys. Xenobiotica 2019; 49:1086-1096. [PMID: 30351177 DOI: 10.1080/00498254.2018.1531158] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Trastuzumab deruxtecan (DS-8201a) is an antibody-drug conjugate (ADC) composed of a monoclonal antibody targeting human epidermal growth factor receptor 2 (HER2) conjugated to a topoisomerase I inhibitor (DXd) at a drug-to-antibody ratio (DAR) of 7-8. Here, we examined the pharmacokinetic (PK) profiles of DS-8201a and DXd in cynomolgus monkeys, a cross-reactive species. Following intravenous (iv) administration of DS-8201a, the linker was stable in plasma, and systemic DXd exposure was low. DXd was rapidly cleared following iv dosing. Biodistribution studies revealed that intact DS-8201a was present mostly in the blood without tissue-specific retention. The major pathway of excretion for DXd was the faecal route following iv administration of radiolabelled DS-8201a. The only detectable metabolite in the urine and faeces was unmetabolized DXd. DXd is a substrate of organic anion transporting polypeptides, P-gp, and breast cancer resistance protein. In conclusion, the stable linker in circulation and the high clearance of DXd upon release resulted in the low systemic exposure to DXd. Furthermore, the minimal tissue-specific retention and rapid excretion of DXd into faeces as its unmetabolized form with potentially limited impact on drug - drug interaction as a victim were also critical elements of the PK profile of DS-8201a.
Collapse
Affiliation(s)
- Yoko Nagai
- a Daiichi Sankyo Co., Ltd., Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd. Tokyo , Japan
| | - Masataka Oitate
- a Daiichi Sankyo Co., Ltd., Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd. Tokyo , Japan
| | - Hideyuki Shiozawa
- a Daiichi Sankyo Co., Ltd., Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd. Tokyo , Japan
| | - Osamu Ando
- a Daiichi Sankyo Co., Ltd., Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd. Tokyo , Japan
| |
Collapse
|
84
|
Kim H, Hwang D, Choi M, Lee S, Kang S, Lee Y, Kim S, Chung J, Jon S. Antibody-Assisted Delivery of a Peptide-Drug Conjugate for Targeted Cancer Therapy. Mol Pharm 2018; 16:165-172. [PMID: 30521347 DOI: 10.1021/acs.molpharmaceut.8b00924] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A number of cancer-targeting peptide-drug conjugates (PDCs) have been explored as alternatives to antibody-drug conjugates (ADCs) for targeted cancer therapy. However, the much shorter circulation half-life of PDCs compared with ADCs in vivo has limited their therapeutic value and thus their translation into the clinic, highlighting the need to develop new approaches for extending the half-life of PDCs. Here, we report a new strategy for targeted cancer therapy of a PDC based on a molecular hybrid between an antihapten antibody and a hapten-labeled PDC. An anticotinine antibody (Abcot) was used as a model antihapten antibody. The anticancer drug SN38 was linked to a cotinine-labeled aptide specific to extra domain B of fibronectin (cot-APTEDB), yielding the model PDC, cot-APTEDB-SN38. The cotinine-labeled PDC showed specific binding to and cytotoxicity toward an EDB-overexpressing human glioblastoma cell line (U87MG) and also formed a hybrid complex (HC) with Abcot in situ, designated HC[cot-APTEDB-SN38/Abcot]. In glioblastoma-bearing mice, in situ HC[cot-APTEDB-SN38/Abcot] significantly extended the circulation half-life of cot-APTEDB-SN38 in blood, and it enhanced accumulation and penetration within the tumor and, ultimately, inhibition of tumor growth. These findings suggest that the present platform holds promise as a new, targeted delivery strategy for PDCs in anticancer therapy.
Collapse
Affiliation(s)
- Hyungjun Kim
- KAIST Institute for the BioCentury, Department of Biological Sciences , Korea Advanced Institute of Science and Technology , 291 Daehak-ro , Daejeon 34141 , Republic of Korea
| | - Dobeen Hwang
- Department of Biochemistry and Molecular Biology , Seoul National University College of Medicine , 103 Daehak-ro , Seoul 03080 , Republic of Korea
| | - Minsuk Choi
- KAIST Institute for the BioCentury, Department of Biological Sciences , Korea Advanced Institute of Science and Technology , 291 Daehak-ro , Daejeon 34141 , Republic of Korea
| | - Soyoung Lee
- KAIST Institute for the BioCentury, Department of Biological Sciences , Korea Advanced Institute of Science and Technology , 291 Daehak-ro , Daejeon 34141 , Republic of Korea
| | - Sukmo Kang
- KAIST Institute for the BioCentury, Department of Biological Sciences , Korea Advanced Institute of Science and Technology , 291 Daehak-ro , Daejeon 34141 , Republic of Korea
| | - Yonghyun Lee
- KAIST Institute for the BioCentury, Department of Biological Sciences , Korea Advanced Institute of Science and Technology , 291 Daehak-ro , Daejeon 34141 , Republic of Korea
| | - Sunghyun Kim
- Center for Convergence Bioceramic Materials , Korea Institute of Ceramic Engineering and Technology , 202 Osongsaengmyeong 1-ro , Cheongju 28160 , Republic of Korea
| | - Junho Chung
- Department of Biochemistry and Molecular Biology , Seoul National University College of Medicine , 103 Daehak-ro , Seoul 03080 , Republic of Korea
| | - Sangyong Jon
- KAIST Institute for the BioCentury, Department of Biological Sciences , Korea Advanced Institute of Science and Technology , 291 Daehak-ro , Daejeon 34141 , Republic of Korea
| |
Collapse
|
85
|
Kashaw SK, Agarwal S, Mishra M, Sau S, Iyer AK. Molecular Docking Analysis of Caspase-3 Activators as Potential Anticancer Agents. Curr Comput Aided Drug Des 2018; 15:55-66. [DOI: 10.2174/1573409914666181015150731] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 08/13/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022]
Abstract
Introduction:
Caspase-3 plays a leading role in apoptosis and on activation, it cleaves many
protein substrates in cells and causes cell death. Since many chemotherapeutics are known to induce
apoptosis in cancer cells, promotion or activation of apoptosis via targeting apoptosis regulators has
been suggested as a promising strategy for anticancer drug discovery. In this paper, we studied the interaction
of 1,2,4-Oxadiazoles derivatives with anticancer drug target enzymes (PDB ID 3SRC).
Methods:
Molecular docking studies were performed on a series of 1,2,4-Oxadiazoles derivatives to
find out molecular arrangement and spatial requirements for their binding potential for caspase-3 enzyme
agonistic affinity to treat cancer. The Autodock 4.2 and GOLD 5.2 molecular modeling suites
were used for the molecular docking analysis to provide information regarding important drug receptor
interaction.
Results and Conclusion:
Both suites explained the spatial disposition of the drug with the active amino
acid in the ligand binding domain of the enzyme. The amino acid asparagine 273 (ASN 273) of target
has shown hydrogen bond interaction with the top ranked ligand.
Collapse
Affiliation(s)
- Sushil K. Kashaw
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Shivangi Agarwal
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Mitali Mishra
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Samaresh Sau
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, United States
| | - Arun K. Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, United States
| |
Collapse
|
86
|
Yousef S, Alsaab HO, Sau S, Iyer AK. Development of asialoglycoprotein receptor directed nanoparticles for selective delivery of curcumin derivative to hepatocellular carcinoma. Heliyon 2018; 4:e01071. [PMID: 30603704 PMCID: PMC6305692 DOI: 10.1016/j.heliyon.2018.e01071] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/11/2018] [Accepted: 12/17/2018] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular cellular carcinoma (HCC) is one of the most challenging liver cancer subtypes. Due to lack of cell surface biomarkers and highly metastatic nature, early detection and targeted therapy of HCC is an unmet need. Galactosamine (Gal) is among the few selective ligands used for targeting HCCs due to its high binding affinity to asialoglycoprotein receptors (ASGPRs) overexpressed in HCC. In the present work, we engineered nanoscale G4 polyamidoamine (PAMAM) dendrimers anchored to galactosamine and loaded with the potent anticancer curcumin derivative (CDF) as a platform for targeted drug delivery to HCC. In vivo targeting ability and bio-distribution of PAMAM-Gal were assessed via its labeling with the clinically used, highly contrast, near infrared (NIR) dye: S0456, with testing of the obtained conjugate in aggressive HCC xenograft model. Our results highlighted the targeted dendrimer PAMAM-Gal ability to achieve selective high cellular uptake via ASGPR mediated endocytosis and significantly enhance the delivery of CDF into the studied HCC cell lines. Cytotoxicity MTT assays in HCC cell lines, interestingly highlighted, the comparative high potency of CDF, where CDF was more potent as a chemotherapeutic anticancer small molecule than the currently in use Doxorubicin, Sorafenib and Cisplatin chemotherapeutic agents. In conclusion the proof-of-concept study using nanoscale PAMAM-Gal dendrimer has demonstrated its competency as an efficient delivery system for selective delivery of potent CDF for HCC anticancer therapy as well as HCC diagnosis via NIR imaging.
Collapse
Affiliation(s)
- Shaimaa Yousef
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Hashem O. Alsaab
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Samaresh Sau
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Arun K. Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
- Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
87
|
Antibody-drug conjugates (ADCs): Potent biopharmaceuticals to target solid and hematological cancers- an overview. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.08.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
88
|
Szijj PA, Bahou C, Chudasama V. Minireview: Addressing the retro-Michael instability of maleimide bioconjugates. DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 30:27-34. [PMID: 30553517 DOI: 10.1016/j.ddtec.2018.07.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/25/2018] [Accepted: 07/12/2018] [Indexed: 05/17/2023]
Abstract
Bioconjugation, the modification of biological macromolecules such as proteins, is an up and coming area in the field of chemical biology. Antibody-drug conjugates (ADCs), combining the antigen-selectivity of natural antibodies with the cytotoxic potency of small molecule drugs, are a powerful therapeutic technology. Four such constructs are currently on the market for cancer therapy. However, the conjugation methodology employed in these therapeutics is far from ideal. Herein we provide an overview on methods that attempt to increase the safety and efficacy of ADCs via "self-hydrolysing maleimides" or by improving the stability of maleimide-conjugates by other means. We find that some very promising reagents have been reported, however the mechanism by which each of these reagents acts is not clear, thus limiting rational design for some strategies.
Collapse
Affiliation(s)
- Peter A Szijj
- Department of Chemistry, University College London, London, UK
| | - Calise Bahou
- Department of Chemistry, University College London, London, UK
| | - Vijay Chudasama
- Department of Chemistry, University College London, London, UK.
| |
Collapse
|
89
|
Leal AD, Krishnamurthy A, Head L, Messersmith WA. Antibody drug conjugates under investigation in phase I and phase II clinical trials for gastrointestinal cancer. Expert Opin Investig Drugs 2018; 27:901-916. [PMID: 30359534 DOI: 10.1080/13543784.2018.1541085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Antibody drug conjugates (ADCs) represent a developing class of anticancer therapeutics which are designed to selectively deliver a cytotoxic payload to tumors, while limiting systemic toxicity to healthy tissues. There are several ADCs which are currently in various stages of clinical development for the treatment of gastrointestinal malignancies. AREAS COVERED We discuss the biologic rationale and review the clinical experience with ADCs in the treatment of gastrointestinal malignancies, summarizing the pre-clinical and phase I/II clinical trial data that have been completed or are ongoing. EXPERT OPINION While there have been significant advances in the development of ADCs since they were first introduced, several challenges remain. These challenges include (i) the selection of an ideal antigen target which is tumor specific and internalized upon binding, (ii) selection of an antibody which has high affinity for its antigen target and low immunogenicity, (iii) selection of a potent payload which is cytotoxic at sub-nanomolar concentrations, and (iv) optimal design of a linker to confer ADC stability with limited off-site toxicity. Efforts are ongoing to address these issues and innovate the ADC technology to improve the safety and efficacy of these agents.
Collapse
Affiliation(s)
- Alexis D Leal
- a Division of Medical Oncology , University of Colorado , Aurora , CO , USA
| | | | - Lia Head
- b Department of Internal Medicine , University of Colorado , Aurora , CO , USA
| | | |
Collapse
|
90
|
Alsaab HO, Sau S, Alzhrani RM, Cheriyan VT, Polin LA, Vaishampayan U, Rishi AK, Iyer AK. Tumor hypoxia directed multimodal nanotherapy for overcoming drug resistance in renal cell carcinoma and reprogramming macrophages. Biomaterials 2018; 183:280-294. [PMID: 30179778 PMCID: PMC6414719 DOI: 10.1016/j.biomaterials.2018.08.053] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 12/24/2022]
Abstract
Drug resistance is one of the significant clinical burden in renal cell carcinoma (RCC). The development of drug resistance is attributed to many factors, including impairment of apoptosis, elevation of carbonic anhydrase IX (CA IX, a marker of tumor hypoxia), and infiltration of tumorigenic immune cells. To alleviate the drug resistance, we have used Sorafenib (Sor) in combination with tumor hypoxia directed nanoparticle (NP) loaded with a new class of apoptosis inducer, CFM 4.16 (C4.16), namely CA IX-C4.16. The NP is designed to selectively deliver the payload to the hypoxic tumor (core), provoke superior cell death in parental (WT) and Everolimus-resistant (Evr-res) RCC and selectively downmodulate tumorigenic M2-macrophage. Copper-free 'click' chemistry was utilized for conjugating SMA-TPGS with Acetazolamide (ATZ, a CA IX-specific targeting ligand). The NP was further tagged with a clinically approved NIR dye (S0456) for evaluating hypoxic tumor core penetration and organ distribution. Imaging of tumor spheroid treated with NIR dye-labeled CA IX-SMA-TPGS revealed remarkable tumor core penetration that was modulated by CA IX-mediated targeting in hypoxic-A498 RCC cells. The significant cell killing effect with synergistic combination index (CI) of CA IX-C4.16 and Sor treatment suggests efficient reversal of Evr-resistance in A498 cells. The CA IX directed nanoplatform in combination with Sor has shown multiple benefits in overcoming drug resistance through (i) inhibition of p-AKT, (ii) upregulation of tumoricidal M1 macrophages resulting in induction of caspase 3/7 mediated apoptosis of Evr-res A498 cells in macrophage-RCC co-culturing condition, (iii) significant in vitro and in vivo Evr-res A498 tumor growth inhibition as compared to individual therapy, and (iv) untraceable liver and kidney toxicity in mice. Near-infrared (NIR) imaging of CA IX-SMA-TPGS-S0456 in Evr-res A498 RCC model exhibited significant accumulation of CA IX-oligomer in tumor core with >3-fold higher tumor uptake as compared to control. In conclusion, this proof-of-concept study demonstrates versatile tumor hypoxia directed nanoplatform that can work in synergy with existing drugs for reversing drug-resistance in RCC accompanied with re-education of tumor-associated macrophages, that could be applied universally for several hypoxic tumors.
Collapse
Affiliation(s)
- Hashem O Alsaab
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA; Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, 25671, Saudi Arabia
| | - Samaresh Sau
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA.
| | - Rami M Alzhrani
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA; Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, 25671, Saudi Arabia
| | | | - Lisa A Polin
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI, 48201, USA
| | - Ulka Vaishampayan
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Arun K Rishi
- John D. Dingell VA Medical Center, Detroit, MI, 48201, USA; Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI, 48201, USA.
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA; Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
91
|
Liu-Shin LPY, Fung A, Malhotra A, Ratnaswamy G. Evidence of disulfide bond scrambling during production of an antibody-drug conjugate. MAbs 2018; 10:1190-1199. [PMID: 30339473 DOI: 10.1080/19420862.2018.1521128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Antibody-drug conjugates (ADCs) that are formed using thiol-maleimide chemistry are commonly produced by reactions that occur at or above neutral pHs. Alkaline environments can promote disulfide bond scrambling, and may result in the reconfiguration of interchain disulfide bonds in IgG antibodies, particularly in the IgG2 and IgG4 subclasses. IgG2-A and IgG2-B antibodies generated under basic conditions yielded ADCs with comparable average drug-to-antibody ratios and conjugate distributions. In contrast, the antibody disulfide configuration affected the distribution of ADCs generated under acidic conditions. The similarities of the ADCs derived from alkaline reactions were attributed to the scrambling of interchain disulfide bonds during the partial reduction step, where conversion of the IgG2-A isoform to the IgG2-B isoform was favored.
Collapse
Affiliation(s)
- Lily Pei-Yao Liu-Shin
- a Analytical and Formulation Development , Agensys, Inc., an affiliate of Astellas, Inc , Santa Monica , CA , USA.,b Department of Biochemistry and Molecular Biology , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Adam Fung
- a Analytical and Formulation Development , Agensys, Inc., an affiliate of Astellas, Inc , Santa Monica , CA , USA
| | - Arun Malhotra
- b Department of Biochemistry and Molecular Biology , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Gayathri Ratnaswamy
- a Analytical and Formulation Development , Agensys, Inc., an affiliate of Astellas, Inc , Santa Monica , CA , USA
| |
Collapse
|
92
|
Resemann A, Liu-Shin L, Tremintin G, Malhotra A, Fung A, Wang F, Ratnaswamy G, Suckau D. Rapid, automated characterization of disulfide bond scrambling and IgG2 isoform determination. MAbs 2018; 10:1200-1213. [PMID: 30277844 PMCID: PMC6284591 DOI: 10.1080/19420862.2018.1512328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human antibodies of the IgG2 subclass exhibit complex inter-chain disulfide bonding patterns that result in three structures, namely A, A/B, and B. In therapeutic applications, the distribution of disulfide isoforms is a critical product quality attribute because each configuration affects higher order structure, stability, isoelectric point, and antigen binding. The current standard for quantification of IgG2 disulfide isoform distribution is based on chromatographic or electrophoretic techniques that require additional characterization using mass spectrometry (MS)-based methods to confirm disulfide linkages. Detailed characterization of the IgG2 disulfide linkages often involve MS/MS approaches that include electrospray ionization or electron-transfer dissociation, and method optimization is often cumbersome due to the large size and heterogeneity of the disulfide-bonded peptides. As reported here, we developed a rapid LC-MALDI-TOF/TOF workflow that can both identify the IgG2 disulfide linkages and provide a semi-quantitative assessment of the distribution of the disulfide isoforms. We established signature disulfide-bonded IgG2 hinge peptides that correspond to the A, A/B, and B disulfide isoforms and can be applied to the fast classification of IgG2 isoforms in heterogeneous mixtures.
Collapse
Affiliation(s)
- Anja Resemann
- a BioPharma Solutions R&D , BALS, Bruker Daltonik , Bremen , Germany
| | - Lily Liu-Shin
- b Analytical and Formulation Development, Agensys, Inc., an affiliate of Astellas , Santa Monica , CA , USA.,c Department of Biochemistry and Molecular Biology , University of Miami Miller School of Medicine , Miami , FL , USA
| | | | - Arun Malhotra
- c Department of Biochemistry and Molecular Biology , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Adam Fung
- b Analytical and Formulation Development, Agensys, Inc., an affiliate of Astellas , Santa Monica , CA , USA
| | - Fang Wang
- b Analytical and Formulation Development, Agensys, Inc., an affiliate of Astellas , Santa Monica , CA , USA
| | - Gayathri Ratnaswamy
- b Analytical and Formulation Development, Agensys, Inc., an affiliate of Astellas , Santa Monica , CA , USA
| | - Detlev Suckau
- a BioPharma Solutions R&D , BALS, Bruker Daltonik , Bremen , Germany
| |
Collapse
|
93
|
Liu X, Wang C, Liu Z. Protein-Engineered Biomaterials for Cancer Theranostics. Adv Healthc Mater 2018; 7:e1800913. [PMID: 30260583 DOI: 10.1002/adhm.201800913] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/19/2018] [Indexed: 12/18/2022]
Abstract
Proteins are an important class of biomaterials promising a variety of applications such as drug delivery, and imaging or therapy, owing to their biodegradability, biocompatibility, as well as inherent biological activities acting as enzymes, recognizing molecules, or therapeutics by themselves. Over the few past decades, different types of proteins with desired properties have been widely explored for biomedical applications. Many therapeutic proteins have now entered clinical use. This review therefore summarizes various strategies in the engineering of biomaterials for delivery of therapeutic proteins, as well as the recent development of protein-based biomaterials for cancer theranostics.
Collapse
Affiliation(s)
- Xiaowen Liu
- Pharmacology; Department of Basic Medical Sciences; Faculty of Medical Science; Jinan University; Guangzhou Guangdong 510632 China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM); Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices; Soochow University; Suzhou Jiangsu 215123 China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM); Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices; Soochow University; Suzhou Jiangsu 215123 China
| |
Collapse
|
94
|
Datta-Mannan A, Choi H, Stokell D, Tang J, Murphy A, Wrobleski A, Feng Y. The Properties of Cysteine-Conjugated Antibody-Drug Conjugates Are Impacted by the IgG Subclass. AAPS JOURNAL 2018; 20:103. [DOI: 10.1208/s12248-018-0263-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/06/2018] [Indexed: 01/11/2023]
|
95
|
Wong OK, Tran TT, Ho WH, Casas MG, Au M, Bateman M, Lindquist KC, Rajpal A, Shelton DL, Strop P, Liu SH. RN765C, a low affinity EGFR antibody drug conjugate with potent anti-tumor activity in preclinical solid tumor models. Oncotarget 2018; 9:33446-33458. [PMID: 30323890 PMCID: PMC6173368 DOI: 10.18632/oncotarget.26002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is a clinically validated target and often overexpressed in some solid tumors. Both EGFR tyrosine kinase inhibitors and ligand-blocking antibodies have been approved for treatment of NSCLC, head and neck cancers and colorectal cancers. However, clinical response is limited and often accompanied by significant toxicities due to normal tissue expression. To improve the effectiveness of targeting EGFR while minimizing the toxicities on normal tissues, we developed a low-affinity anti-EGFR antibody drug conjugate (ADC), RN765C. Potent in vitro cytotoxicity of RN765C, with nanomolar to subnanomolar EC50, was observed on a panel of cancer cell lines expressing moderate to high level of EGFR. In contrast, RN765C was less effective in killing normal human keratinocytes, presumably due to its lower receptor expression. Mechanistically, RN765C has multiple modes of action: inducing payload mediated mitotic arrest and cell death, blocking EGFR pathway signal and mediating antibody dependent cell cytotoxicity. In preclinical studies, a single dose of RN765C at 1.5-3 mg/kg was generally sufficient to induce tumor regression in multiple cell line and patient-derived xenograft models, including those that are resistant to EGFR-directed tyrosine kinase inhibitors. Our data support further investigation of RN765C in the clinic to treat EGFR expressing solid tumors.
Collapse
Affiliation(s)
- Oi Kwan Wong
- Oncology R&D, Cancer Immunology Discovery Unit, Pfizer Inc., South San Francisco, CA, USA.,Allogene Therapeutics, South San Francisco, CA, USA
| | - Thomas-Toan Tran
- Oncology R&D, Cancer Immunology Discovery Unit, Pfizer Inc., South San Francisco, CA, USA.,NGM Biopharmaceuticals, South San Francisco, CA, USA
| | - Wei-Hsien Ho
- Oncology R&D, Cancer Immunology Discovery Unit, Pfizer Inc., South San Francisco, CA, USA.,Alector Inc., South San Francisco, CA, USA
| | - Meritxell Galindo Casas
- Oncology R&D, Cancer Immunology Discovery Unit, Pfizer Inc., South San Francisco, CA, USA.,acib GmbH Graz, Graz, Austria
| | - Melinda Au
- Oncology R&D, Cancer Immunology Discovery Unit, Pfizer Inc., South San Francisco, CA, USA.,Allogene Therapeutics, South San Francisco, CA, USA
| | - Marjorie Bateman
- Oncology R&D, Cancer Immunology Discovery Unit, Pfizer Inc., South San Francisco, CA, USA
| | - Kevin C Lindquist
- Oncology R&D, Cancer Immunology Discovery Unit, Pfizer Inc., South San Francisco, CA, USA
| | - Arvind Rajpal
- Oncology R&D, Cancer Immunology Discovery Unit, Pfizer Inc., South San Francisco, CA, USA.,Bristol-Myers Squibb, Redwood City, CA, USA
| | - David L Shelton
- Oncology R&D, Cancer Immunology Discovery Unit, Pfizer Inc., South San Francisco, CA, USA
| | - Pavel Strop
- Oncology R&D, Cancer Immunology Discovery Unit, Pfizer Inc., South San Francisco, CA, USA.,Bristol-Myers Squibb, Redwood City, CA, USA
| | - Shu-Hui Liu
- Oncology R&D, Cancer Immunology Discovery Unit, Pfizer Inc., South San Francisco, CA, USA.,Abmart Inc., Redwood City, CA, USA
| |
Collapse
|
96
|
Deweid L, Neureiter L, Englert S, Schneider H, Deweid J, Yanakieva D, Sturm J, Bitsch S, Christmann A, Avrutina O, Fuchsbauer HL, Kolmar H. Directed Evolution of a Bond-Forming Enzyme: Ultrahigh-Throughput Screening of Microbial Transglutaminase Using Yeast Surface Display. Chemistry 2018; 24:15195-15200. [PMID: 30047596 DOI: 10.1002/chem.201803485] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Indexed: 12/12/2022]
Abstract
Microbial transglutaminase from Streptomyces mobaraensis (mTG) has emerged as a useful biotechnological tool due to its ability to crosslink a side chain of glutamine and primary amines. To date, the substrate specificity of mTG is not fully understood, which poses an obvious challenge when mTG is used to address novel targets. To that end, a viable strategy providing an access to tailor-made transglutaminases is required. This work reports an ultrahigh-throughput screening approach based on yeast surface display and fluorescence-activated cell sorting (FACS) that enabled the evolution of microbial transglutaminase towards enhanced activity. Five rounds of FACS screening followed by recombinant expression of the most potent variants in E. coli yielded variants that possessed, compared to the wild type enzyme, improved enzymatic performance and labeling behavior upon conjugation with an engineered therapeutic anti-HER2 antibody. This robust and generally applicable platform enables tailoring of the catalytic efficiency of mTG.
Collapse
Affiliation(s)
- Lukas Deweid
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Lara Neureiter
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Simon Englert
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Hendrik Schneider
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Jakob Deweid
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Desislava Yanakieva
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Janna Sturm
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Sebastian Bitsch
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Andreas Christmann
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Olga Avrutina
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Hans-Lothar Fuchsbauer
- Fachbereich Chemie- und Biotechnologie, Hochschule Darmstadt, Stephanstraße 7, 64295, Darmstadt, Germany
| | - Harald Kolmar
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| |
Collapse
|
97
|
Fu Y, Ho M. DNA damaging agent-based antibody-drug conjugates for cancer therapy. Antib Ther 2018; 1:33-43. [PMID: 30294716 PMCID: PMC6161754 DOI: 10.1093/abt/tby007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/15/2018] [Accepted: 08/27/2018] [Indexed: 01/02/2023] Open
Abstract
Currently, four antibody-drug conjugates (ADCs) are approved by the Food and Drug Administration or the European Medicine Agency to treat cancer patients. More than 60 ADCs are in clinical development for cancer therapy. More than 60% of ADCs in clinical trials employ microtubule inhibitors as their payloads. A better understanding of payloads other than microtubule inhibitors, especially DNA-damaging agents, is important for further development of ADCs. In this review, we highlight an emerging trend of using DNA-damaging agents as payloads for ADCs. This review summarizes recent advances in our understanding gained from ongoing clinical studies; it will help to define the utility of DNA-damaging payloads for ADCs as cancer therapeutics. Future directions of the development of ADCs are also discussed, focusing on targeting drug resistance and combination treatment with immunotherapy.
Collapse
Affiliation(s)
- Ying Fu
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD, USA
| | - Mitchell Ho
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
98
|
Theunissen JW, Cai AG, Bhatti MM, Cooper AB, Avery AD, Dorfman R, Guelman S, Levashova Z, Migone TS. Treating Tissue Factor-Positive Cancers with Antibody-Drug Conjugates That Do Not Affect Blood Clotting. Mol Cancer Ther 2018; 17:2412-2426. [PMID: 30126944 DOI: 10.1158/1535-7163.mct-18-0471] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/21/2018] [Accepted: 08/14/2018] [Indexed: 11/16/2022]
Abstract
The primary function of tissue factor (TF) resides in the vasculature as a cofactor of blood clotting; however, multiple solid tumors aberrantly express this transmembrane receptor on the cell surface. Here, we developed anti-TF antibody-drug conjugates (ADC) that did not interfere with the coagulation cascade and benchmarked them against previously developed anti-TF ADCs. After screening an affinity-matured antibody panel of diverse paratopes and affinities, we identified one primary paratope family that did not inhibit conversion of Factor X (FX) to activated Factor X (FXa) and did not affect conversion of prothrombin to thrombin. The rest of the antibody panel and previously developed anti-TF antibodies were found to perturb coagulation to varying degrees. To compare the anticancer activity of coagulation-inert and -inhibitory antibodies as ADCs, a selection of antibodies was conjugated to the prototypic cytotoxic agent monomethyl auristatin E (MMAE) through a protease-cleavable linker. The coagulation-inert and -inhibitory anti-TF ADCs both killed cancer cells effectively. Importantly, the coagulation-inert ADCs were as efficacious as tisotumab vedotin, a clinical stage ADC that affected blood clotting, including in patient-derived xenografts from three solid tumor indications with a need for new therapeutic treatments-squamous cell carcinoma of the head and neck (SCCHN), ovarian, and gastric adenocarcinoma. Furthermore, a subset of the anti-TF antibodies could also be considered for the treatment of other diseases associated with upregulation of membranous TF expression, such as macular degeneration. Mol Cancer Ther; 17(11); 2412-26. ©2018 AACR.
Collapse
Affiliation(s)
| | - Allen G Cai
- Iconic Therapeutics, South San Francisco, California
| | | | | | | | - Ryan Dorfman
- Haematologic Technologies, Essex Junction, Vermont
| | | | | | | |
Collapse
|
99
|
Wang Y, Zhang X, Fan J, Chen W, Luan J, Nan Y, Wang S, Chen Q, Zhang Y, Wu Y, Ju D. Activating Autophagy Enhanced the Antitumor Effect of Antibody Drug Conjugates Rituximab-Monomethyl Auristatin E. Front Immunol 2018; 9:1799. [PMID: 30123222 PMCID: PMC6085421 DOI: 10.3389/fimmu.2018.01799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/20/2018] [Indexed: 11/30/2022] Open
Abstract
Background Antibody drug conjugate (ADC) showed potent therapeutic efficacy in several types of cancers. The role of autophagy in antitumor effects of ADC remains unclear. Methods In this study, the ADC, Rituximab-monomethyl auristatin E (MMAE) with a Valine–Citrulline cleavable linker, was designed to investigate its therapeutic efficacy against non-Hodgkin lymphoma (NHL) as well as the underlying mechanisms. Methylthiazolyldiphenyl-tetrazolium bromide (MTT) was used to detect growth inhibition in B-cell lymphoma cell lines, Ramos and Daudi cells, which were treated by Rituximab-MMAE alone or combined with autophagy conditioner. Apoptosis was detected by flow cytometry and immunohistochemistry, and apoptosis inhibitor was employed to discover the relationship between autophagy and apoptosis during the Rituximab-MMAE treatment. Autophagy was determined by three standard techniques which included confocal microscope, transmission electron microscope, and western blots. Ramos xenograft tumors in BALB/c nude mice were established to investigate the antitumor effect of combination use of Rituximab-MMAE and autophagy conditioner in B-NHL therapy. Results Our results showed that Rituximab-MMAE elicited caspase-3-dependent apoptosis in NHL cells and exhibited potent therapeutic efficacy in vivo. Autophagy, which was characterized by upregulated light chain 3-II expression, and accumulation of autophagosomes, was triggered during the Rituximab-MMAE treatment. Meanwhile, inactivation of Akt/mTOR pathway was shown to be involved in the autophagy triggered by Rituximab-MMAE, indicating a probable mechanism of the ADC-initiated autophagy. Importantly, inhibition of autophagy by chloroquine suppressed the Rituximab-MMAE-induced apoptosis, while activating autophagy by rapamycin significantly enhanced the therapeutic effect of Rituximab-MMAE both in vitro and in vivo. Conclusion Our data elucidated the critical relationship between autophagy and apoptosis in Rituximab-MMAE-based therapy and highlighted the potential approach for NHL therapy by combined administration of the ADC and autophagy activator.
Collapse
Affiliation(s)
- Yichen Wang
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Xuyao Zhang
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiajun Fan
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Wei Chen
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Jingyun Luan
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Yanyang Nan
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Shaofei Wang
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Qicheng Chen
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Yujie Zhang
- Zhejiang Teruisi Pharmaceutical Co. Ltd., Huzhou, Zhejiang, China
| | - Youling Wu
- Zhejiang Teruisi Pharmaceutical Co. Ltd., Huzhou, Zhejiang, China
| | - Dianwen Ju
- Department of Microbiological and Biochemical Pharmacy, The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
100
|
Sau S, Iyer AK. Immunotherapy and molecular role of T-cell in PD-1 antibody treated resectable lung cancer patients. J Thorac Dis 2018; 10:4682-4685. [PMID: 30233838 DOI: 10.21037/jtd.2018.07.66] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Samaresh Sau
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.,Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI, USA
| |
Collapse
|