51
|
Ashkar A, Sosnik A, Davidovich-Pinhas M. Structured edible lipid-based particle systems for oral drug-delivery. Biotechnol Adv 2021; 54:107789. [PMID: 34186162 DOI: 10.1016/j.biotechadv.2021.107789] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/12/2021] [Accepted: 06/23/2021] [Indexed: 12/18/2022]
Abstract
Oral administration is the most popular and patient-compliant route for drug delivery, though it raises great challenges due to the involvement of the gastro-intestine (GI) system and the drug bioavailability. Drug bioavailability is directly related to its ability to dissolve, transport and/or absorb through the physiological environment. A great number of drugs are characterized with low water solubility due to their hydrophobic nature, thus limiting their oral bioavailability and clinical use. Therefore, new strategies aiming to provide a protective shell through the GI system and improve drug solubility and permeability in the intestine were developed to overcome this limitation. Lipid-based systems have been proposed as good candidates for such a task owing to their hydrophobic nature which allows high drug loading, drug micellization ability during intestinal digestion due to the lipid content, and the vehicle physical protective environment. The use of edible lipids with high biocompatibility paves the bench-to-bedside translation. Four main types of structured lipid-based drug delivery systems differing in the physical state of the lipid phase have been described in the literature, namely emulsions, solid lipid nanoparticles, nanostructured lipid carriers, and oleogel-based particles. The current review provides a comprehensive overview of the different structured edible lipid-based oral delivery systems investigated up to date and emphasizes the contribution of each system component to the delivery performance, and the oral delivery path of lipids.
Collapse
Affiliation(s)
- Areen Ashkar
- Laboratory of Lipids and Soft Matter, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Maya Davidovich-Pinhas
- Laboratory of Lipids and Soft Matter, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel; Russell-Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel..
| |
Collapse
|
52
|
Okur NÜ, Siafaka PI, Gökçe EH. Challenges in Oral Drug Delivery and Applications of Lipid Nanoparticles as Potent Oral Drug Carriers for Managing Cardiovascular Risk Factors. Curr Pharm Biotechnol 2021; 22:892-905. [PMID: 32753006 DOI: 10.2174/1389201021666200804155535] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/25/2020] [Accepted: 07/07/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND The oral application of drugs is the most popular route through which the systemic effect can be achieved. Nevertheless, oral administration is limited by difficulties related to the physicochemical properties of the drug molecule, including low aqueous solubility, instability, low permeability, and rapid metabolism, all of which result in low and irregular oral bioavailability. OBJECTIVE The enhancement of oral bioavailability of drug molecules with such properties could lead to extreme complications in drug preparations. Oral lipid-based nanoparticles seem to possess extensive advantages due to their ability to increase the solubility, simplifying intestinal absorption and decrease or eradicate the effect of food on the absorption of low soluble, lipophilic drugs and therefore improving the oral bioavailability. METHODS The present review provides a summary of the general theory of lipid-based nanoparticles, their preparation methods, as well as their oral applications. Moreover, oral drug delivery challenges are discussed. RESULTS According to this review, the most frequent types of lipid-based nanoparticle, the solid lipid nanoparticles and nanostructured lipid carriers are potent oral carriers due to their ability to penetrate the oral drug adsorption barriers. Moreover, such lipid nanoparticles can be beneficial drug carriers against cardiovascular risk disorders as diabetes, hypertension, etc. Conclusion: In this review, the most current and promising studies involving Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as oral drug carriers are reported aiming to assist researchers who focus their research on lipid-based nanoparticles.
Collapse
Affiliation(s)
- Neslihan Ü Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Panoraia I Siafaka
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evren H Gökçe
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
53
|
Mundaca‐Uribe R, Karshalev E, Esteban‐Fernández de Ávila B, Wei X, Nguyen B, Litvan I, Fang RH, Zhang L, Wang J. A Microstirring Pill Enhances Bioavailability of Orally Administered Drugs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100389. [PMID: 34194949 PMCID: PMC8224427 DOI: 10.1002/advs.202100389] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/10/2021] [Indexed: 05/15/2023]
Abstract
Majority of drugs are administered orally, yet their efficient absorption is often difficult to achieve, with a low dose fraction reaching the blood compartment. Here, a microstirring pill technology is reported with built-in mixing capability for oral drug delivery that greatly enhances bioavailability of its therapeutic payload. Embedding microscopic stirrers into a pill matrix enables faster disintegration and dissolution, leading to improved release profiles of three widely used model drugs, aspirin, levodopa, and acetaminophen, without compromising their loading. Unlike recently developed drug-carrying nanomotors, drug molecules are not associated with the microstirrers, and hence there is no limitation on the loading capacity. These embedded microstirrers are fabricated through the asymmetric coating of titanium dioxide thin film onto magnesium microparticles. In vitro tests illustrate that the embedded microstirrers lead to substantial enhancement of local fluid transport. In vivo studies using murine and porcine models demonstrate that the localized stirring capability of microstirrers leads to enhanced bioavailability of drug payloads. Such improvements are of considerable importance in clinical scenarios where fast absorption and high bioavailability of therapeutics are critical. The encouraging results obtained in porcine model suggest that the microstirring pill technology has translational potential and can be developed toward practical biomedical applications.
Collapse
Affiliation(s)
- Rodolfo Mundaca‐Uribe
- Department of Nanoengineering and Chemical Engineering ProgramUniversity of California San DiegoLa JollaCA92093USA
| | - Emil Karshalev
- Department of Nanoengineering and Chemical Engineering ProgramUniversity of California San DiegoLa JollaCA92093USA
| | | | - Xiaoli Wei
- Department of Nanoengineering and Chemical Engineering ProgramUniversity of California San DiegoLa JollaCA92093USA
| | - Bryan Nguyen
- Department of Nanoengineering and Chemical Engineering ProgramUniversity of California San DiegoLa JollaCA92093USA
| | - Irene Litvan
- Department of NeurosciencesUniversity of California San DiegoLa JollaCA92093USA
| | - Ronnie H. Fang
- Department of Nanoengineering and Chemical Engineering ProgramUniversity of California San DiegoLa JollaCA92093USA
| | - Liangfang Zhang
- Department of Nanoengineering and Chemical Engineering ProgramUniversity of California San DiegoLa JollaCA92093USA
| | - Joseph Wang
- Department of Nanoengineering and Chemical Engineering ProgramUniversity of California San DiegoLa JollaCA92093USA
| |
Collapse
|
54
|
Phytochemical mediated synthesis of silver nanoparticles and their antibacterial activity. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04641-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
AbstractIn this present work, we described a bio-reduction method for the generation of silver nanoparticles (AgNPs) using aqueous leaf extract of Micrargeria wightii (M. wightii), which is a gifted alternative to other physicochemical routes. The prepared AgNPs were characterized by UV–visible spectroscopy (UV–vis), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray diffraction (X-RD), Transmission Electron Microscopy (TEM) with EDX and Dynamic light scattering (DLS). UV–visible spectrum showed a characteristic absorption peak at 440 nm of synthesized AgNPs. FT-IR analysis confirmed the existence of plant metabolites, which are responsible for the reduction of Ag (I) ions into Ag (0) NPs. X-RD pattern studies confirm the presence of the pure face-centered cubiccrystalline nature of Ag. Energy-dispersive X-ray (E-DX) spectrum showed the elemental composition of synthesized nanoparticles. Furthermore, TEM images confirm the formation of spherical shaped nano-silver particles with sizes ranging from 30 to 70 nm and supported by particle size analyzer, Dynamic Light Scattering (DLS). Thus, the present investigation provides an easy, eco-friendly and straightforward route for the synthesis of the antibacterial agent against Bacillus subtilis subtilis and Pseudomonas aeruginosa, with 15 and 13 mm zone of inhibition (ZOI) respectively.
Collapse
|
55
|
Liu CP, Chen ZD, Ye ZY, He DY, Dang Y, Li ZW, Wang L, Ren M, Fan ZJ, Liu HX. Therapeutic Applications of Functional Nanomaterials for Prostatitis. Front Pharmacol 2021; 12:685465. [PMID: 34140892 PMCID: PMC8205439 DOI: 10.3389/fphar.2021.685465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/10/2021] [Indexed: 01/02/2023] Open
Abstract
Prostatitis is a common disease in adult males, with characteristics of a poor treatment response and easy recurrence, which seriously affects the patient's quality of life. The prostate is located deep in the pelvic cavity, and thus a traditional infusion or other treatment methods are unable to easily act directly on the prostate, leading to poor therapeutic effects. Therefore, the development of new diagnostic and treatment strategies has become a research hotspot in the field of prostatitis treatment. In recent years, nanomaterials have been widely used in the diagnosis and treatment of various infectious diseases. Nanotechnology is a promising tool for 1) the accurate diagnosis of diseases; 2) improving the targeting of drug delivery systems; 3) intelligent, controlled drug release; and 4) multimode collaborative treatment, which is expected to be applied in the diagnosis and treatment of prostatitis. Nanotechnology is attracting attention in the diagnosis, prevention and treatment of prostatitis. However, as a new research area, systematic reviews on the application of nanomaterials in the diagnosis and treatment of prostatitis are still lacking. In this mini-review, we will highlight the treatment approaches for and challenges associated with prostatitis and describe the advantages of functional nanoparticles in improving treatment effectiveness and overcoming side effects.
Collapse
Affiliation(s)
- Chun-Ping Liu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zi-De Chen
- Department of Interventional Radiology, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, South China University of Technology, Guangzhou, China
| | - Zi-Yan Ye
- Department of Interventional Radiology, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, South China University of Technology, Guangzhou, China
| | - Dong-Yue He
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Dang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhe-Wei Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Lei Wang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Miao Ren
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhi-Jin Fan
- Guangdong Provincial People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hong-Xing Liu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
56
|
Liu CP, Chen ZD, Ye ZY, He DY, Dang Y, Li ZW, Wang L, Ren M, Fan ZJ, Liu HX. Therapeutic Applications of Functional Nanomaterials for Prostatitis. Front Pharmacol 2021. [DOI: 10.3389/fphar.2021.685465
expr 881861845 + 830625731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Prostatitis is a common disease in adult males, with characteristics of a poor treatment response and easy recurrence, which seriously affects the patient’s quality of life. The prostate is located deep in the pelvic cavity, and thus a traditional infusion or other treatment methods are unable to easily act directly on the prostate, leading to poor therapeutic effects. Therefore, the development of new diagnostic and treatment strategies has become a research hotspot in the field of prostatitis treatment. In recent years, nanomaterials have been widely used in the diagnosis and treatment of various infectious diseases. Nanotechnology is a promising tool for 1) the accurate diagnosis of diseases; 2) improving the targeting of drug delivery systems; 3) intelligent, controlled drug release; and 4) multimode collaborative treatment, which is expected to be applied in the diagnosis and treatment of prostatitis. Nanotechnology is attracting attention in the diagnosis, prevention and treatment of prostatitis. However, as a new research area, systematic reviews on the application of nanomaterials in the diagnosis and treatment of prostatitis are still lacking. In this mini-review, we will highlight the treatment approaches for and challenges associated with prostatitis and describe the advantages of functional nanoparticles in improving treatment effectiveness and overcoming side effects.
Collapse
|
57
|
Zhu FD, Hu YJ, Yu L, Zhou XG, Wu JM, Tang Y, Qin DL, Fan QZ, Wu AG. Nanoparticles: A Hope for the Treatment of Inflammation in CNS. Front Pharmacol 2021; 12:683935. [PMID: 34122112 PMCID: PMC8187807 DOI: 10.3389/fphar.2021.683935] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation, an inflammatory response within the central nervous system (CNS), is a main hallmark of common neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS), among others. The over-activated microglia release pro-inflammatory cytokines, which induces neuronal death and accelerates neurodegeneration. Therefore, inhibition of microglia over-activation and microglia-mediated neuroinflammation has been a promising strategy for the treatment of neurodegenerative diseases. Many drugs have shown promising therapeutic effects on microglia and inflammation. However, the blood–brain barrier (BBB)—a natural barrier preventing brain tissue from contact with harmful plasma components—seriously hinders drug delivery to the microglial cells in CNS. As an emerging useful therapeutic tool in CNS-related diseases, nanoparticles (NPs) have been widely applied in biomedical fields for use in diagnosis, biosensing and drug delivery. Recently, many NPs have been reported to be useful vehicles for anti-inflammatory drugs across the BBB to inhibit the over-activation of microglia and neuroinflammation. Therefore, NPs with good biodegradability and biocompatibility have the potential to be developed as an effective and minimally invasive carrier to help other drugs cross the BBB or as a therapeutic agent for the treatment of neuroinflammation-mediated neurodegenerative diseases. In this review, we summarized various nanoparticles applied in CNS, and their mechanisms and effects in the modulation of inflammation responses in neurodegenerative diseases, providing insights and suggestions for the use of NPs in the treatment of neuroinflammation-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Feng-Dan Zhu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yu-Jiao Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Anesthesia, Southwest Medical University, Luzhou, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qing-Ze Fan
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
58
|
Borges GSM, Lima FA, Carneiro G, Goulart GAC, Ferreira LAM. All-trans retinoic acid in anticancer therapy: how nanotechnology can enhance its efficacy and resolve its drawbacks. Expert Opin Drug Deliv 2021; 18:1335-1354. [PMID: 33896323 DOI: 10.1080/17425247.2021.1919619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: All-trans retinoic acid (ATRA, tretinoin) is the main drug used in the treatment of acute promyelocytic leukemia (APL). Despite its impressive activity against APL, the same could not be clinically observed in other types of cancer. Nanotechnology can be a tool to enhance ATRA anticancer efficacy and resolve its drawbacks in APL as well as in other malignancies.Areas covered: This review covers ATRA use in APL and non-APL cancers, the problems that were found in ATRA therapy and how nanoencapsulation can aid to circumvent them. Pre-clinical results obtained with nanoencapsulated ATRA are shown as well as the two ATRA products based on nanotechnology that were clinically tested: ATRA-IV® and Apealea®.Expert opinion: ATRA presents interesting properties to be used in anticancer therapy with a notorious differentiation and antimetastatic activity. Bioavailability and resistance limitations impair the use of ATRA in non-APL cancers. Nanotechnology can circumvent these issues and provide tools to enhance its anticancer activities, such as co-loading of multiple drug and active targeting to tumor site.
Collapse
Affiliation(s)
- Gabriel Silva Marques Borges
- Departamento De Produtos Farmacêuticos, Faculdade De Farmácia, Universidade Federal De Minas Gerais, Belo Horizonte, Brazil
| | - Flávia Alves Lima
- Departamento De Produtos Farmacêuticos, Faculdade De Farmácia, Universidade Federal De Minas Gerais, Belo Horizonte, Brazil
| | - Guilherme Carneiro
- Departamento De Farmácia, Faculdade De Ciências Biológicas E Da Saúde, Universidade Federal Dos Vales Do Jequitinhonha E Mucuri, Diamantina, Brazil
| | - Gisele Assis Castro Goulart
- Departamento De Produtos Farmacêuticos, Faculdade De Farmácia, Universidade Federal De Minas Gerais, Belo Horizonte, Brazil
| | - Lucas Antônio Miranda Ferreira
- Departamento De Produtos Farmacêuticos, Faculdade De Farmácia, Universidade Federal De Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
59
|
Microfluidic assembly of pomegranate-like hierarchical microspheres for efflux regulation in oral drug delivery. Acta Biomater 2021; 126:277-290. [PMID: 33774198 DOI: 10.1016/j.actbio.2021.03.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022]
Abstract
Herein, a multi-functional nano-in-micro hierarchical microsphere system is demonstrated for controlling the intestinal efflux pumps that affect the oral bioavailability of many therapeutic drugs. The hierarchical particles were generated by a co-flow microfluidic device and consisted of porous silica nanoparticles packed in Eudragit® polymeric matrix. Meropenem (MER), a last-resort antibacterial drug, was loaded into porous silica (MCM-48) with a loading capacity of 34.3 wt%. In this unique materials combination, MCM-48 enables ultrahigh loading of a hydrophilic MER, while the Eudragit® polymers not only protect MER from gastric pH but also act as an antagonist for p-glycoprotein protein efflux pumps to reduce the efflux of MER back into the gastrointestinal lumen. We investigated the in-vitro temporal MER release and bidirectional (absorptive and secretory) drug permeation model across the Caco-2 monolayer. The bioavailability of MER was significantly improved by all of the prepared formulations (i.e. increased absorptive transport and reduced secretory transport). The Eudragit® RSPO formulated MER-MCM showed the best performance with an efflux ratio (i.e. secretory transport/absorptive transport) of 0.35, which is 7.4 folds less than pure MER (2.62). Lastly, the prepared formulations were able to retain the antibacterial activity of MER against Staphylococcus aureus and Pseudomonas aeruginosa. STATEMENT OF SIGNIFICANCE: Meropenem (MER) is a last resort antibiotic used for the treatment of drug-resistant and acute infections and only available as intravenous injectable dosage due to its poor chemical and thermal stability, and ultra-poor oral bioavailability because of the efflux action of P-glycoprotein (P-gp) pumps. Multifunctional colloidal micro/nanoparticles can help to solve these issues. Herein, we designed pomegranate-like hierarchical microspheres comprised of porous silica nanoparticles and enteric Eudragit® polymers (Eudragit®S100, Eudragit®RSPO, and Eudragit®RS100) using a co-flow microfluidic device. Our formulations allow for ultrahigh loading of hydrophilic MER, protects MER from gastric pH, and also block P-gp efflux pumps for enhanced MER permeation/retention with Eudragit®RSPO - showing 13.9-folds higher permeation and 7.4-folds reduction in efflux ratio in a bi-directional Caco-2 monolayer culture system.
Collapse
|
60
|
Shurpik DN, Makhmutova LI, Usachev KS, Islamov DR, Mostovaya OA, Nazarova AA, Kizhnyaev VN, Stoikov II. Towards Universal Stimuli-Responsive Drug Delivery Systems: Pillar[5]arenes Synthesis and Self-Assembly into Nanocontainers with Tetrazole Polymers. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:947. [PMID: 33917874 PMCID: PMC8068209 DOI: 10.3390/nano11040947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/27/2021] [Accepted: 04/05/2021] [Indexed: 11/21/2022]
Abstract
In this work, we have proposed a novel universal stimulus-sensitive nanosized polymer system based on decasubstituted macrocyclic structures-pillar[5]arenes and tetrazole-containing polymers. Decasubstituted pillar[5]arenes containing a large, good leaving tosylate, and phthalimide groups were first synthesized and characterized. Pillar[5]arenes containing primary and tertiary amino groups, capable of interacting with tetrazole-containing polymers, were obtained with high yield by removing the tosylate and phthalimide protection. According to the fluorescence spectroscopy data, a dramatic fluorescence enhancement in the pillar[5]arene/fluorescein/polymer system was observed with decreasing pH from neutral (pH = 7) to acidic (pH = 5). This indicates the destruction of associates and the release of the dye at a pH close to 5. The presented results open a broad range of opportunities for the development of new universal stimulus-sensitive drug delivery systems containing macrocycles and nontoxic tetrazole-based polymers.
Collapse
Affiliation(s)
- Dmitriy N. Shurpik
- A. M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (D.N.S.); (L.I.M.); (O.A.M.); (A.A.N.)
| | - Lyaysan I. Makhmutova
- A. M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (D.N.S.); (L.I.M.); (O.A.M.); (A.A.N.)
| | - Konstantin S. Usachev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia;
| | - Daut R. Islamov
- FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Institute of Organic and Physical Chemistry, Arbuzov St., 8, 420088 Kazan, Russia;
| | - Olga A. Mostovaya
- A. M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (D.N.S.); (L.I.M.); (O.A.M.); (A.A.N.)
| | - Anastasia A. Nazarova
- A. M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (D.N.S.); (L.I.M.); (O.A.M.); (A.A.N.)
| | - Valeriy N. Kizhnyaev
- Department of Theoretical and Applied Organic Chemistry and Polymerization Processes, Irkutsk State University, K. Marksa, 1, 664003 Irkutsk, Russia;
| | - Ivan I. Stoikov
- A. M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (D.N.S.); (L.I.M.); (O.A.M.); (A.A.N.)
| |
Collapse
|
61
|
Testing a Benchtop Wet-Milling Method for Preparing Nanoparticles and Suspensions as Hospital Formulations. Pharmaceutics 2021; 13:pharmaceutics13040482. [PMID: 33918130 PMCID: PMC8065928 DOI: 10.3390/pharmaceutics13040482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/29/2022] Open
Abstract
In clinical practice, for elderly or pediatric patients who have difficulty swallowing, solid dosage forms such as tablets or capsules are crushed or unsealed, prepared as powder forms, and often administered as suspensions. However, because their dispersibility is poor, aggregation or precipitation occurs readily. Once precipitation and deposition happen, redispersion is difficult, which can limit patient and caretaker drug adherence. In this study, we attempted to prepare nanoparticles as a hospital formulation by a benchtop wet-milling method to obtain a suspension with high dispersibility. This is the first study to apply the wet-milling method to prepare the hospital formulation. We chose cefditoren pivoxil (CDTR-PI) as an experimental active pharmaceutical ingredient. CDTR-PI crystals were physically mixed with various water-soluble polymers such as polyvinylpyrrolidone, polyethylene oxide, hydroxypropyl cellulose, or hypromellose and wet-milled with a surface-active agent (sodium lauryl sulfate) under different conditions. The mean particle diameter of most of the samples was less than 200 nm. In FTIR spectra of ground samples, peak shifts suggesting inter- or intramolecular interactions between CDTR-PI and the other additive agents were not observed. Besides, the nanoparticle suspension had favorable dispersibility, as determined using a dispersion stability analyzer. Providing a suspension with high dispersibility makes dispense with the resuspension, the patient’s medication adherence would improve. These results show that suspended liquid formulations of active pharmaceutical ingredients could be obtained by the simple wet-milling method as hospital formulations.
Collapse
|
62
|
Spirescu VA, Chircov C, Grumezescu AM, Andronescu E. Polymeric Nanoparticles for Antimicrobial Therapies: An Up-To-Date Overview. Polymers (Basel) 2021; 13:724. [PMID: 33673451 PMCID: PMC7956825 DOI: 10.3390/polym13050724] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
Despite the many advancements in the pharmaceutical and medical fields and the development of numerous antimicrobial drugs aimed to suppress and destroy pathogenic microorganisms, infectious diseases still represent a major health threat affecting millions of lives daily. In addition to the limitations of antimicrobial drugs associated with low transportation rate, water solubility, oral bioavailability and stability, inefficient drug targeting, considerable toxicity, and limited patient compliance, the major cause for their inefficiency is the antimicrobial resistance of microorganisms. In this context, the risk of a pre-antibiotic era is a real possibility. For this reason, the research focus has shifted toward the discovery and development of novel and alternative antimicrobial agents that could overcome the challenges associated with conventional drugs. Nanotechnology is a possible alternative, as there is significant evidence of the broad-spectrum antimicrobial activity of nanomaterials and nanoparticles in particular. Moreover, owing to their considerable advantages regarding their efficient cargo dissolving, entrapment, encapsulation, or surface attachment, the possibility of forming antimicrobial groups for specific targeting and destruction, biocompatibility and biodegradability, low toxicity, and synergistic therapy, polymeric nanoparticles have received considerable attention as potential antimicrobial drug delivery agents. In this context, the aim of this paper is to provide an up-to-date overview of the most recent studies investigating polymeric nanoparticles designed for antimicrobial therapies, describing both their targeting strategies and their effects.
Collapse
Affiliation(s)
- Vera Alexandra Spirescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (E.A.)
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (E.A.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (E.A.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (E.A.)
| |
Collapse
|
63
|
Raza A, Sime FB, Cabot PJ, Roberts JA, Falconer JR, Kumeria T, Popat A. Liquid CO2 Formulated Mesoporous Silica Nanoparticles for pH-Responsive Oral Delivery of Meropenem. ACS Biomater Sci Eng 2021; 7:1836-1853. [DOI: 10.1021/acsbiomaterials.0c01284] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Aun Raza
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Fekade Bruck Sime
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Peter J. Cabot
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Jason A. Roberts
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
- Department of Pharmacy, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
| | - James R. Falconer
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Tushar Kumeria
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
- School of Materials Science and Engineering, The University of New South Wales, Sydney NSW 2052, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Mater Research Institute, The University of Queensland Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
64
|
Al Rugaie O, Jabir M, Kadhim R, Karsh E, Sulaiman GM, Mohammed SAA, Khan RA, Mohammed HA. Gold Nanoparticles and Graphene Oxide Flakes Synergistic Partaking in Cytosolic Bactericidal Augmentation: Role of ROS and NOX2 Activity. Microorganisms 2021; 9:microorganisms9010101. [PMID: 33466290 PMCID: PMC7824746 DOI: 10.3390/microorganisms9010101] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Gold nanoparticles (GNPs) and graphene oxide flakes (GOFs) exerted significantly (p < 0.0001) supportive roles on the phagocytosis bioactivity of the immune cells of phagocytic nature against the Gram-positive and Gram-negative human pathogenic bacteria Staphylococcus aureus and Escherichia coli. Under experimental conditions, upon bacterial exposure, the combined GNPs and GOFs induced significant clearance of bacteria through phagosome maturation (p < 0.0001) from time-points of 6 to 30 min and production of reactive oxygen species (ROS, p < 0.0001) through the NADPH oxidase 2 (NOX2, p < 0.0001)-based feedback mechanism. The effects of the combined presence of GNPs and GOFs on phagocytosis (p < 0.0001) suggested a synergistic action underway, also achieved through elevated signal transduction activity in the bone-marrow-derived macrophages (BMDM, p < 0.0001). The current study demonstrated that GNPs’ and GOFs’ bactericidal assisting potentials could be considered an effective and alternative strategy for treating infections from both positive and negative bacterial strains.
Collapse
Affiliation(s)
- Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah, P.O. Box 991, Al-Qassim 51911, Saudi Arabia;
| | - Majid Jabir
- Department of Applied Sciences, Division of Biotechnology, University of Technology, Baghdad 35010, Iraq; (R.K.); (E.K.)
- Correspondence: (M.J.); (G.M.S.); (S.A.A.M.); Tel.: +964-(0)-7902-781-890 (G.M.S.); +966-(0)-530-309-899 (S.A.A.M.)
| | - Rua Kadhim
- Department of Applied Sciences, Division of Biotechnology, University of Technology, Baghdad 35010, Iraq; (R.K.); (E.K.)
| | - Esraa Karsh
- Department of Applied Sciences, Division of Biotechnology, University of Technology, Baghdad 35010, Iraq; (R.K.); (E.K.)
| | - Ghassan M. Sulaiman
- Department of Applied Sciences, Division of Biotechnology, University of Technology, Baghdad 35010, Iraq; (R.K.); (E.K.)
- Correspondence: (M.J.); (G.M.S.); (S.A.A.M.); Tel.: +964-(0)-7902-781-890 (G.M.S.); +966-(0)-530-309-899 (S.A.A.M.)
| | - Salman A. A. Mohammed
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
- Correspondence: (M.J.); (G.M.S.); (S.A.A.M.); Tel.: +964-(0)-7902-781-890 (G.M.S.); +966-(0)-530-309-899 (S.A.A.M.)
| | - Riaz A. Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia; (R.A.K.); (H.A.M.)
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia; (R.A.K.); (H.A.M.)
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| |
Collapse
|
65
|
Shchelik IS, Sieber S, Gademann K. Green Algae as a Drug Delivery System for the Controlled Release of Antibiotics. Chemistry 2020; 26:16644-16648. [PMID: 32910832 PMCID: PMC7894466 DOI: 10.1002/chem.202003821] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Indexed: 12/15/2022]
Abstract
New strategies to efficiently treat bacterial infections are crucial to circumvent the increase of resistant strains and to mitigate side effects during treatment. Skin and soft tissue infections represent one of the areas suffering the most from these resistant strains. We developed a new drug delivery system composed of the green algae, Chlamydomonas reinhardtii, which is generally recognized as safe, to target specifically skin diseases. A two-step functionalization strategy was used to chemically modify the algae with the antibiotic vancomycin. Chlamydomonas reinhardtii was found to mask vancomycin and the insertion of a photocleavable linker was used for the release of the antibiotic. This living drug carrier was evaluated in presence of Bacillus subtilis and, only upon UVA1-mediated release, growth inhibition of bacteria was observed. These results represent one of the first examples of a living organism used as a drug delivery system for the release of an antibiotic by UVA1-irradiation.
Collapse
Affiliation(s)
- Inga S. Shchelik
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Simon Sieber
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Karl Gademann
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| |
Collapse
|
66
|
Wu ZL, Zhao J, Xu R. Recent Advances in Oral Nano-Antibiotics for Bacterial Infection Therapy. Int J Nanomedicine 2020; 15:9587-9610. [PMID: 33293809 PMCID: PMC7719120 DOI: 10.2147/ijn.s279652] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022] Open
Abstract
Bacterial infections are the main infectious diseases and cause of death worldwide. Antibiotics are used to treat various infections ranging from minor to life-threatening ones. The dominant route to administer antibiotics is through oral delivery and subsequent gastrointestinal tract (GIT) absorption. However, the delivery efficiency is limited by many factors such as low drug solubility and/or permeability, gastrointestinal instability, and low antibacterial activity. Nanotechnology has emerged as a novel and efficient tool for targeting drug delivery, and a number of promising nanotherapeutic strategies have been widely explored to overcome these obstacles. In this review, we explore published studies to provide a comprehensive understanding of the recent progress in the area of orally deliverable nano-antibiotic formulations. The first part of this article discusses the functions and underlying mechanisms by which nanomedicines increase the oral absorption of antibiotics. The second part focuses on the classification of oral nano-antibiotics and summarizes the advantages, disadvantages and applications of nanoformulations including lipid, polymer, nanosuspension, carbon nanotubes and mesoporous silica nanoparticles in oral delivery of antibiotics. Lastly, the challenges and future perspective of oral nano-antibiotics for infection disease therapy are discussed. Overall, nanomedicines designed for oral drug delivery system have demonstrated the potential for the improvement and optimization of currently available antibiotic therapies.
Collapse
Affiliation(s)
- Ze-Liang Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jun Zhao
- Department of Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Rong Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, People's Republic of China
| |
Collapse
|
67
|
Green one-pot synthesis of multicomponent-crosslinked carboxymethyl cellulose as a safe carrier for the gentamicin oral delivery. Int J Biol Macromol 2020; 164:2873-2880. [DOI: 10.1016/j.ijbiomac.2020.08.168] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/15/2020] [Accepted: 08/21/2020] [Indexed: 12/30/2022]
|
68
|
Raza A, Ngieng SC, Sime FB, Cabot PJ, Roberts JA, Popat A, Kumeria T, Falconer JR. Oral meropenem for superbugs: challenges and opportunities. Drug Discov Today 2020; 26:551-560. [PMID: 33197621 DOI: 10.1016/j.drudis.2020.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/10/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022]
Abstract
An increase in the number of multidrug-resistant microbial strains is the biggest threat to global health and is projected to cause >10 million deaths by 2055. The carbapenem family of antibacterial drugs are an important class of last-resort treatment of infections caused by drug-resistant bacteria and are only available as an injectable formulation. Given their instability within the gut and poor permeability across the gut wall, oral carbapenem formulations show poor bioavailability. Meropenem (MER), a carbapenem antibiotic, has broad-spectrum antibacterial activity, but suffers from the above-mentioned issues. In this review, we discuss strategies for improving the oral bioavailability of MER, such as inhibiting tubular secretion, prodrug formulations, and use of nanomedicine. We also highlight challenges and emerging approaches for the development of oral MER.
Collapse
Affiliation(s)
- Aun Raza
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia; Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Shih Chen Ngieng
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Fekade Bruck Sime
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia; Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Peter J Cabot
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Jason A Roberts
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia; Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, QLD 4102, Australia; Department of Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, QLD 4102, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia; Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| | - Tushar Kumeria
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia; School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - James R Falconer
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
69
|
The role of sodium alginate and gellan gum in the design of new drug delivery systems intended for antibiofilm activity of morin. Int J Biol Macromol 2020; 162:1944-1958. [PMID: 32791274 DOI: 10.1016/j.ijbiomac.2020.08.078] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 11/22/2022]
Abstract
The use of controlled drug delivery systems represents an alternative and promising strategy for the use of antimicrobials in the oral cavity. Microparticles, films and oral tablets based on alginate and gellan gum were developed also as a strategy to overcome the low aqueous solubility of morin. The systems were characterized in terms of morphological characteristics, mucoadhesion and in vitro drug release. Antibiofilm activity was analyzed for acidogenicity, microbial viability and the composition of the extracellular matrix of single-species biofilms. Scanning Electron Microscopy demonstrated that the microparticles were spherical, rough and compact. The film and the tablet presented smooth and continuous surface and in the inner of the tablet was porous. These systems were more mucoadhesive compared to the microparticles. The in vitro morin release profiles in artificial saliva demonstrated that the microparticles controlled the release better (39.6%), followed by the film (41.1%) and the tablet (91.4%) after 20 h of testing. The morin released from the systems reduced the acidogenicity, microbial viability, concentration of insoluble extracellular polysaccharides and dry weight of biofilms, when compared to the control group. The findings of this study showed that the morin has antibiofilm activity against cariogenic microorganisms.
Collapse
|
70
|
Abeer MM, Rewatkar P, Qu Z, Talekar M, Kleitz F, Schmid R, Lindén M, Kumeria T, Popat A. Silica nanoparticles: A promising platform for enhanced oral delivery of macromolecules. J Control Release 2020; 326:544-555. [DOI: 10.1016/j.jconrel.2020.07.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022]
|
71
|
Ghaferi M, Koohi Moftakhari Esfahani M, Raza A, Al Harthi S, Ebrahimi Shahmabadi H, Alavi SE. Mesoporous silica nanoparticles: synthesis methods and their therapeutic use-recent advances. J Drug Target 2020; 29:131-154. [PMID: 32815741 DOI: 10.1080/1061186x.2020.1812614] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesoporous silica nanoparticles (MSNPs) are a particular example of innovative nanomaterials for the development of drug delivery systems. MSNPs have recently received more attention for biological and pharmaceutical applications due to their capability to deliver therapeutic agents. Due to their unique structure, they can function as an effective carrier for the delivery of therapeutic agents to mitigate diseases progress, reduce inflammatory responses and consequently improve cancer treatment. The potency of MSNPs for the diagnosis and management of various diseases has been studied. This literature review will take an in-depth look into the properties of various types of MSNPs (e.g. shape, particle and pore size, surface area, pore volume and surface functionalisation), and discuss their characteristics, in terms of cellular uptake, drug delivery and release. MSNPs will then be discussed in terms of their therapeutic applications (passive and active tumour targeting, theranostics, biosensing and immunostimulative), biocompatibility and safety issues. Also, emerging trends and expected future advancements of this carrier will be provided.
Collapse
Affiliation(s)
- Mohsen Ghaferi
- Department of Chemical Engineering, Islamic Azad University, Shahrood Branch, Shahrood, Iran
| | - Maedeh Koohi Moftakhari Esfahani
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Molecular Design and Synthesis Discipline, Queensland University of Technology, Brisbane, Australia
| | - Aun Raza
- School of Pharmacy, The University of Queensland, Woolloongabba, Australia
| | - Sitah Al Harthi
- School of Pharmacy, The University of Queensland, Woolloongabba, Australia.,Department of Pharmaceutical Science, College of Pharmacy, Shaqra University, Dawadmi, Saudi Arabia
| | - Hasan Ebrahimi Shahmabadi
- Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | |
Collapse
|
72
|
Zhou K, Yan Y, Chen D, Huang L, Li C, Meng K, Wang S, Algharib SA, Yuan Z, Xie S. Solid Lipid Nanoparticles for Duodenum Targeted Oral Delivery of Tilmicosin. Pharmaceutics 2020; 12:pharmaceutics12080731. [PMID: 32759764 PMCID: PMC7466129 DOI: 10.3390/pharmaceutics12080731] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 11/24/2022] Open
Abstract
Developing a targeted oral delivery system to improve the efficacy of veterinary antibiotics and reduce their consumption and environmental risks is urgent. To achieve the duodenum-targeted release of tilmicosin, the enteric granule containing tilmicosin-loaded solid lipid nanoparticles (TIL-SLNs) was prepared based on its absorption site and transport characteristics. The in vitro release, release mechanisms, stability, palatability, and pharmacokinetics of the optimum enteric granules were studied. The intestine perfusion indicated that the main absorption site of tilmicosin was shifted to duodenum from ileum by TIL-SLNs, while, the absorption of TIL-SLNs in the duodenum was hindered by P-glycoprotein (P-gp). In contrast with TIL-SLNs, the TIL-SLNs could be more effectively delivered to the duodenum in intact form after enteric coating. Its effective permeability coefficient was enhanced when P-gp inhibitors were added. Compared to commercial premix, although the TIL-SLNs did not improve the oral absorption of tilmicosin, the time to reach peak concentration (Tmax) was obviously shortened. After the enteric coating of the granules containing SLNs and P-gp inhibitor of polysorbate-80, the oral absorption of tilmicosin was improved 2.72 fold, and the Tmax was shortened by 2 h. The combination of duodenum-targeted release and P-gp inhibitors was an effective method to improve the oral absorption of tilmicosin.
Collapse
Affiliation(s)
- Kaixiang Zhou
- National Reference Laboratory of Veterinary Drug Residues (H.Z.A.U.) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (K.Z.); (Y.Y.); (C.L.); (K.M.); (S.W.); (S.A.A.)
| | - Yuanyuan Yan
- National Reference Laboratory of Veterinary Drug Residues (H.Z.A.U.) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (K.Z.); (Y.Y.); (C.L.); (K.M.); (S.W.); (S.A.A.)
| | - Dongmei Chen
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (D.C.); (L.H.); (Z.Y.)
| | - Lingli Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (D.C.); (L.H.); (Z.Y.)
| | - Chao Li
- National Reference Laboratory of Veterinary Drug Residues (H.Z.A.U.) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (K.Z.); (Y.Y.); (C.L.); (K.M.); (S.W.); (S.A.A.)
| | - Kuiyu Meng
- National Reference Laboratory of Veterinary Drug Residues (H.Z.A.U.) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (K.Z.); (Y.Y.); (C.L.); (K.M.); (S.W.); (S.A.A.)
| | - Shuge Wang
- National Reference Laboratory of Veterinary Drug Residues (H.Z.A.U.) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (K.Z.); (Y.Y.); (C.L.); (K.M.); (S.W.); (S.A.A.)
| | - Samah Attia Algharib
- National Reference Laboratory of Veterinary Drug Residues (H.Z.A.U.) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (K.Z.); (Y.Y.); (C.L.); (K.M.); (S.W.); (S.A.A.)
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Zonghui Yuan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (D.C.); (L.H.); (Z.Y.)
| | - Shuyu Xie
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (D.C.); (L.H.); (Z.Y.)
- Correspondence: ; Tel.: +86-27-87287323-8221; Fax: +86-27-87672232
| |
Collapse
|
73
|
Marcelo GA, Duarte MP, Oliveira E. Gold@mesoporous silica nanocarriers for the effective delivery of antibiotics and by-passing of β-lactam resistance. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-3023-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
74
|
Ajlouni AW, AlAsiri AM, Adil SF, Shaik MR, Khan M, Assal ME, Kuniyil M, Al-Warthan A. Nanocomposites of gold nanoparticles with pregabalin: The future anti-seizure drug. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
75
|
Advances in anti-breast cancer drugs and the application of nano-drug delivery systems in breast cancer therapy. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101662] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
76
|
Smerkova K, Dolezelikova K, Bozdechova L, Heger Z, Zurek L, Adam V. Nanomaterials with active targeting as advanced antimicrobials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1636. [PMID: 32363802 DOI: 10.1002/wnan.1636] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022]
Abstract
With a growing health threat of bacterial resistance to antibiotics, the nanomaterials have been extensively studied as an alternative. It is assumed that antimicrobial nanomaterials can affect bacteria by several mechanisms simultaneously and thereby overcome antibiotic resistance. Another promising potential use is employing nanomaterials as nanocarriers for antibiotics in order to overcome bacterial defense mechanisms. The passive targeting of nanomaterials is the often used strategy for bacterial treatment, including intracellular infections of macrophages. Furthermore, the specific targeting enhances the efficacy of antimicrobials and reduces side effects. This review aims to discuss advantages, disadvantages, and challenges of nanomaterials in the context of the targeting strategies for antimicrobials as advanced tools for treatments of bacterial infections. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Kristyna Smerkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Kristyna Dolezelikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Lucie Bozdechova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Ludek Zurek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Center for Zoonoses, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
77
|
Dubashynskaya NV, Skorik YA. Polymyxin Delivery Systems: Recent Advances and Challenges. Pharmaceuticals (Basel) 2020; 13:E83. [PMID: 32365637 PMCID: PMC7281078 DOI: 10.3390/ph13050083] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Polymyxins are vital antibiotics for the treatment of multiresistant Gram-negative ESKAPE pathogen infections. However, their clinical value is limited by their high nephrotoxicity and neurotoxicity, as well as their poor permeability and absorption in the gastrointestinal tract. This review focuses on various polymyxin delivery systems that improve polymyxin bioavailability and reduce drug toxicity through targeted and controlled release. Currently, the most suitable systems for improving oral, inhalation, and parenteral polymyxin delivery are polymer particles, liposomes, and conjugates, while gels, polymer fibers, and membranes are attractive materials for topical administration of polymyxin for the treatment of infected wounds and burns. In general, the application of these systems protects polymyxin molecules from the negative effects of both physiological and pathological factors while achieving higher concentrations at the target site and reducing dosage and toxicity. Improving the properties of polymyxin will be of great interest to researchers who are focused on developing antimicrobial drugs that show increased efficacy and safety.
Collapse
Affiliation(s)
| | - Yury A. Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, St. Petersburg 199004, Russia;
| |
Collapse
|
78
|
Kelly SA, Rodgers AM, O'Brien SC, Donnelly RF, Gilmore BF. Gut Check Time: Antibiotic Delivery Strategies to Reduce Antimicrobial Resistance. Trends Biotechnol 2020; 38:447-462. [PMID: 31757410 DOI: 10.1016/j.tibtech.2019.10.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 02/08/2023]
Abstract
Antimicrobial resistance (AMR) has developed into a huge threat to global health, and reducing it is an urgent priority for public health authorities. The importance of a healthy and balanced gut microbiome has been identified as a key protective factor against AMR development, but this can be significantly affected by antibiotic therapy, resulting in dysbiosis and reduction of taxonomic richness. The way in which antibiotics are administered could form an important part of future antimicrobial stewardship strategies, where drug delivery is ideally placed to play a key role in the fight against AMR. This review focuses on drug delivery strategies for antibiotic administration, including avoidance of the gut microbiome and targeted delivery approaches, which may reduce AMR.
Collapse
Affiliation(s)
- Stephen A Kelly
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland
| | - Aoife M Rodgers
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland; Department of Biology, Maynooth University, Maynooth, Kildare, Ireland
| | - Séamus C O'Brien
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland
| | - Brendan F Gilmore
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland.
| |
Collapse
|
79
|
Preparation, Characterization, and Evaluation of Cisplatin-Loaded Polybutylcyanoacrylate Nanoparticles with Improved In Vitro and In Vivo Anticancer Activities. Pharmaceuticals (Basel) 2020; 13:ph13030044. [PMID: 32168743 PMCID: PMC7151690 DOI: 10.3390/ph13030044] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/05/2020] [Accepted: 03/07/2020] [Indexed: 12/12/2022] Open
Abstract
This study aimed to evaluate the therapeutic efficacy of the cisplatin encapsulated into polybutylcyanoacrylate (PBCA) nanoparticles for the treatment of kidney cancer. The nanoformulation was successfully developed using the miniemulsion polymerization method and characterized in terms of size, size distribution, drug loading and encapsulation efficiencies, drug release behavior, in vitro cytotoxicity effects, in vivo toxicity, and therapeutic effects. Cisplatin-loaded PBCA nanoparticles were confirmed to be in nanoscale with the drug entrapment efficiency of 23% and controlled drug release profile, in which only 9% of the loaded drug was released after 48 h. The nanoparticles caused an increase in the cytotoxicity effects of cisplatin against renal cell adenocarcinoma cells (ACHN) (2.3-fold) and considerably decreased blood urea nitrogen and creatinine concentrations when compared to the standard cisplatin (1.6-fold and 1.5-fold, respectively). The nanoformulation also caused an increase in the therapeutic effects of cisplatin by 1.8-fold, in which a reduction in the mean tumor size was seen (3.5 mm vs. 6.5 mm) when compared to the standard cisplatin receiver rats. Overall, cisplatin-loaded PBCA nanoparticles can be considered as a promising drug candidate for the treatment of kidney cancer due to its potency to reduce the side effects of cisplatin and its toxicity and therapeutic effects on cancer-bearing Wistar rats.
Collapse
|
80
|
Innovative technological systems to optimize the delivery and therapeutic activity of antimicrobial drugs. ADVANCES AND AVENUES IN THE DEVELOPMENT OF NOVEL CARRIERS FOR BIOACTIVES AND BIOLOGICAL AGENTS 2020. [DOI: 10.1016/b978-0-12-819666-3.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
81
|
Shrivastava P, Vyas S, Sharma R, Mody N, Gautam L, Jain A, Vishwakarma N, Vyas SP. Nanotechnology for oral drug delivery and targeting. NANOENGINEERED BIOMATERIALS FOR ADVANCED DRUG DELIVERY 2020:473-498. [DOI: 10.1016/b978-0-08-102985-5.00020-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
82
|
Faustino C, Pinheiro L. Lipid Systems for the Delivery of Amphotericin B in Antifungal Therapy. Pharmaceutics 2020; 12:pharmaceutics12010029. [PMID: 31906268 PMCID: PMC7023008 DOI: 10.3390/pharmaceutics12010029] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/31/2022] Open
Abstract
Amphotericin B (AmB), a broad-spectrum polyene antibiotic in the clinic for more than fifty years, remains the gold standard in the treatment of life-threatening invasive fungal infections and visceral leishmaniasis. Due to its poor water solubility and membrane permeability, AmB is conventionally formulated with deoxycholate as a micellar suspension for intravenous administration, but severe infusion-related side effects and nephrotoxicity hamper its therapeutic potential. Lipid-based formulations, such as liposomal AmB, have been developed which significantly reduce the toxic side effects of the drug. However, their high cost and the need for parenteral administration limit their widespread use. Therefore, delivery systems that can retain or even enhance antimicrobial efficacy while simultaneously reducing AmB adverse events are an active area of research. Among those, lipid systems have been extensively investigated due to the high affinity of AmB for binding lipids. The development of a safe and cost-effective oral formulation able to improve drug accessibility would be a major breakthrough, and several lipid systems for the oral delivery of AmB are currently under development. This review summarizes recent advances in lipid-based systems for targeted delivery of AmB focusing on non-parenteral nanoparticulate formulations mainly investigated over the last five years and highlighting those that are currently in clinical trials.
Collapse
Affiliation(s)
| | - Lídia Pinheiro
- Correspondence: ; Tel.: +351-21-7946-400; Fax: +351-21-7946-470
| |
Collapse
|
83
|
Hu X, Yang G, Chen S, Luo S, Zhang J. Biomimetic and bioinspired strategies for oral drug delivery. Biomater Sci 2019; 8:1020-1044. [PMID: 31621709 DOI: 10.1039/c9bm01378d] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oral drug delivery remains the most preferred approach due to its multiple advantages. Recently there has been increasing interest in the development of advanced vehicles for oral delivery of different therapeutics. Among them, biomimetic and bioinspired strategies are emerging as novel approaches that are promising for addressing biological barriers encountered by traditional drug delivery systems. Herein we provide a state-of-the-art review on the current progress of biomimetic particulate oral delivery systems. Different biomimetic nanoparticles used for oral drug delivery are first discussed, mainly including ligand/antibody-functionalized nanoparticles, transporter-mediated nanoplatforms, and nanoscale extracellular vesicles. Then we describe bacteria-derived biomimetic systems, with respect to oral delivery of therapeutic proteins or antigens. Subsequently, yeast-derived oral delivery systems, based on either chemical engineering or bioengineering approaches are discussed, with emphasis on the treatment of inflammatory diseases and cancer as well as oral vaccination. Finally, bioengineered plant cells are introduced for oral delivery of biological agents. A future perspective is also provided to highlight the existing challenges and possible resolution toward clinical translation of currently developed biomimetic oral therapies.
Collapse
Affiliation(s)
- Xiankang Hu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China. and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| | - Guoyu Yang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China. and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China. and The First Clinical College, Chongqing Medical University, Chongqing 400016, China
| | - Sheng Chen
- Department of Pediatrics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| | - Suxin Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
84
|
Naskar A, Kim KS. Nanomaterials as Delivery Vehicles and Components of New Strategies to Combat Bacterial Infections: Advantages and Limitations. Microorganisms 2019; 7:356. [PMID: 31527443 PMCID: PMC6780078 DOI: 10.3390/microorganisms7090356] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/11/2019] [Accepted: 09/14/2019] [Indexed: 02/07/2023] Open
Abstract
Life-threatening bacterial infections have been well-controlled by antibiotic therapies and this approach has greatly improved the health and lifespan of human beings. However, the rapid and worldwide emergence of multidrug resistant (MDR) bacteria has forced researchers to find alternative treatments for MDR infections as MDR bacteria can sometimes resist all the present day antibiotic therapies. In this respect, nanomaterials have emerged as innovative antimicrobial agents that can be a potential solution against MDR bacteria. The present review discusses the advantages of nanomaterials as potential medical means and carriers of antibacterial activity, the types of nanomaterials used for antibacterial agents, strategies to tackle toxicity of nanomaterials for clinical applications, and limitations which need extensive studies to overcome. The current progress of using different types of nanomaterials, including new emerging strategies for the single purpose of combating bacterial infections, is also discussed in detail.
Collapse
Affiliation(s)
- Atanu Naskar
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
85
|
Solid Lipid Nanoparticles Loaded with Glucocorticoids Protect Auditory Cells from Cisplatin-Induced Ototoxicity. J Clin Med 2019; 8:jcm8091464. [PMID: 31540035 PMCID: PMC6780793 DOI: 10.3390/jcm8091464] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/23/2019] [Accepted: 09/12/2019] [Indexed: 12/18/2022] Open
Abstract
Cisplatin is a chemotherapeutic agent that causes the irreversible death of auditory sensory cells, leading to hearing loss. Local administration of cytoprotective drugs is a potentially better option co-therapy for cisplatin, but there are strong limitations due to the difficulty of accessing the inner ear. The use of nanocarriers for the efficient delivery of drugs to auditory cells is a novel approach for this problem. Solid lipid nanoparticles (SLNs) are biodegradable and biocompatible nanocarriers with low solubility in aqueous media. We show here that stearic acid-based SLNs have the adequate particle size, polydispersity index and ζ-potential, to be considered optimal nanocarriers for drug delivery. Stearic acid-based SLNs were loaded with the fluorescent probe rhodamine to show that they are efficiently incorporated by auditory HEI-OC1 (House Ear Institute-Organ of Corti 1) cells. SLNs were not ototoxic over a wide dose range. Glucocorticoids are used to decrease cisplatin-induced ototoxicity. Therefore, to test SLNs’ drug delivery efficiency, dexamethasone and hydrocortisone were tested either alone or loaded into SLNs and tested in a cisplatin-induced ototoxicity in vitro assay. Our results indicate that the encapsulation in SLNs increases the protective effect of low doses of hydrocortisone and lengthens the survival of HEI-OC1 cells treated with cisplatin.
Collapse
|
86
|
Wang SY, Li J, Zhou Y, Li DQ, Du GM. Chemical cross-linking approach for prolonging diclofenac sodium release from pectin-based delivery system. Int J Biol Macromol 2019; 137:512-520. [DOI: 10.1016/j.ijbiomac.2019.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/07/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
|
87
|
Yellepeddi VK, Ghandehari H. Pharmacokinetics of oral therapeutics delivered by dendrimer-based carriers. Expert Opin Drug Deliv 2019; 16:1051-1061. [DOI: 10.1080/17425247.2019.1656607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Venkata K. Yellepeddi
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA
| | - Hamidreza Ghandehari
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
88
|
Tran PHL, Duan W, Lee BJ, Tran TTD. Drug stabilization in the gastrointestinal tract and potential applications in the colonic delivery of oral zein-based formulations. Int J Pharm 2019; 569:118614. [PMID: 31415877 DOI: 10.1016/j.ijpharm.2019.118614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/30/2019] [Accepted: 08/11/2019] [Indexed: 12/13/2022]
Abstract
In recent years, various oral dosage forms using biomaterials have been developed to deliver drugs to the colon for therapy due to the advantages of local treatment and its ideal location for drug delivery. To achieve site-specific delivery, the complete drug should be released in the colon, while the drug must be protected or their delivery minimized in the stomach and small intestine. The use of natural or synthetic polymers has been reported for these purposes. The roles of zein in drug delivery have been identified with various types of formulations for improving bioavailability, controlled drug release and targeted delivery. Although zein has been demonstrated as a potential material for pharmaceutical applications, a review of zein in the gastrointestinal tract for stabilizing drug- and colon-specific delivery is still missing. In the present review, we aim to provide typical strategies for using zein in formulations to minimize drug release/ensure drug protection in the upper part of the gastrointestinal tract. Furthermore, effective fabrications or modifications for drug release in the colon will be highlighted. This primary resource of related methods of using zein in the gastrointestinal tract will advance technologies for using it as a natural polymer for drug delivery.
Collapse
Affiliation(s)
- Phuong H L Tran
- Deakin University, Geelong Australia, School of Medicine, Australia
| | - Wei Duan
- Deakin University, Geelong Australia, School of Medicine, Australia
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon, Republic of Korea
| | - Thao T D Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|