51
|
Khaitlina SY. Tropomyosin as a Regulator of Actin Dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 318:255-91. [PMID: 26315888 DOI: 10.1016/bs.ircmb.2015.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tropomyosin is a major regulatory protein of contractile systems and cytoskeleton, an actin-binding protein that positions laterally along actin filaments and modulates actin-myosin interaction. About 40 tropomyosin isoforms have been found in a variety of cytoskeleton systems, not necessarily connected with actin-myosin interaction and contraction. Involvement of specific tropomyosin isoforms in the regulation of key cell processes was shown, and specific features of tropomyosin genes and protein structure have been investigated with molecular biology and genetics approaches. However, the mechanisms underlying the effects of tropomyosin on cytoskeleton dynamics are still unclear. As tropomyosin is primarily an F-actin-binding protein, it is important to understand how it interacts both with actin and actin-binding proteins functioning in muscles and cytoskeleton to regulate actin dynamics. This review focuses on biochemical data on the effects of tropomyosin on actin assembly and dynamics, as well as on the modulation of these effects by actin-binding proteins. The data indicate that tropomyosin can efficiently regulate actin dynamics via allosteric conformational changes within actin filaments.
Collapse
Affiliation(s)
- Sofia Yu Khaitlina
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia.
| |
Collapse
|
52
|
Gunning PW, Ghoshdastider U, Whitaker S, Popp D, Robinson RC. The evolution of compositionally and functionally distinct actin filaments. J Cell Sci 2015; 128:2009-19. [DOI: 10.1242/jcs.165563] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT
The actin filament is astonishingly well conserved across a diverse set of eukaryotic species. It has essentially remained unchanged in the billion years that separate yeast, Arabidopsis and man. In contrast, bacterial actin-like proteins have diverged to the extreme, and many of them are not readily identified from sequence-based homology searches. Here, we present phylogenetic analyses that point to an evolutionary drive to diversify actin filament composition across kingdoms. Bacteria use a one-filament-one-function system to create distinct filament systems within a single cell. In contrast, eukaryotic actin is a universal force provider in a wide range of processes. In plants, there has been an expansion of the number of closely related actin genes, whereas in fungi and metazoa diversification in tropomyosins has increased the compositional variety in actin filament systems. Both mechanisms dictate the subset of actin-binding proteins that interact with each filament type, leading to specialization in function. In this Hypothesis, we thus propose that different mechanisms were selected in bacteria, plants and metazoa, which achieved actin filament compositional variation leading to the expansion of their functional diversity.
Collapse
Affiliation(s)
- Peter W. Gunning
- School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Umesh Ghoshdastider
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673
| | - Shane Whitaker
- School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - David Popp
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673
| | - Robert C. Robinson
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673
- Department of Biochemistry, National University of Singapore, 8 Medical Drive, Singapore 117597
| |
Collapse
|
53
|
Lee WL, Grimes JM, Robinson RC. Yersinia effector YopO uses actin as bait to phosphorylate proteins that regulate actin polymerization. Nat Struct Mol Biol 2015; 22:248-55. [PMID: 25664724 DOI: 10.1038/nsmb.2964] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/30/2014] [Indexed: 11/09/2022]
Abstract
Pathogenic Yersinia species evade host immune systems through the injection of Yersinia outer proteins (Yops) into phagocytic cells. One Yop, YopO, also known as YpkA, induces actin-filament disruption, impairing phagocytosis. Here we describe the X-ray structure of Yersinia enterocolitica YopO in complex with actin, which reveals that YopO binds to an actin monomer in a manner that blocks polymerization yet allows the bound actin to interact with host actin-regulating proteins. SILAC-MS and biochemical analyses confirm that actin-polymerization regulators such as VASP, EVL, WASP, gelsolin and the formin diaphanous 1 are directly sequestered and phosphorylated by YopO through formation of ternary complexes with actin. This leads to a model in which YopO at the membrane sequesters actin from polymerization while using the bound actin as bait to recruit, phosphorylate and misregulate host actin-regulating proteins to disrupt phagocytosis.
Collapse
Affiliation(s)
- Wei Lin Lee
- 1] Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore. [2] Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jonathan M Grimes
- 1] Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. [2] Diamond Light Source, Oxfordshire, UK
| | - Robert C Robinson
- 1] Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore. [2] Department of Biochemistry, National University of Singapore, Singapore
| |
Collapse
|
54
|
Structural basis of thymosin-β4/profilin exchange leading to actin filament polymerization. Proc Natl Acad Sci U S A 2014; 111:E4596-605. [PMID: 25313062 PMCID: PMC4217450 DOI: 10.1073/pnas.1412271111] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Thymosin-β4 (Tβ4) and profilin are the two major sequestering proteins that maintain the pool of monomeric actin (G-actin) within cells of higher eukaryotes. Tβ4 prevents G-actin from joining a filament, whereas profilin:actin only supports barbed-end elongation. Here, we report two Tβ4:actin structures. The first structure shows that Tβ4 has two helices that bind at the barbed and pointed faces of G-actin, preventing the incorporation of the bound G-actin into a filament. The second structure displays a more open nucleotide binding cleft on G-actin, which is typical of profilin:actin structures, with a concomitant disruption of the Tβ4 C-terminal helix interaction. These structures, combined with biochemical assays and molecular dynamics simulations, show that the exchange of bound actin between Tβ4 and profilin involves both steric and allosteric components. The sensitivity of profilin to the conformational state of actin indicates a similar allosteric mechanism for the dissociation of profilin during filament elongation.
Collapse
|
55
|
Identification of the rare compound heterozygous variants in the NEB gene in a Korean family with intellectual disability, epilepsy and early-childhood-onset generalized muscle weakness. J Hum Genet 2014; 59:643-7. [PMID: 25296583 DOI: 10.1038/jhg.2014.87] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/03/2014] [Accepted: 09/13/2014] [Indexed: 11/08/2022]
Abstract
We examined a Korean family with complex phenotypes characterized by intellectual disability, epilepsy and early-childhood-onset generalized muscle weakness. Since we did not find any abnormality using several conventional genetic tests for detection of chromosomal aberrations, gene copy number variations and mitochondrial gene mutations, we aimed to identify disease-causing genetic alteration(s) in this family. We conducted whole-exome sequencing (WES) in this family. After filtering the WES data, we compared five exome sequences of two affected siblings, one unaffected sibling and the unaffected parents, and we determined the allele frequency of the identified variants in an Asian population. Finally, we selected one candidate variant pair which is unique in the patients and corresponds to an autosomal recessive genetic model. The two affected siblings had the same compound heterozygous variation in the NEB gene encoding nebulin, which was composed of two different missense variants: c.2603T>C (p.L868P) in exon 27 and c.21340C>T (p.R7114W) in exon 143. We confirmed these variations by Sanger sequencing. On the basis of the fundamental role of nebulin in the brain and skeletal muscles, we concluded that this compound heterozygous NEB variation may be a sound candidate for the disease-causing mutation in this family. Since the patients are characterized by generalized muscle weakness together with neurodevelopmental phenotypes, it is suggested that NEB mutations could manifest more diverse phenotypes than those previously described.
Collapse
|
56
|
Edwards M, Zwolak A, Schafer DA, Sept D, Dominguez R, Cooper JA. Capping protein regulators fine-tune actin assembly dynamics. Nat Rev Mol Cell Biol 2014; 15:677-89. [PMID: 25207437 DOI: 10.1038/nrm3869] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Capping protein (CP) binds the fast growing barbed end of the actin filament and regulates actin assembly by blocking the addition and loss of actin subunits. Recent studies provide new insights into how CP and barbed-end capping are regulated. Filament elongation factors, such as formins and ENA/VASP (enabled/vasodilator-stimulated phosphoprotein), indirectly regulate CP by competing with CP for binding to the barbed end, whereas other molecules, including V-1 and phospholipids, directly bind to CP and sterically block its interaction with the filament. In addition, a diverse and unrelated group of proteins interact with CP through a conserved 'capping protein interaction' (CPI) motif. These proteins, including CARMIL (capping protein, ARP2/3 and myosin I linker), CD2AP (CD2-associated protein) and the WASH (WASP and SCAR homologue) complex subunit FAM21, recruit CP to specific subcellular locations and modulate its actin-capping activity via allosteric effects.
Collapse
Affiliation(s)
- Marc Edwards
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri 63110, USA
| | - Adam Zwolak
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Dorothy A Schafer
- Departments of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | - David Sept
- Department of Biomedical Engineering and Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - John A Cooper
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri 63110, USA
| |
Collapse
|