51
|
Transglutaminase 2: a molecular Swiss army knife. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:406-19. [PMID: 22015769 DOI: 10.1016/j.bbamcr.2011.09.012] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 09/02/2011] [Accepted: 09/06/2011] [Indexed: 12/26/2022]
Abstract
Transglutaminase 2 (TG2) is the most widely distributed member of the transglutaminase family with almost all cell types in the body expressing TG2 to varying extents. In addition to being widely expressed, TG2 is an extremely versatile protein exhibiting transamidating, protein disulphide isomerase and guanine and adenine nucleotide binding and hydrolyzing activities. TG2 can also act as a protein scaffold or linker. This unique protein also undergoes extreme conformational changes and exhibits localization diversity. Being mainly a cytosolic protein; it is also found in the nucleus, associated with the cell membrane (inner and outer side) and with the mitochondria, and also in the extracellular matrix. These different activities, conformations and localization need to be carefully considered while assessing the role of TG2 in physiological and pathological processes. For example, it is becoming evident that the role of TG2 in cell death processes is dependent upon the cell type, stimuli, subcellular localization and conformational state of the protein. In this review we discuss in depth the conformational and functional diversity of TG2 in the context of its role in numerous cellular processes. In particular, we have highlighted how differential localization, conformation and activities of TG2 may distinctly mediate cell death processes.
Collapse
|
52
|
Boutté AM, McDonald WH, Shyr Y, Yang L, Lin PC. Characterization of the MDSC proteome associated with metastatic murine mammary tumors using label-free mass spectrometry and shotgun proteomics. PLoS One 2011; 6:e22446. [PMID: 21853032 PMCID: PMC3154190 DOI: 10.1371/journal.pone.0022446] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 06/22/2011] [Indexed: 01/04/2023] Open
Abstract
Expansion of Gr-1+/CD11b+ myeloid derived suppressor cells (MDSCs) is governed by the presence of increasingly metastatic, malignant primary tumors. Metastasis, not the primary tumor, is often the cause of mortality. This study sought to fully characterize the MDSC proteome in response to metastatic and non-metastatic mammary tumors using label-free mass spectrometry shotgun proteomics in a mouse model with tumor cell lines, 67NR and 4T1, derived from the same tumor. 67NR cells form only primary mammary tumors, whereas 4T1 cells readily metastasize to the lungs, lymph nodes, and blood. Overall analysis identified a total of 2825 protein groups with a 0.78% false discovery rate. Of the 2814 true identifications, 43 proteins were exclusive to the 67NR group, 153 were exclusive to the 4T1 group, and 2618 were shared. Among the shared cohort, 26 proteins were increased and 31 were decreased in the metastatic 4T1 cohort compared to non-metastatic 67NR controls after filtering. MDSCs selectively express proteins involved in the γ-glutamyl transferase, glutathione synthase pathways, CREB transcription factor signaling, and other pathways involved in platelet aggregation, as well as lipid and amino acid metabolism, in response to highly metastatic 4T1 tumors. Cell cycle regulation dominated protein pathways and ontological groups of the 67NR non-metastatic group. Not only does this study provide a starting point to identify potential biomarkers of metastasis expressed by MDSCs; it identifies critical pathways that are unique to non-metastatic and metastatic conditions. Therapeutic interventions aimed at these pathways in MDSC may offer a new route to control malignancy and metastasis.
Collapse
Affiliation(s)
- Angela M Boutté
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America.
| | | | | | | | | |
Collapse
|
53
|
Lin CY, Tsai PH, Kandaswami CC, Chang GD, Cheng CH, Huang CJ, Lee PP, Hwang JJ, Lee MT. Role of tissue transglutaminase 2 in the acquisition of a mesenchymal-like phenotype in highly invasive A431 tumor cells. Mol Cancer 2011; 10:87. [PMID: 21777419 PMCID: PMC3150327 DOI: 10.1186/1476-4598-10-87] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 07/21/2011] [Indexed: 12/26/2022] Open
Abstract
Background Cancer progression is closely linked to the epithelial-mesenchymal transition (EMT) process. Studies have shown that there is increased expression of tissue tranglutaminase (TG2) in advanced invasive cancer cells. TG2 catalyzes the covalent cross-linking of proteins, exhibits G protein activity, and has been implicated in the modulation of cell adhesion, migration, invasion and cancer metastasis. This study explores the molecular mechanisms associated with TG2's involvement in the acquisition of the mesenchymal phenotype using the highly invasive A431-III subline and its parental A431-P cells. Results The A431-III tumor subline displays increased expression of TG2. This is accompanied by enhanced expression of the mesenchymal phenotype, and this expression is reversed by knockdown of endogenous TG2. Consistent with this, overexpression of TG2 in A431-P cells advanced the EMT process. Furthermore, TG2 induced the PI3K/Akt activation and GSK3β inactivation in A431 tumor cells and this increased Snail and MMP-9 expression resulting in higher cell motility. TG2 also upregulated NF-κB activity, which also enhanced Snail and MMP-9 expression resulting in greater cell motility; interestingly, this was associated with the formation of a TG2/NF-κB complex. TG2 facilitated acquisition of a mesenchymal phenotype, which was reversed by inhibitors of PI3K, GSK3 and NF-κB. Conclusions This study reveals that TG2 acts, at least in part, through activation of the PI3K/Akt and NF-κB signaling systems, which then induce the key mediators Snail and MMP-9 that facilitate the attainment of a mesenchymal phenotype. These findings support the possibility that TG2 is a promising target for cancer therapy.
Collapse
Affiliation(s)
- Chun-Yu Lin
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Cancer cells promote survival through depletion of the von Hippel-Lindau tumor suppressor by protein crosslinking. Oncogene 2011; 30:4780-90. [PMID: 21625219 DOI: 10.1038/onc.2011.183] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Nuclear factor-κB (NF-κB) and insulin-like growth factor-1 (IGF-1)-mediated signaling is associated with different tumors including renal cell carcinoma. NF-κB- and IGF-1-mediated signaling is found to be inhibited in the presence of wild-type von Hippel-Lindau (VHL) tumor suppresser gene. Therefore, negative regulator of VHL may be a good target for regulating NF-κB and IGF-1R. In this study, we found that VHL, a tumor suppressor protein that downregulates the NF-κB activity and the stability of IGF-1R was depleted by TGase 2 through polymerization via crosslinking and proteasomal degradation in kidney, breast and ovary cancer cell lines. We also found that TGase 2 knockdown promotes hypoxia-inducible factor 1α (HIF-1α) degradation, and thereby decrease HIF-1α transcriptional activity. Importantly, VHL expression was decreased in vivo in TGase-2-transgenic mice, and this was associated with increased NF-κB activity and the levels of expression of IGF-1R, HIF-1α and erythropoietin in kidney tissue. These results suggest a novel mechanism of regulation of the VHL tumor suppressor by TGase 2 that appears to be independent of the known cancer regulatory mechanisms.
Collapse
|
55
|
Klöck C, Jin X, Choi K, Khosla C, Madrid PB, Spencer A, Raimundo BC, Boardman P, Lanza G, Griffin JH. Acylideneoxoindoles: a new class of reversible inhibitors of human transglutaminase 2. Bioorg Med Chem Lett 2011; 21:2692-6. [PMID: 21215619 PMCID: PMC3081996 DOI: 10.1016/j.bmcl.2010.12.037] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 12/04/2010] [Accepted: 12/07/2010] [Indexed: 01/03/2023]
Abstract
Inhibitors of human transglutaminase 2 (TG2) are anticipated to be useful in the therapy of a variety of diseases including celiac sprue as well as certain CNS disorders and cancers. A class of 3-acylidene-2-oxoindoles was identified as potent reversible inhibitors of human TG2. Structure-activity relationship analysis of a lead compound led to the generation of several potent, competitive inhibitors. Analogs with significant non-competitive character were also identified, suggesting that the compounds bind at one or more allosteric regulatory sites on this multidomain enzyme. The most active compounds had K(i) values below 1.0 μM in two different kinetic assays for human TG2, and may therefore be suitable for investigations into the role of TG2 in physiology and disease in animals.
Collapse
Affiliation(s)
- Cornelius Klöck
- Department of Chemistry, Stanford University, Stanford CA 94305, USA
| | - Xi Jin
- Department of Chemistry, Stanford University, Stanford CA 94305, USA
| | - Kihang Choi
- Department of Chemistry, Stanford University, Stanford CA 94305, USA
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford CA 94305, USA
- Deparment of Chemical Engineering, Stanford University, Stanford CA 94305, USA
| | - Peter B. Madrid
- Department of Medicinal Chemistry SRI International, Menlo Park CA 94025, USA
| | - Andrew Spencer
- Celiac Sprue Research Foundation, P.O. Box 61193, Palo Alto CA 94306-1193, USA
| | - Brian C. Raimundo
- Numerate, Inc., 1150 Bayhill Drive, Ste 203, San Bruno CA 94066, USA
| | - Paul Boardman
- Numerate, Inc., 1150 Bayhill Drive, Ste 203, San Bruno CA 94066, USA
| | - Guido Lanza
- Numerate, Inc., 1150 Bayhill Drive, Ste 203, San Bruno CA 94066, USA
| | - John H. Griffin
- Numerate, Inc., 1150 Bayhill Drive, Ste 203, San Bruno CA 94066, USA
| |
Collapse
|
56
|
Dihydroisoxazole analogs for labeling and visualization of catalytically active transglutaminase 2. ACTA ACUST UNITED AC 2011; 18:58-66. [PMID: 21276939 DOI: 10.1016/j.chembiol.2010.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 11/02/2010] [Accepted: 11/02/2010] [Indexed: 01/31/2023]
Abstract
We report the synthesis and preliminary characterization of "clickable" inhibitors of human transglutaminase 2 (TG2). These inhibitors possess the 3-halo-4,5-dihydroisoxazole warhead along with bioorthogonal groups such as azide or alkyne moieties that enable subsequent covalent modification with fluorophores. Their mechanism for inhibition of TG2 is based on halide displacement, resulting in the formation of a stable imino thioether. Inhibition assays against recombinant human TG2 revealed that some of the clickable inhibitors prepared in this study have comparable specificity as benchmark dihydroisoxazole inhibitors reported earlier. At low micromolar concentrations they completely inhibited transiently activated TG2 in a WI-38 fibroblast scratch assay and could subsequently be used to visualize the active enzyme in situ. The potential use of these inhibitors to probe the role of TG2 in celiac sprue as well as other diseases is discussed.
Collapse
|
57
|
Nadalutti C, Viiri KM, Kaukinen K, Mäki M, Lindfors K. Extracellular transglutaminase 2 has a role in cell adhesion, whereas intracellular transglutaminase 2 is involved in regulation of endothelial cell proliferation and apoptosis. Cell Prolif 2011; 44:49-58. [PMID: 21199009 DOI: 10.1111/j.1365-2184.2010.00716.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Transglutaminase 2 (TG2) is a multifunctional protein with an important role in vascular biology, where it is involved in cell-matrix interaction, cell attachment and cell population expansion. In efforts to elucidate the role of TG2 in endothelial cell biology, in this study, we measured several endothelial cell characteristics in cells where TG2 was specifically knocked down by RNAi. MATERIALS AND METHODS The effect of small interfering RNA (siRNA)-TG2 on human umbilical vein endothelial cells was studied. Adhesion and cell viability were assessed by chemical reduction of MTT, and cell proliferation was analysed by flow cytometry. Apoptosis was evaluated by annexin V/PI dual staining and protein expression level was assayed by western blotting. RESULTS We found that siRNA-TG2 reduced endothelial cell number, lead to cell adhesion deficiency, cell cycle arrest in G₁ phase and induction of apoptosis. Our results show that exogenously added TG2 could reverse loss of adhesion but did not overcome the defect in cell proliferation, nor could it inhibit siRNA-TG2-induced apoptosis. CONCLUSION We conclude that TG2 loss in endothelial cells causes reduction in cell number as a result of cell cycle arrest, flaws in adhesion and induction of apoptosis. Our results imply that reduction in cell number and increased apoptosis in response to TG2 silencing is independent of the cell adhesion process. Altogether, our findings underline the significance of TG2 in endothelial cell cycle progression and cell survival, in vitro.
Collapse
Affiliation(s)
- C Nadalutti
- Paediatric Research Centre, University of Tampere and Tampere University Hospital, Tampere, Finland
| | | | | | | | | |
Collapse
|
58
|
Kotsakis P, Wang Z, Collighan RJ, Griffin M. The role of tissue transglutaminase (TG2) in regulating the tumour progression of the mouse colon carcinoma CT26. Amino Acids 2010; 41:909-21. [PMID: 21046178 DOI: 10.1007/s00726-010-0790-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 10/15/2010] [Indexed: 11/28/2022]
Abstract
The multifunctional enzyme tissue transglutaminase (TG2) is reported to both mediate and inhibit tumour progression. To elucidate these different roles of TG2, we established a series of stable-transfected mouse colon carcinoma CT26 cells expressing a catalytically active (wild type) and a transamidating-inactive TG2 (Cys277Ser) mutant. Comparison of the TG2-transfected cells with the empty vector control indicated no differences in cell proliferation, apoptosis and susceptibility to doxorubicin, which correlated with no detectable changes in the activation of the transcription factor NF-κB. TG2-transfected cells showed increased expression of integrin β3, and were more adherent and less migratory on fibronectin than control cells. Direct interaction of TG2 with β3 integrins was demonstrated by immunoprecipitation, suggesting that TG2 acts as a coreceptor for fibronectin with β3 integrins. All cells expressed the same level of TGFβ receptors I and II, but only cells transfected with active TG2 had increased levels of TGFβ1 and matrix-deposited fibronectin, which could be inhibited by TG2 site-directed inhibitors. Moreover, only cells transfected with active TG2 were capable of inhibiting tumour growth when compared to the empty vector controls. We conclude that in this colon carcinoma model increased levels of active TG2 are unfavourable to tumour growth due to their role in activation of TGFβ1 and increased matrix deposition, which in turn favours increased cell adhesion and a lowered migratory and invasive behaviour.
Collapse
Affiliation(s)
- Panayiotis Kotsakis
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B47ET, United Kingdom
| | | | | | | |
Collapse
|
59
|
Mastroberardino PG, Piacentini M. Type 2 transglutaminase in Huntington's disease: a double-edged sword with clinical potential. J Intern Med 2010; 268:419-31. [PMID: 20964734 PMCID: PMC3073231 DOI: 10.1111/j.1365-2796.2010.02275.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Huntington's disease (HD) is a dominant genetic neurodegenerative disorder. The pathology affects principally neurons in the basal ganglia circuits and terminates invariably in death. There is compelling necessity for safe and effective therapeutic strategies to arrest, or even retard the progression of the pathogenesis. Recent findings indicate the autophagy-lysosome systems as appealing targets for pharmacological intervention. Autophagy exerts a critical role in controlling neuronal protein homeostasis, which is perturbed in HD, and is compromised in the pathogenesis of several neurodegenerative diseases. Type 2 transglutaminase (TG2) plays an important role both in apoptosis and autophagy regulation, and accumulates at high levels in cells under stressful conditions. TG2 inhibition, achieved either via drug treatments or genetic approaches, has been shown to be beneficial for the treatment of HD in animal models. In this review we will discuss the relevance of TG2 to the pathogenesis of HD, in an effort to define novel therapeutic avenues.
Collapse
|
60
|
Kumar A, Xu J, Brady S, Gao H, Yu D, Reuben J, Mehta K. Tissue transglutaminase promotes drug resistance and invasion by inducing mesenchymal transition in mammary epithelial cells. PLoS One 2010; 5:e13390. [PMID: 20967228 PMCID: PMC2953521 DOI: 10.1371/journal.pone.0013390] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 09/15/2010] [Indexed: 12/26/2022] Open
Abstract
Recent observations that aberrant expression of tissue transglutaminase (TG2) promotes growth, survival, and metastasis of multiple tumor types is of great significance and could yield novel therapeutic targets for improved patient outcomes. To accomplish this, a clear understanding of how TG2 contributes to these phenotypes is essential. Using mammary epithelial cell lines (MCF10A, MCF12A, MCF7 and MCF7/RT) as a model system, we determined the impact of TG2 expression on cell growth, cell survival, invasion, and differentiation. Our results show that TG2 expression promotes drug resistance and invasive functions by inducing epithelial-mesenchymal transition (EMT). Thus, TG2 expression supported anchorage-independent growth of mammary epithelial cells in soft-agar, disrupted the apical-basal polarity, and resulted in disorganized acini structures when grown in 3D-culture. At molecular level, TG2 expression resulted in loss of E-cadherin and increased the expression of various transcriptional repressors (Snail1, Zeb1, Zeb2 and Twist1). Tumor growth factor-beta (TGF-β) failed to induce EMT in cells lacking TG2 expression, suggesting that TG2 is a downstream effector of TGF-β-induced EMT. Moreover, TG2 expression induced stem cell-like phenotype in mammary epithelial cells as revealed by enrichment of CD44(+)/CD24(-/low) cell populations. Overall, our studies show that aberrant expression of TG2 is sufficient for inducing EMT in epithelial cells and establish a strong link between TG2 expression and progression of metastatic breast disease.
Collapse
Affiliation(s)
- Anupam Kumar
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Jia Xu
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - Samuel Brady
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - Hui Gao
- Department of Hematopathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - James Reuben
- Department of Hematopathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Kapil Mehta
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
61
|
I-κBα depletion by transglutaminase 2 and μ-calpain occurs in parallel with the ubiquitin–proteasome pathway. Biochem Biophys Res Commun 2010; 399:300-6. [DOI: 10.1016/j.bbrc.2010.07.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 07/21/2010] [Indexed: 01/05/2023]
|
62
|
The transglutaminase 2 gene is aberrantly hypermethylated in glioma. J Neurooncol 2010; 101:429-40. [PMID: 20596752 DOI: 10.1007/s11060-010-0277-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 06/16/2010] [Indexed: 12/26/2022]
Abstract
Transglutaminase 2 (TG2) is a ubiquitously expressed protein that catalyzes protein/protein crosslinking. Because extracellular TG2 crosslinks components of the extracellular matrix, TG2 is thought to function as a suppressor of cellular invasion. We have recently uncovered that the TG2 gene (TGM2) is a target for epigenetic silencing in breast cancer, highlighting a molecular mechanism that drives reduced TG2 expression, and this aberrant molecular event may contribute to invasiveness in this tumor type. Because tumor invasiveness is a primary determinant of brain tumor aggressiveness, we sought to determine if TGM2 is targeted for epigenetic silencing in glioma. Analysis of TGM2 gene methylation in a panel of cultured human glioma cells indicated that the 5' flanking region of the TGM2 gene is hypermethylated and that this feature is associated with reduced TG2 expression as judged by immunoblotting. Further, culturing glioma cells in the presence of the global DNA demethylating agent 5-aza-2'-deoxycytidine and the histone deacetylase inhibitor Trichostatin A resulted in re-expression of TG2 in these lines. In primary brain tumors we observed that the TGM2 promoter is commonly hypermethylated and that this feature is a cancer-associated phenomenon. Using publically available databases, TG2 expression in gliomas was found to vary widely, with many tumors showing overexpression or underexpression of this gene. Since overexpression of TG2 leads to resistance to doxorubicin through the ectopic activation of NFκB, we sought to examine the effects of recombinant TG2 expression in glioma cells treated with commonly used brain tumor therapeutics. We observed that in addition to doxorubicin, TG2 expression drove resistance to CCNU; however, TG2 expression did not alter sensitivity to other drugs tested. Finally, a catalytically null mutant of TG2 was also able to support doxorubicin resistance in glioma cells indicating that transglutaminase activity is not necessary for the resistance phenotype.
Collapse
|
63
|
Transglutaminase 2: a multi-tasking protein in the complex circuitry of inflammation and cancer. Biochem Pharmacol 2010; 80:1921-9. [PMID: 20599779 DOI: 10.1016/j.bcp.2010.06.029] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/14/2010] [Accepted: 06/16/2010] [Indexed: 01/05/2023]
Abstract
Metastasis of primary tumors to distant sites and their inherent or acquired resistance to currently available therapies pose major clinical challenge to the successful treatment of cancer. The identification of tumor-coded genes and how they contribute to the progression of cancer is required to improve patient outcomes. Recently, cells that have undergone the epithelial-mesenchymal transition (EMT), which share characteristics with cancer stem cells (CSC) have been implicated to play a role in drug resistance and metastasis of several types of cancer. In this review, we discuss the relationship among transglutaminase 2 (TG2), the EMT, and CSCs in inflammation and cancer. TG2 is a structurally and functionally complex protein implicated in such diverse processes as tissue fibrosis, wound healing, apoptosis, neurodegenerative disorders, celiac disease, atherosclerosis and cancer. Depending on the cellular context, TG2 can either promote or inhibit cell death. Increased expression of TG2 in several types of cancer cells has been associated with increased cell invasiveness, cell survival and decreased survival of patients with cancer. Down-regulation of TG2 by small interfering RNA (siRNA) or its inhibition by small molecule inhibitors has been shown to significantly enhances the therapeutic efficacy of anticancer drugs and inhibit metastatic spread. In addition, TG2-regulated pathways are involved in promoting or protecting normal and tumor cells from death-induced signaling. We discuss the contribution of TG2-regulated pathways to the development of drug resistance and progression to metastatic disease and the therapeutic potential of TG2 for treating advanced-stage cancer.
Collapse
|
64
|
The interaction of angiocidin with tissue transglutaminase. Exp Mol Pathol 2009; 88:15-25. [PMID: 19931242 DOI: 10.1016/j.yexmp.2009.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 11/05/2009] [Indexed: 12/22/2022]
Abstract
Angiocidin, a matrix bound and tumor associated protein, has been shown to inhibit tumor progression and angiogenesis. We previously demonstrated that angiocidin binds to thrombospondin-1 and alpha2beta1 integrin. We now show that angiocidin binds and is a preferred substrate for tissue transglutaminase-2 (tTgase). Angiocidin bound tTgase saturably with a Kd of 26 nM, while an angiocidin deletion mutant missing the matrix binding domain of angiocidin failed to bind tTgase. tTgase colocalized with angiocidin on endothelial cells. tTgase bound anti-angiocidin immunoprecipitates of endothelial cell lysates. Breast cancer cells expressing high levels of tTgase attached to angiocidin immobilized on tissue culture plates. Angiocidin was a preferred substrate for tTgase forming high molecular weight cross-linked multimers when treated with tTgase. Cross-linked angiocidin contained iso-peptide bonds as demonstrated by Western blotting and immunohistochemical colocalization studies using endothelial cells treated with angiocidin. Cross-linked angiocidin inhibited cell migration in contrast to monomeric angiocidin and inhibited localization of fibronectin (FN), a pro-tumorigenic matrix protein, into the extracellular matrix (ECM) of tumor and HUVE cells. Our studies provide an additional explanation for the anti-tumor activity of angiocidin suggesting that cross-linked angiocidin disrupts the tumor ECM making it less permissive for tumor growth.
Collapse
|
65
|
Transglutaminase 2 suppresses apoptosis by modulating caspase 3 and NF-kappaB activity in hypoxic tumor cells. Oncogene 2009; 29:356-67. [PMID: 19838207 DOI: 10.1038/onc.2009.342] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The expression of hypoxia-inducible factor-1 (HIF-1) correlates with poor clinical outcomes and confers resistance to the apoptosis of the tumor cells that are exposed to hypoxia. Presently, the mechanism underlying this phenomenon is poorly understood. In this study we provide evidence that transglutaminase 2 (TG2), an enzyme that catalyses protein crosslinking reactions, is a transcriptional target of HIF-1 to enhance the survival of hypoxic cells. We found that hypoxia induces TG2 expression through an HIF-1 dependent pathway and concurrently activates intracellular TG2. The hypoxic cells overexpressing TG2 showed resistance to apoptosis. Conversely, the hypoxic cells treated with either TG2 inhibitor or small interfering RNA (siRNA) became sensitive to apoptosis. Activation of TG2 in response to hypoxic stress inhibited caspase-3 activity by forming crosslinked multimer, resulting in insoluble aggregates. TG2 also activates nuclear factor (NF)-kappaB pathway after hypoxic stress, and thereby induces the expression of cellular inhibitor of apoptosis 2. The anti-apoptotic role of TG2 was further confirmed in vivo using xenografts in athymic mice. Our results indicate that TG2 is an anti-apoptotic mediator of HIF-1 through modulating both apoptosis and survival pathways and may confer a selective growth advantage to tumor cells. These findings suggest that the inhibition of TG2 may offer a novel strategy for anticancer therapy.
Collapse
|
66
|
Yoshida M, Nakayama K, Yasuda H, Kubo H, Kuwano K, Arai H, Yamaya M. Carbocisteine inhibits oxidant-induced apoptosis in cultured human airway epithelial cells. Respirology 2009; 14:1027-34. [PMID: 19664007 DOI: 10.1111/j.1440-1843.2009.01594.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Increased oxidant levels have been associated with exacerbations of COPD, and L-carbocisteine, a mucolytic agent, reduces the frequency of exacerbations. The mechanisms underlying the inhibitory effects of L-carbocisteine on oxidant-induced COPD exacerbations were examined in an in vitro study of human airway epithelial cells. METHODS In order to examine the antioxidant effects of L-carbocisteine, human tracheal epithelial cells were treated with L-carbocisteine and exposed to hydrogen peroxide (H(2)O(2)). Cell apoptosis was assessed using a cell death detection ELISA, and the pathways leading to cell apoptosis were examined by measurement of caspase-3 and caspase-9 by western blot analysis with fluorescent detection. RESULTS The proportion of apoptotic cells in human tracheal epithelium was increased in a concentration- and time-dependent manner, following exposure to H(2)O(2). Treatment with L-carbocisteine reduced the proportion of apoptotic cells. In contrast, H(2)O(2) did not increase the concentration of LDH in supernatants of epithelial cells. Exposure to H(2)O(2) activated caspase-3 and caspase-9, and L-carbocisteine inhibited the H(2)O(2)-induced activation of these caspases. L-carbocisteine activated Akt phosphorylation, which modulates caspase activation, and the inhibitors of Akt, LY294002 and wortmannin, significantly reversed the inhibitory effects of L-carbocisteine on H(2)O(2)-induced cell apoptosis. CONCLUSIONS These findings suggest that in human airway epithelium, L-carbocisteine may inhibit cell damage induced by H(2)O(2) through the activation of Akt phosphorylation. L-carbocisteine may have antioxidant effects, as well as mucolytic activity, in inflamed airways.
Collapse
Affiliation(s)
- Motoki Yoshida
- Department of Geriatrics, Tohoku University School of Medicine, Sendai, Japan.
| | | | | | | | | | | | | |
Collapse
|
67
|
Elli L, Bergamini CM, Bardella MT, Schuppan D. Transglutaminases in inflammation and fibrosis of the gastrointestinal tract and the liver. Dig Liver Dis 2009; 41:541-50. [PMID: 19195940 DOI: 10.1016/j.dld.2008.12.095] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 11/28/2008] [Accepted: 12/02/2008] [Indexed: 12/11/2022]
Abstract
Transglutaminases are a family of eight currently known calcium-dependent enzymes that catalyze the cross-linking or deamidation of proteins. They are involved in important biological processes such as wound healing, tissue repair, fibrogenesis, apoptosis, inflammation and cell-cycle control. Therefore, they play important roles in the pathomechanisms of autoimmune, inflammatory and degenerative diseases, many of which affect the gastrointestinal system. Transglutaminase 2 is prominent, since it is central to the pathogenesis of celiac disease, and modulates inflammation and fibrosis in inflammatory bowel and chronic liver diseases. This review highlights our present understanding of transglutaminase function in gastrointestinal and liver diseases and therapeutic strategies that target transglutaminase activities.
Collapse
Affiliation(s)
- L Elli
- Center for Prevention and Diagnosis of Celiac Disease, Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, via F. Sforza, Milan, Italy.
| | | | | | | |
Collapse
|
68
|
Gangadharan C, Thoh M, Manna SK. Inhibition of constitutive activity of nuclear transcription factor kappaB sensitizes doxorubicin-resistant cells to apoptosis. J Cell Biochem 2009; 107:203-13. [PMID: 19242952 DOI: 10.1002/jcb.22115] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Doxorubicin is one of the most effective agents used in the treatment of various tumors. Its use is restricted by the development of resistance to apoptosis, the mechanism of which is not fully understood. Nuclear transcription factor kappaB (NF-kappaB) has been shown both to block apoptosis and to promote cell proliferation, and hence has been considered as an important target for anticancer drug development. We found that in wild type and Dox-revertant MCF-7 cells, Doxorubicin induced NF-kappaB was transient and Dox-resistant cells showed high basal activity of NF-kappaB and expression of genes dependent on it. Moreover, in resistant cells Doxorubicin was unable to induce apoptosis as detected by assays for reactive oxygen intermediates generation, lipid peroxidation, cytotoxicity, PARP degradation and Bcl-2 expression. High basal expressions of multi-drug resistant protein and transglutaminase were found in Dox-resistant cells and inhibition of NF-kappaB decreased those amounts and also sensitized these cells by Doxorubicin. These observations collectively suggest that high NF-kappaB activity confers resistance to Doxorubicin and its inhibition potentiates apoptosis. This study indicates that NF-kappaB plays an important role in chemoresistance and establishes the fact that inhibition of NF-kappaB will be a novel approach in chemotherapy.
Collapse
|
69
|
Fung KYC, Lewanowitsch T, Henderson ST, Priebe I, Hoffmann P, McColl SR, Lockett T, Head R, Cosgrove LJ. Proteomic analysis of butyrate effects and loss of butyrate sensitivity in HT29 colorectal cancer cells. J Proteome Res 2009; 8:1220-7. [PMID: 19195990 DOI: 10.1021/pr8009929] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Butyrate, a fermentation product of the large bowel microflora, is potentially protective against the development of colorectal cancer. In vitro, butyrate has been shown to induce apoptosis and inhibit proliferation in numerous cancer cell lines, including colorectal cancer. Although these tumor suppressing properties of butyrate are well-documented in experimental systems, the mechanisms underlying the induction of these effects are not fully understood. Understanding these mechanisms in cancer cells, as well as the pathways involved in a cell's ability to overcome them and progress toward malignancy, is vital to determine therapeutic approaches for disease management. We have developed a colorectal cancer cell line (HT29-BR) that is less responsive to the apoptotic effects of butyrate through sustained exposure of HT29 cells to 5 mM butyrate and have used proteomics to investigate the mechanisms involved in the development of butyrate insensitivity. Proteomic analysis identified a number of cellular processes in HT29 and HT29-BR cells influenced by butyrate including remodeling of the actin cytoskeleton, inhibition of protein biosynthesis and dysregulation of the cell stress response. We describe novel roles for butyrate in the induction of its tumor suppressing effects and outline potential cellular pathways involved in the development of butyrate insensitivity in the HT29-BR cell population.
Collapse
Affiliation(s)
- Kim Y C Fung
- CSIRO Preventative Health Flagship, Australia, CSIRO, Human Nutrition, Adelaide, Australia, CSIRO, Division of Molecular and Health Technologies, Adelaide, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Orlando FA, Brown KD. Unraveling breast cancer heterogeneity through transcriptomic and epigenomic analysis. Ann Surg Oncol 2009; 16:2270-9. [PMID: 19452229 DOI: 10.1245/s10434-009-0500-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 03/31/2009] [Accepted: 04/19/2009] [Indexed: 12/31/2022]
Abstract
Breast cancer diversity is histologically evident as various proliferative benign lesions, in situ carcinomas, and invasive carcinomas that may develop into distant metastases. Breast tumor molecular subtypes have been defined by genome-wide expression microarray technology and reveal associations between genetic alterations and the malignant phenotype. Early work has been conducted to use subtype-specific biomarkers to elucidate targeted treatment options early in the course of breast cancer progression. Additionally, DNA methylation is an epigenetic modification that contributes to breast cancer progression by transcriptionally silencing certain tumor suppressor genes. Among the genes characterized as targets for silencing are well-established tumor suppressors such as RASSF1A, RARB, SFN, and TGM2. Measuring elevated gene copy number and aberrant gene promoter methylation can further facilitate characterization of breast tumor molecular subtype; however, profiling of breast tumors based on epigenetic criteria has yet to be established. Epigenomic analysis has been investigated for clinical applicability, and it has great promise when used in combination with minimally invasive techniques for both diagnostic and prognostic purposes.
Collapse
Affiliation(s)
- Frank A Orlando
- Department of Surgery, University of Florida College of Medicine and UF Shands Cancer Center, Gainesville, FL, USA.
| | | |
Collapse
|
71
|
He Q, Huang B, Zhao J, Zhang Y, Zhang S, Miao J. Knockdown of integrin β4-induced autophagic cell death associated with P53 in A549 lung adenocarcinoma cells. FEBS J 2008; 275:5725-32. [DOI: 10.1111/j.1742-4658.2008.06699.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
72
|
Cheung W, Darfler MM, Alvarez H, Hood BL, Conrads TP, Habbe N, Krizman DB, Mollenhauer J, Feldmann G, Maitra A. Application of a global proteomic approach to archival precursor lesions: deleted in malignant brain tumors 1 and tissue transglutaminase 2 are upregulated in pancreatic cancer precursors. Pancreatology 2008; 8:608-16. [PMID: 18849643 PMCID: PMC2711211 DOI: 10.1159/000161012] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 07/01/2008] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pancreatic cancer is an almost uniformly fatal disease, and early detection is a critical determinant of improved survival. A variety of noninvasive precursor lesions of pancreatic adenocarcinoma have been identified, which provide a unique opportunity for intervention prior to onset of invasive cancer. Biomarker discovery in precursor lesions has been hampered by the ready availability of fresh specimens, and limited yields of proteins suitable for large scale screening. METHODS We utilized Liquid Tissue, a novel technique for protein extraction from archival formalin-fixed material, and mass spectrometry to conduct a global proteomic analysis of an intraductal papillary mucinous neoplasm (IPMN). Tissue microarrays comprised of 38 IPMNs were used for validation of candidate proteins. RESULTS The proteomic analysis of the IPMN Liquid Tissue lysate resulted in identification of 1,534 peptides corresponding to 523 unique proteins. A subset of 25 proteins was identified that had previously been reported as upregulated in pancreatic cancer. Immunohistochemical analysis for two of these, deleted in malignant brain tumors 1 (DMBT1) and tissue transglutaminase 2 (TGM2), confirmed their overexpression in IPMNs. CONCLUSION Global proteomics analysis using the Liquid Tissue workflow is a feasible approach for unbiased biomarker discovery in limited archival material, particularly applicable to precursor lesions of cancer.
Collapse
Affiliation(s)
- Wang Cheung
- Departments of Pathology, Baltimore, Md., USA
| | | | | | - Brian L. Hood
- Department of Pharmacology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pa., USA
| | - Thomas P. Conrads
- Department of Pharmacology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pa., USA
| | - Nils Habbe
- Departments of Pathology, Baltimore, Md., USA
| | | | - Jan Mollenhauer
- Department of Molecular Genome Analysis, Deutsches Krebsforschungszentrum, Heidelberg, Germany,Department of Molecular Oncology, Institute of Medical Biology, University of Southern Denmark, Odense, Denmark
| | - Georg Feldmann
- Departments of Pathology, Baltimore, Md., USA,*Georg Feldmann, MD, The Sol Goldman Pancreatic Cancer Research Center, Room 316, CRB II, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21231 (USA), Tel. +1 410 955 3511, Fax +1 410 614 0671, E-Mail
| | - Anirban Maitra
- Departments of Pathology, Baltimore, Md., USA,Oncology, Johns Hopkins University School of Medicine, Baltimore, Md., USA,Genetic Medicine, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| |
Collapse
|
73
|
The end product of transglutaminase crosslinking: simultaneous quantitation of [Nepsilon-(gamma-glutamyl) lysine] and lysine by HPLC-MS3. Anal Biochem 2008; 384:296-304. [PMID: 18938126 DOI: 10.1016/j.ab.2008.09.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 09/10/2008] [Accepted: 09/24/2008] [Indexed: 11/22/2022]
Abstract
Transglutaminases catalyze the formation of Nepsilon-(gamma-glutamyl) isodipeptide crosslinks between proteins. These enzymes are thought to participate in a number of diseases, including neurological disease and cancer. A method associating liquid chromatography and multiple stage mass spectrometry has been developed for the simultaneous quantitation of [Nepsilon-(gamma-glutamyl) lysine] isodipeptide and lysine on an ion trap mass spectrometer. Highly specific detection has been achieved in MS3 mode. The method includes a derivatization step consisting of butylation of carboxylic groups and acetylation of amide groups, a liquid-liquid extraction, and a 19-min separation on a 100x2.1-mm Beta-basic C18 column with an acetonitrile gradient elution. 13C6-(15)N2 isotopes of the isodipeptide and the lysine serve as internal standards. The assay was linear in the range of 50 pmol/ml to 75 nmol/ml for the isodipeptide and the range of 10 nmol/ml to 3.5 micromol/ml for the lysine, with correlation coefficients greater than 0.99 for both ions. Intra- and inter-day coefficients of variation ranged from 3.5 to 15.9%. The method was successfully applied to human biological samples known to be crosslinked by transglutaminase such as cornified envelopes of epidermis, fibrin, and normal and Huntington disease brain.
Collapse
|
74
|
Kim DS, Park KS, Jeong KC, Lee BI, Lee CH, Kim SY. Glucosamine is an effective chemo-sensitizer via transglutaminase 2 inhibition. Cancer Lett 2008; 273:243-9. [PMID: 18804908 DOI: 10.1016/j.canlet.2008.08.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 06/10/2008] [Accepted: 08/06/2008] [Indexed: 01/05/2023]
Abstract
Aberrant increases of transglutaminase 2 (TGase 2) in tumors contribute to drug resistance. The role of TGase 2 in cancer pathogenesis was unknown until we showed that TGase 2 activates NF-kappaB in the absence of kinase-dependent phosphorylation. It appears that increased expression of TGase 2 is responsible for the constitutive activation of NF-kappaB in cancer cells. We have demonstrated that TGase 2 inhibition using siRNA, cystamine or R2 peptide promotes cell death in drug-resistant cancer cells through NF-kappaB inactivation. Therefore, a safe and effective small molecule for TGase 2 inhibition is being sought in the development of therapeutics for malignant cancers. By screening for TGase inhibitors in a natural compound library, we found that glucosamine has a TGase 2 inhibitory effect in vitro. Glucosamine also recovered the depletion of I-kappaBalpha via TGase 2 inhibition, which resulted in a decrease of NF-kappaB activity in EcR293/TG cells. Furthermore, glucosamine efficiently promoted cell death via inhibiting TGase 2-mediated NF-kappaB activation in drug-resistant breast cancer cells. These results suggest that glucosamine, as a TGase 2 inhibitor, might be an attractive novel target for treatment of malignant cancers.
Collapse
Affiliation(s)
- Dae-Seok Kim
- Molecular Oncology Branch, Division of Basic and Applied Sciences, Research Institute National Cancer Center, Goyang, Gyeonggi-do 410-769, Republic of Korea
| | | | | | | | | | | |
Collapse
|
75
|
Stamnaes J, Fleckenstein B, Lund-Johansen F, Sollid LM. The monoclonal antibody 6B9 recognizes CD44 and not cell surface transglutaminase 2. Scand J Immunol 2008; 68:534-42. [PMID: 18803608 DOI: 10.1111/j.1365-3083.2008.02173.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The multifunctional enzyme transglutaminase 2 (TG2) can be located intracellularly, in the extracellular matrix (ECM) and on the cell surface. Cell surface TG2 (csTG2) is poorly recognized both by most TG2-specific commercial antibodies and celiac disease-associated anti-TG2 autoantibodies. The recent characterization of a csTG2-specific monoclonal antibody (mAb), which did not recognize ECM-associated TG2, suggested major conformational differences between csTG2 and TG2 found in the ECM. Subsequent findings based on this antibody indicated ubiquitous abundance and novel roles of csTG2 in innate immune responses. We wished to identify the epitope of 6B9 so as to shed light on the disparate antibody binding properties of csTG2- and ECM-associated TG2. Surprisingly, and despite thorough effort, we were unable to isolate TG2 as the antigen of 6B9. We found that 6B9 does not react with recombinant human TG2. In immunoprecipitation experiments, 6B9 pulled down an 85 kDa protein which was identified as CD44 by mass spectrometry. Several flow cytometry experiments including the testing of CD44s transfectants indicated that CD44, and not csTG2, is the antigen of 6B9. We conclude that 6B9 does not recognize csTG2 but rather the cell surface glycoprotein CD44. Thus, recent knowledge of csTG2 gained through the use of 6B9 should be reevaluated.
Collapse
Affiliation(s)
- J Stamnaes
- Centre for Immune Regulation, Institute of Immunology, University of Oslo and Rikshospitalet University Hospital, Oslo, Norway.
| | | | | | | |
Collapse
|
76
|
Mehta K. Biological and therapeutic significance of tissue transglutaminase in pancreatic cancer. Amino Acids 2008; 36:709-16. [PMID: 18594944 DOI: 10.1007/s00726-008-0128-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 05/10/2008] [Indexed: 12/18/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is one of the deadliest cancers world-wide with an estimated annual incidence and mortality rates of approximately 6,500 cases in the UK, over 40,000 cases in Europe, 19,000 cases in Japan and over 30,000 cases in the United States. Difficulty to diagnose the disease at an early stage, rapid progression and intrinsic resistance to currently available therapies are major factors that contribute to poor disease outcome in these patients (overall 5 years survival, <3%). Identification of cancer cell-encoded genes that contribute to the development of intrinsic resistance and metastatic spread of the PDA tumors, may yield immediate clinical benefits in terms of revealing new therapeutic targets for effective treatment of the disease. This article discusses the significance of tissue-type transglutaminase (TG2) whose expression is elevated in the majority of PDA tumors and cell lines. Based on the published data and the results discussed in this review, TG2 appears to be a promising target for containment and treatment of this formidable disease.
Collapse
Affiliation(s)
- K Mehta
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Unit 362, Houston, TX 77030, USA.
| |
Collapse
|
77
|
In vivo evaluation of type 2 transglutaminase contribution to the metastasis formation in melanoma. Amino Acids 2008; 36:717-24. [DOI: 10.1007/s00726-008-0119-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 04/20/2008] [Indexed: 12/15/2022]
|
78
|
Verma A, Guha S, Diagaradjane P, Kunnumakkara AB, Sanguino AM, Lopez-Berestein G, Sood AK, Aggarwal BB, Krishnan S, Gelovani JG, Mehta K. Therapeutic significance of elevated tissue transglutaminase expression in pancreatic cancer. Clin Cancer Res 2008; 14:2476-83. [PMID: 18413840 DOI: 10.1158/1078-0432.ccr-07-4529] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Tissue transglutaminase (TG2) is a multifunctional protein that is implicated in development of drug resistance and metastasis. Therefore, we examined therapeutic targeting of TG2 for inhibiting growth and metastasis of in vivo growing pancreatic ductal adenocarcinoma (PDAC) in nude mice. EXPERIMENTAL DESIGN We implanted Panc-28 pancreatic cancer cells to induce orthotopic PDAC tumors in nude mice and determined the efficacy of liposomal TG2 small interfering RNA (siRNA) either alone or in combination with gemcitabine. RESULTS We show that down-regulation of endogenous TG2 by siRNA could effectively block the growth of PDAC. Moreover, down-regulation of TG2 significantly enhanced the therapeutic efficacy of gemcitabine against PDAC and inhibited metastatic spread of the disease. The antitumor activity was related to inhibition of proliferation, angiogenesis, and Akt phosphorylation. CONCLUSION siRNA-mediated down-regulation of TG2 represents a promising therapeutic approach for improved treatment of PDAC.
Collapse
Affiliation(s)
- Amit Verma
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|