51
|
O'Reilly M, Hoff M, Friedman SD, Jones JFX, Cross NM. Simulating Tissues with 3D-Printed and Castable Materials. J Digit Imaging 2020; 33:1280-1291. [PMID: 32556912 DOI: 10.1007/s10278-020-00358-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Manufacturing technologies continue to be developed and utilized in medical prototyping, simulations, and imaging phantom production. For radiologic image-guided simulation and instruction, models should ideally have similar imaging characteristics and physical properties to the tissues they replicate. Due to the proliferation of different printing technologies and materials, there is a diverse and broad range of approaches and materials to consider before embarking on a project. Although many printed materials' biomechanical parameters have been reported, no manufacturer includes medical imaging properties that are essential for realistic phantom production. We hypothesize that there are now ample materials available to create high-fidelity imaging anthropomorphic phantoms using 3D printing and casting of common commercially available materials. A material database of radiological, physical, manufacturing, and economic properties for 29 castable and 68 printable materials was generated from samples fabricated by the authors or obtained from the manufacturer and scanned with CT at multiple tube voltages. This is the largest study assessing multiple different parameters associated with 3D printing to date. These data are being made freely available on GitHub, thus affording medical simulation experts access to a database of relevant imaging characteristics of common printable and castable materials. Full data available at: https://github.com/nmcross/Material-Imaging-Characteristics .
Collapse
Affiliation(s)
| | - Michael Hoff
- University of Washington, 1959 NE Pacific St., Seattle, WA, USA
| | - Seth D Friedman
- Seattle Children's Hospital, 4800 Sand Point Way NE, Seattle, WA, USA
| | - James F X Jones
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Nathan M Cross
- University of Washington, 1959 NE Pacific St., Seattle, WA, USA.
| |
Collapse
|
52
|
Crowe SB, Bennett J, Lathouras M, Lancaster CM, Sylvander SR, Chua B, Bettington CS, Lin CY, Kairn T. Impact of radiopacified bone cement on radiotherapy dose calculation. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2020; 14:12-16. [PMID: 33458308 PMCID: PMC7807530 DOI: 10.1016/j.phro.2020.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 11/27/2022]
Abstract
Background and purpose Radiopacifiers are introduced to bone cements to provide the appearance of bone in kilovoltage (kV) radiographic images. For higher energy megavoltage (MV) radiotherapy treatment beams, however, these radiopacifiers do not cause a bone-like perturbation of dose. This study therefore aimed to determine the impact of the barium-contrasted plastic-based cement materials on radiotherapy dose calculations. Materials and methods The radiological properties of a physical sample of bone cement were characterised by computed tomography (CT) imaging and transmission measurements. Monte Carlo simulations of percentage depth-dose profiles were performed to determine the possible dose error for MV treatment beams. Dose differences were then investigated for clinical volumetric modulated radiotherapy treatment plans, with and without density overrides applied. Results Differences of up to 7% were observed at the downstream interface of a 0.6 cm thick bone cement layer, compared to bone. Differences in planning target volume dose-volume metrics varied between −0.5% and 2.0%. Conclusion Before planning radiotherapy treatments for patients who have undergone cranioplasty, every effort should be made to identify whether a radiopacified bone cement has been implanted. Density overrides should be applied to minimise dose calculation errors, whenever bone cement is used.
Collapse
Affiliation(s)
- Scott B Crowe
- Cancer Care Services, Royal Brisbane & Women's Hospital, Herston, QLD 4029, Australia.,Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia.,Herston Biofabrication Institute, Herston, QLD 4029, Australia
| | - Jane Bennett
- Cancer Care Services, Royal Brisbane & Women's Hospital, Herston, QLD 4029, Australia
| | - Marika Lathouras
- Cancer Care Services, Royal Brisbane & Women's Hospital, Herston, QLD 4029, Australia
| | - Craig M Lancaster
- Cancer Care Services, Royal Brisbane & Women's Hospital, Herston, QLD 4029, Australia
| | - Steven R Sylvander
- Cancer Care Services, Royal Brisbane & Women's Hospital, Herston, QLD 4029, Australia
| | - Benjamin Chua
- Cancer Care Services, Royal Brisbane & Women's Hospital, Herston, QLD 4029, Australia.,Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Catherine S Bettington
- Cancer Care Services, Royal Brisbane & Women's Hospital, Herston, QLD 4029, Australia.,Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Charles Y Lin
- Cancer Care Services, Royal Brisbane & Women's Hospital, Herston, QLD 4029, Australia.,Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Tanya Kairn
- Cancer Care Services, Royal Brisbane & Women's Hospital, Herston, QLD 4029, Australia.,Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
53
|
Eby A, Bleedorn J. A computed tomographic graphical approach to guide correction of femoral torsion. Vet Surg 2020; 49:1015-1023. [PMID: 32386242 DOI: 10.1111/vsu.13438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/24/2020] [Accepted: 03/26/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To report geometric methods to assess femoral transverse bone morphology and develop a virtual method to guide the surgical correction of femoral torsional deformities. STUDY DESIGN Observational study. SAMPLE POPULATION Sixteen client-owned dogs comprising 14 normal femurs and 14 femurs with angulation-rotation bone deformities. METHODS Femoral torsion angle was measured with computed tomographic (CT) three-dimensional (3D) multiplanar reconstruction. Distal femoral transverse morphology was estimated with geometric methods and compared to direct measurements to span a target 20° angle on 3D reconstructions. A virtual correction of 20° was performed, and 3D-printed bone models were created. Femoral torsion of corrected bone models was compared to precorrection. RESULTS Geometric estimates with an arc and chord of the metaphyseal area and chord of a best fit circle did not differ from direct measurement of femoral cortical length along the cranial cortex. Femoral torsion differed between normal femurs (25.8° ± 6°) and those with deformity (36.9° ± 8.4°, P < .001). Torsion that was measured on corrected 3D bone models did not differ from the expected torsion (preoperative +20°). CONCLUSION Geometric methods provided an accurate estimate of distal femoral transverse bone morphology. Rotation of the distal femur based on geometric methods resulted in an accurate correction of torsion. CLINICAL SIGNIFICANCE Femoral bone diameter can be measured on a CT cross-section, and rotation distance can be calculated to achieve a desired correction of torsion. This approach provides a simple and accurate method to guide the correction of femoral torsion.
Collapse
Affiliation(s)
- Adam Eby
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Jason Bleedorn
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
54
|
Quasi-simultaneous 3D printing of muscle-, lung- and bone-equivalent media: a proof-of-concept study. Phys Eng Sci Med 2020; 43:701-710. [DOI: 10.1007/s13246-020-00864-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/28/2020] [Indexed: 01/26/2023]
|
55
|
Tino R, Yeo A, Leary M, Brandt M, Kron T. A Systematic Review on 3D-Printed Imaging and Dosimetry Phantoms in Radiation Therapy. Technol Cancer Res Treat 2020; 18:1533033819870208. [PMID: 31514632 PMCID: PMC6856980 DOI: 10.1177/1533033819870208] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Additive manufacturing or 3-dimensional printing has become a widespread technology with many applications in medicine. We have conducted a systematic review of its application in radiation oncology with a particular emphasis on the creation of phantoms for image quality assessment and radiation dosimetry. Traditionally used phantoms for quality assurance in radiotherapy are often constraint by simplified geometry and homogenous nature to perform imaging analysis or pretreatment dosimetric verification. Such phantoms are limited due to their ability in only representing the average human body, not only in proportion and radiation properties but also do not accommodate pathological features. These limiting factors restrict the patient-specific quality assurance process to verify image-guided positioning accuracy and/or dose accuracy in "water-like" condition. METHODS AND RESULTS English speaking manuscripts published since 2008 were searched in 5 databases (Google Scholar, Scopus, PubMed, IEEE Xplore, and Web of Science). A significant increase in publications over the 10 years was observed with imaging and dosimetry phantoms about the same total number (52 vs 50). Key features of additive manufacturing are the customization with creation of realistic pathology as well as the ability to vary density and as such contrast. Commonly used printing materials, such as polylactic acid, acrylonitrile butadiene styrene, high-impact polystyrene and many more, are utilized to achieve a wide range of achievable X-ray attenuation values from -1000 HU to 500 HU and higher. Not surprisingly, multimaterial printing using the polymer jetting technology is emerging as an important printing process with its ability to create heterogeneous phantoms for dosimetry in radiotherapy. CONCLUSION Given the flexibility and increasing availability and low cost of additive manufacturing, it can be expected that its applications for radiation medicine will continue to increase.
Collapse
Affiliation(s)
- Rance Tino
- RMIT Centre for Additive Manufacture, Innovative Manufacturing Research Group (Medical Manufacturing), RMIT University, Melbourne, Australia.,ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology, Brisbane, Australia.,Physical Sciences Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Adam Yeo
- Physical Sciences Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Martin Leary
- RMIT Centre for Additive Manufacture, Innovative Manufacturing Research Group (Medical Manufacturing), RMIT University, Melbourne, Australia.,ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology, Brisbane, Australia
| | - Milan Brandt
- RMIT Centre for Additive Manufacture, Innovative Manufacturing Research Group (Medical Manufacturing), RMIT University, Melbourne, Australia.,ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology, Brisbane, Australia
| | - Tomas Kron
- ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology, Brisbane, Australia.,Physical Sciences Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
56
|
PLA as a suitable 3D printing thermoplastic for use in external beam radiotherapy. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2019; 42:1165-1176. [DOI: 10.1007/s13246-019-00818-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/05/2019] [Indexed: 11/26/2022]
|
57
|
Neumann W, Pusch TP, Siegfarth M, Schad LR, Stallkamp JL. CT and MRI compatibility of flexible 3D-printed materials for soft actuators and robots used in image-guided interventions. Med Phys 2019; 46:5488-5498. [PMID: 31587313 DOI: 10.1002/mp.13852] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/12/2019] [Accepted: 09/26/2019] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Three-dimensional (3D) printing allows for the fabrication of medical devices with complex geometries, such as soft actuators and robots that can be used in image-guided interventions. This study investigates flexible and rigid 3D-printing materials in terms of their impact on multimodal medical imaging. METHODS The generation of artifacts in clinical computer tomography (CT) and magnetic resonance (MR) imaging was evaluated for six flexible and three rigid materials, each with a cubical and a cylindrical geometry, and for one exemplary flexible fluidic actuator. Additionally, CT Hounsfield units (HU) were quantified for various parameter sets iterating peak voltage, x-ray tube current, slice thickness, and convolution kernel. RESULTS We found the image artifacts caused by the materials to be negligible in both CT and MR images. The HU values mainly depended on the elemental composition of the materials and applied peak voltage was ranging between 80 and 140 kVp. Flexible, nonsilicone-based materials were ranged between 51 and 114 HU. The voltage dependency was less than 29 HU. Flexible, silicone-based materials were ranged between 60 and 365 HU. The voltage-dependent influence was as large as 172 HU. Rigid materials ranged between -69 and 132 HU. The voltage-dependent influence was <33 HU. CONCLUSIONS All tested materials may be employed for devices placed in the field of view during CT and MR imaging as no significant artifacts were measured. Moreover, the material selection in CT could be based on the desired visibility of the material depending on the application. Given the wide availability of the tested materials, we expect our results to have a positive impact on the development of devices and robots for image-guided interventions.
Collapse
Affiliation(s)
- Wiebke Neumann
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Tim P Pusch
- Fraunhofer Institute for Manufacturing Engineering and Automation, Project Group for Automation in Medicine and Biotechnology, 68167, Mannheim, Germany
| | - Marius Siegfarth
- Fraunhofer Institute for Manufacturing Engineering and Automation, Project Group for Automation in Medicine and Biotechnology, 68167, Mannheim, Germany
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Jan L Stallkamp
- Fraunhofer Institute for Manufacturing Engineering and Automation, Project Group for Automation in Medicine and Biotechnology, 68167, Mannheim, Germany.,Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| |
Collapse
|
58
|
Irnstorfer N, Unger E, Hojreh A, Homolka P. An anthropomorphic phantom representing a prematurely born neonate for digital x-ray imaging using 3D printing: Proof of concept and comparison of image quality from different systems. Sci Rep 2019; 9:14357. [PMID: 31591433 PMCID: PMC6779877 DOI: 10.1038/s41598-019-50925-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023] Open
Abstract
An anthropomorphic phantom for image optimization in neonatal radiography was developed, and its usability in optimizing image acquisition and processing demonstrated. The phantom was designed to mimic a patient image of a prematurely born neonate. A clinical x-ray (neonate <1 kg) taken with an effective dose of 11 µSv on a needle-crystal storage phosphor system was retrospectively selected from anonymized images as an appropriate template representing a standard case in neonatology imaging. The low dose level used in clinical imaging results in high image noise content. Therefore, the image had to be processed using structure preserving noise reduction. Pixel values were related to printing material thickness to result in a similar attenuation pattern as the original patient including support mattress. A 3D model generating a similar x-ray attenuation pattern on an image detector as a patient was derived accounting for beam hardening and perspective, and printed using different printing technologies. Best printing quality was achieved using a laser stereolithography printer. Phantom images from different digital radiography systems used in neonatal imaging were compared. Effects of technology, image processing, and radiation dose on diagnostic image quality can be assessed for otherwise identical anthropomorphic neonatal images not possible with patient images, facilitating optimization and standardization of imaging parameters and image appearance.
Collapse
Affiliation(s)
- Nikolaus Irnstorfer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Ewald Unger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Azadeh Hojreh
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Peter Homolka
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
59
|
Mathew E, Domínguez-Robles J, Stewart SA, Mancuso E, O'Donnell K, Larrañeta E, Lamprou DA. Fused Deposition Modeling as an Effective Tool for Anti-Infective Dialysis Catheter Fabrication. ACS Biomater Sci Eng 2019; 5:6300-6310. [PMID: 33405537 DOI: 10.1021/acsbiomaterials.9b01185] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Catheter-associated infections are a common complication that occurs in dialysis patients. Current strategies to prevent infection include catheter coatings containing heparin, pyrogallol, or silver nanoparticles, which all have an increased risk of causing resistance in bacteria. Therefore, a novel approach for manufacture, such as the use of additive manufacturing (AM), also known as three-dimensional (3D) printing, is required. Filaments were produced by extrusion using thermoplastic polyurethane (TPU) and tetracycline hydrochloride (TC) in various concentrations (e.g., 0, 0.25, 0.5, and 1%). The extruded filaments were used in a fused deposition modeling (FDM) 3D printer to print catheter constructs at varying concentrations. Release studies in phosphate-buffered saline, microbiology studies, thermal analysis, contact angle, attenuated total reflection-Fourier transform infrared, scanning electron microscopy, and X-ray microcomputer tomography (μCT) analysis were conducted on the printed catheters. The results suggested that TC was uniformly distributed within the TPU matrix. The microbiology testing of the catheters showed that devices containing TC had an inhibitory effect on the growth of Staphylococcus aureus NCTC 10788 bacteria. Catheters containing 1% TC maintained inhibitory effect after 10 day release studies. After an initial burst release in the first 24 h, there was a steady release of TC in all concentrations of catheters. 3D-printed antibiotic catheters were successfully printed with inhibitory effect on S. aureus bacteria. Finally, TC containing catheters showed resistance to S. aureus adherence to their surfaces when compared with catheters containing no TC. Catheters containing 1% of TC showed a bacterial adherence reduction of up to 99.97%. Accordingly, the incorporation of TC to TPU materials can be effectively used to prepare anti-infective catheters using FDM. This study highlights the potential for drug-impregnated medical devices to be created through AM.
Collapse
Affiliation(s)
- Essyrose Mathew
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| | - Sarah A Stewart
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| | - Elena Mancuso
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown Campus BT37 0QB, U.K
| | - Kieran O'Donnell
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown Campus BT37 0QB, U.K
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| |
Collapse
|
60
|
Brivio D, Naumann L, Albert S, Sajo E, Zygmanski P. 3D printing for rapid prototyping of low-Z/density ionization chamber arrays. Med Phys 2019; 46:5770-5779. [PMID: 31571224 DOI: 10.1002/mp.13841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 12/31/2022] Open
Abstract
PURPOSE To explore 3D printing for rapid development of prototype thin slab low-Z/density ionization chamber arrays viable for custom needs in radiotherapy dosimetry and quality assurance (QA). MATERIALS AND METHODS We designed and fabricated parallel plate ionization chambers and ionization chamber arrays using an off-the-shelf 3D printing equipment. Conductive components of the detectors were made of conductive polylactic acid (cPLA) and insulating components were made of acrylonitrile butadiene styrene (ABS). We characterized the detector responses using a Varian TrueBeam linac at 95 cm SSD in slab solid water phantom at 5 cm depth. We measured the current-voltage (IV) curves, the response to different energy beam lines (2.5 MV, 6 MV, 6 MV FFF) for various dose rates and compared them to responses of a commercial Exradin A12 ionization chamber. We measured off-axis ratio (OAR) for several small field static multi-leaf collimators field sizes (0.5-3 cm) and compared them to OAR data obtained for commissioning of stereotactic radiotherapy. RESULTS We identified the printing capability and the limitations of a low-cost off-the-shelf 3D printer for rapid prototyping of detector arrays. The design of the array with sub-millimeter size features conformed to the 3D printing capabilities. IV-curve for the array showed a strong polarity effect (8%) due to the design. Results for the parallel plate and the array compared well with A12 chamber: monitor unit (MU) dependence for the array was within a few % and the response to different energy beam lines was within 1%. Off-axis dose profiles measured with the array were comparable to dose profiles obtained in water tank and stereotactic diode after accounting for the size of the chambers. Dose error was within 2% at the center of the profile and slightly larger at the penumbra. CONCLUSIONS Rapid prototyping of ion chambers by means of low-cost 3D printing is feasible with certain limitations in the design and spatial accuracy of the printed details.
Collapse
Affiliation(s)
- Davide Brivio
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Louise Naumann
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Steffen Albert
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Heidelberg University, Heidelberg, Germany.,University of Massachusetts Lowell, Lowell, MA, USA
| | - Erno Sajo
- University of Massachusetts Lowell, Lowell, MA, USA
| | - Piotr Zygmanski
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
61
|
Biglin ER, Price GJ, Chadwick AL, Aitkenhead AH, Williams KJ, Kirkby KJ. Preclinical dosimetry: exploring the use of small animal phantoms. Radiat Oncol 2019; 14:134. [PMID: 31366364 PMCID: PMC6670203 DOI: 10.1186/s13014-019-1343-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/22/2019] [Indexed: 11/16/2022] Open
Abstract
Preclinical radiotherapy studies using small animals are an indispensable step in the pathway from in vitro experiments to clinical implementation. As radiotherapy techniques advance in the clinic, it is important that preclinical models evolve to keep in line with these developments. The use of orthotopic tumour sites, the development of tissue-equivalent mice phantoms and the recent introduction of image-guided small animal radiation research platforms has enabled similar precision treatments to be delivered in the laboratory. These technological developments, however, are hindered by a lack of corresponding dosimetry standards and poor reporting of methodologies. Without robust and well documented preclinical radiotherapy quality assurance processes, it is not possible to ensure the accuracy and repeatability of dose measurements between laboratories. As a consequence current RT-based preclinical models are at risk of becoming irrelevant. In this review we explore current standardization initiatives, focusing in particular on recent developments in small animal irradiation equipment, 3D printing technology to create customisable tissue-equivalent dosimetry phantoms and combining these phantoms with commonly used detectors.
Collapse
Affiliation(s)
- Emma R Biglin
- Division of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, 3rd floor Proton Beam Therapy Centre, Oak Road, Manchester, M20 4BX, UK.
| | - Gareth J Price
- Division of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, 3rd floor Proton Beam Therapy Centre, Oak Road, Manchester, M20 4BX, UK.,The Christie NHS Foundation Trust, Manchester, UK
| | - Amy L Chadwick
- Division of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, 3rd floor Proton Beam Therapy Centre, Oak Road, Manchester, M20 4BX, UK.,The Christie NHS Foundation Trust, Manchester, UK
| | - Adam H Aitkenhead
- Division of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, 3rd floor Proton Beam Therapy Centre, Oak Road, Manchester, M20 4BX, UK.,The Christie NHS Foundation Trust, Manchester, UK
| | - Kaye J Williams
- Division of Pharmacy and Optometry, University of Manchester, Manchester, UK
| | - Karen J Kirkby
- Division of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, 3rd floor Proton Beam Therapy Centre, Oak Road, Manchester, M20 4BX, UK.,The Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|
62
|
Esposito G, Mettivier G, Bliznakova K, Bliznakov Z, Bosmans H, Bravin A, Buliev I, Di Lillo F, Ivanov D, Minutillo M, Sarno A, Vignero J, Russo P. Investigation of the refractive index decrement of 3D printing materials for manufacturing breast phantoms for phase contrast imaging. ACTA ACUST UNITED AC 2019; 64:075008. [DOI: 10.1088/1361-6560/ab0670] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
63
|
Kitamori H, Sumida I, Tsujimoto T, Shimamoto H, Murakami S, Ohki M. Evaluation of mouthpiece fixation devices for head and neck radiotherapy patients fabricated in PolyJet photopolymer by a 3D printer. Phys Med 2019; 58:90-98. [DOI: 10.1016/j.ejmp.2019.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 11/30/2022] Open
|
64
|
Hernandez-Giron I, den Harder JM, Streekstra GJ, Geleijns J, Veldkamp WJ. Development of a 3D printed anthropomorphic lung phantom for image quality assessment in CT. Phys Med 2019; 57:47-57. [DOI: 10.1016/j.ejmp.2018.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/31/2018] [Accepted: 11/21/2018] [Indexed: 11/26/2022] Open
|
65
|
The Barrow Biomimetic Spine: Fluoroscopic Analysis of a Synthetic Spine Model Made of Variable 3D-printed Materials and Print Parameters. Spine (Phila Pa 1976) 2018; 43:E1368-E1375. [PMID: 29750754 DOI: 10.1097/brs.0000000000002715] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Objective and subjective fluoroscopic assessments of a new synthetic spine model. OBJECTIVE The aim of this study was to analyze the fluoroscopic performance and fidelity to human tissue of a new synthetic spine model. SUMMARY OF BACKGROUND DATA The Barrow Biomimetic Spine project aims to develop a 3-dimensional (3D) printed, synthetic spine model that will one day replace cadaveric tissue in spine biomechanical research. A crucial component to any biomimetic spine model is that it performs similarly to cadaveric tissue on standard diagnostic imaging modalities. METHODS Numerous L5 vertebral bodies (VBs) were 3D printed with variable shell thicknesses and internal densities, and fluoroscopic images were taken of these models to measure cortical thickness and gray-scale density. An L3-L5 spinal segment was then printed, and fluoroscopic films were obtained at variable C-arm angles. Three spine surgeons subjectively scored these images for human fidelity. Pedicle screws were then placed into the L3-L5 segment to demonstrate successful or breached placement. Standard anteroposterior (AP) and lateral films were taken, and three spine surgeons were tested and scored on correctly identifying screw placement. RESULTS Cortical thickness and gray-scale density testing demonstrated an upward trend with increases in relevant print settings. Subjective scoring demonstrated nearly perfect fidelity for the L3-L5 model. Surgeon identification of screw placement on the AP and lateral fluoroscopic views also demonstrated nearly perfect fidelity. CONCLUSION This study is the first to demonstrate that 3D-printed VB and segmental spine models accurately mimic human tissue on C-arm fluoroscopy, not only in respect to their anatomical appearance in standard views but also in their response to surgical manipulation and the variations in C-arm angle that commonly occur in the operating room. As such, these spine models have the potential to serve as an excellent platform for future research and surgical education programs. LEVEL OF EVIDENCE N/A.
Collapse
|
66
|
Craft DF, Balter P, Woodward W, Kry SF, Salehpour M, Ger R, Peters M, Baltz G, Traneus E, Howell RM. Design, fabrication, and validation of patient-specific electron tissue compensators for postmastectomy radiation therapy. Phys Imaging Radiat Oncol 2018; 8:38-43. [PMID: 33458415 PMCID: PMC7807570 DOI: 10.1016/j.phro.2018.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 11/17/2022] Open
Abstract
Background and purpose Postmastectomy radiotherapy (PMRT) is complex to plan and deliver, but could be improved with 3D-printed, patient-specific electron tissue compensators. The purposes of this study were to develop an algorithm to design patient-specific compensators that achieve clinical goals, to 3D-print the planned compensators, and validate calculated dose distributions with film and thermoluminescent dosimeter (TLD) measurements in 3D-printed phantoms of PMRT patients. Materials and methods An iterative algorithm was developed to design compensators corresponding to single-field, single-energy electron plans for PMRT patients. The 3D-printable compensators were designed to fit into the electron aperture, with cerrobend poured around it. For a sample of eight patients, calculated dose distributions for compensator plans were compared with patients’ (multi-field, multi-energy) clinical treatment plans. For all patients, dosimetric parameters were compared including clinical target volume (CTV), lung, and heart metrics. For validation, compensators were fabricated and irradiated for a set of six 3D-printed patient-specific phantoms. Dose distributions in the phantoms were measured with TLD and film. These measurements were compared with the treatment planning system calculated dose distributions. Results The compensator treatment plans achieved superior CTV coverage (97% vs 89% of the CTV receiving the prescription dose, p < 0.0025), and similar heart and lung doses (p > 0.35) to the conventional treatment plans. Average differences between calculated and measured TLD values were 2%, and average film profile differences were <2 mm. Conclusions We developed a new compensator based treatment methodology for PMRT and demonstrated its validity and superiority to conventional multi-field plans through end-to-end testing.
Collapse
Affiliation(s)
- Daniel F. Craft
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
- Corresponding author at: Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 94, Houston, TX 77030, USA.
| | - Peter Balter
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Wendy Woodward
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stephen F. Kry
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Mohammad Salehpour
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Rachel Ger
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Mary Peters
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Garrett Baltz
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Erik Traneus
- RaySearch Laboratories AB, Stockholm 111 34, Sweden
| | - Rebecca M. Howell
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| |
Collapse
|
67
|
Dipasquale G, Poirier A, Sprunger Y, Uiterwijk JWE, Miralbell R. Improving 3D-printing of megavoltage X-rays radiotherapy bolus with surface-scanner. Radiat Oncol 2018; 13:203. [PMID: 30340612 PMCID: PMC6194575 DOI: 10.1186/s13014-018-1148-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Computed tomography (CT) data used for patient radiotherapy planning can nowadays be used to create 3D-printed boluses. Nevertheless, this methodology requires a second CT scan and planning process when immobilization masks are used in order to fit the bolus under it for treatment. This study investigates the use of a high-grade surface-scanner to produce, prior to the planning CT scan, a 3D-printed bolus in order to increase the workflow efficiency, improve treatment quality and avoid extra radiation dose to the patient. METHODS The scanner capabilities were tested on a phantom and on volunteers. A phantom was used to produce boluses in the orbital region either from CT data (resolution ≈1 mm), or from surface-scanner images (resolution 0.05 mm). Several 3D-printing techniques and materials were tested. To quantify which boluses fit best, they were placed on the phantom and scanned by CT. Hounsfield Unit (HU) profiles were traced perpendicular to the phantom's surface. The minimum HU in the profiles was compared to the HU values for calibrated air-gaps. Boluses were then created from surface images of volunteers to verify the feasibility of surface-scanner use in-vivo. RESULTS Phantom based tests showed a better fit of boluses modeled from surface-scanner than from CT data. Maximum bolus-to-skin air gaps were 1-2 mm using CT models and always < 0.6 mm using surface-scanner models. Tests on volunteers showed good and comfortable fit of boluses produced from surface-scanner images acquired in 0.6 to 7 min. Even in complex surface regions of the body such as ears and fingers, the high-resolution surface-scanner was able to acquire good models. A breast bolus model generated from images acquired in deep inspiration breath hold was also successful. None of the 3D-printed bolus using surface-scanner models required enlarging or shrinking of the initial model acquired in-vivo. CONCLUSIONS Regardless of the material or printing technique, 3D-printed boluses created from high-resolution surface-scanner images proved to be superior in fitting compared to boluses created from CT data. Tests on volunteers were promising, indicating the possibility to improve overall radiotherapy treatments, primarily for megavoltage X-rays, using bolus modeled from a high-resolution surface-scanner even in regions of complex surface anatomy.
Collapse
Affiliation(s)
- Giovanna Dipasquale
- Department of Radiation Oncology, Geneva University Hospital, CH-1211, 14, Geneva, Switzerland.
| | | | | | | | - Raymond Miralbell
- Department of Radiation Oncology, Geneva University Hospital, CH-1211, 14, Geneva, Switzerland.,Faculty of Medicine, Geneva University, Geneva, Switzerland
| |
Collapse
|
68
|
Workload implications for clinic workflow with implementation of three-dimensional printed customized bolus for radiation therapy: A pilot study. PLoS One 2018; 13:e0204944. [PMID: 30273403 PMCID: PMC6166970 DOI: 10.1371/journal.pone.0204944] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 09/16/2018] [Indexed: 11/19/2022] Open
Abstract
Bolus is commonly used in radiation therapy to improve radiation dose distribution to the target volume, but commercially available products do not always conform well to the patient surface. Tumor control may be compromised, particularly for superficial tumors, if bolus does not conform well and air gaps exist between the patient surface and the bolus. Three-dimensional (3D) printing technology allows the creation of highly detailed, variable shaped objects, making it an attractive and affordable option for customized, patient-specific bolus creation. The use of 3D printing in the clinical setting remains limited. Therefore, the objective of this study was to assess the implications on time and clinical fit using a workflow for 3D printing of customized bolus in companion animals with spontaneous tumors treated with radiation therapy. The primary aim of this study was to evaluate the time required to create a clinical 3D printed bolus. The secondary aims were to evaluate the clinical fit of the bolus and to verify the skin surface dose. Time to segmentation and 3D printing were documented, while the clinical fit of the bolus was assessed in comparison to the bolus created in the treatment planner. The mean and median time from segmentation to generation of 3D printed boluses was 6.15 h and 5.25 h, respectively. The 3D printed bolus was significantly less deviated from the planned bolus compared to the conventional bolus (p = 0.0078) with measured dose under the bolus within 5% agreement of expected dose in 88% of the measurements. Clinically acceptable 3D printed customized bolus was successfully created for treatment within one working day. The most significant impact on time is the 3D printing itself, which therefore has minimal implications on personnel and staffing. Quality assurance steps are recommended when implementing a 3D printing workflow to the radiotherapy clinic.
Collapse
|
69
|
Okkalidis N. A novel 3D printing method for accurate anatomy replication in patient-specific phantoms. Med Phys 2018; 45:4600-4606. [DOI: 10.1002/mp.13154] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/02/2018] [Accepted: 08/16/2018] [Indexed: 11/09/2022] Open
Affiliation(s)
- Nikiforos Okkalidis
- Medical Physics Department; Faculty of Health Sciences; University of Malta; Msida MSD2080 Malta
- Centre for Biomedical Cybernetics; Faculty of Engineering; University of Malta; Msida MSD2080 Malta
| |
Collapse
|
70
|
Ivanov D, Bliznakova K, Buliev I, Popov P, Mettivier G, Russo P, Di Lillo F, Sarno A, Vignero J, Bosmans H, Bravin A, Bliznakov Z. Suitability of low density materials for 3D printing of physical breast phantoms. ACTA ACUST UNITED AC 2018; 63:175020. [DOI: 10.1088/1361-6560/aad315] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
71
|
Meyer T, Quirk S, D'Souza M, Spencer D, Roumeliotis M. A framework for clinical commissioning of 3D-printed patient support or immobilization devices in photon radiotherapy. J Appl Clin Med Phys 2018; 19:499-505. [PMID: 29984551 PMCID: PMC6123103 DOI: 10.1002/acm2.12408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/29/2018] [Accepted: 06/05/2018] [Indexed: 11/11/2022] Open
Abstract
PURPOSE The objective of this work is to outline a framework for dosimetric characterization that will comprehensively detail the clinical commissioning steps for 3D-printed materials applied as patient support or immobilization devices in photon radiotherapy. The complex nature of 3D-printed materials with application to patient-specific configurations requires careful consideration. The framework presented is generalizable to any 3D-printed object where the infill and shell combinations are unknown. METHODS A representative cylinder and wedge were used as test objects to characterize devices that may be printed of unknown, patient-specific dimensions. A case study of a 3D-printed CSI immobilization board was presented as an example of an object of known, but adaptable dimensions and proprietary material composition. A series of measurements were performed to characterize the material's kV radiologic properties, MV attenuation measurements and calculations, energy spectrum water equivalency, and surface dose measurements. These measurements complement the recommendations of the AAPM's TG176 to characterize the additional complexity of 3D-printed materials for use in a clinical radiotherapy environment. RESULTS The dosimetric characterization of 3D-printed test objects and a case study device informed the development of a step-by-step template that can easily be followed by clinicians to accurately and safely utilize 3D-printed materials as patient-specific support or immobilization devices. CONCLUSIONS A series of steps is outlined to provide a formulaic approach to clinically commission 3D-printed materials that may possess varying material composition, infill patterns, and patient-specific dimensions.
Collapse
Affiliation(s)
- Tyler Meyer
- Department of Oncology, University of Calgary, Calgary, AB, Canada.,Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada.,Medical Physics Department, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Sarah Quirk
- Department of Oncology, University of Calgary, Calgary, AB, Canada.,Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada.,Medical Physics Department, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Malgorzata D'Souza
- Medical Physics Department, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - David Spencer
- Department of Oncology, University of Calgary, Calgary, AB, Canada.,Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada.,Medical Physics Department, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Michael Roumeliotis
- Department of Oncology, University of Calgary, Calgary, AB, Canada.,Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada.,Medical Physics Department, Tom Baker Cancer Centre, Calgary, AB, Canada
| |
Collapse
|
72
|
Ehler E, Craft D, Rong Y. 3D printing technology will eventually eliminate the need of purchasing commercial phantoms for clinical medical physics QA procedures. J Appl Clin Med Phys 2018; 19:8-12. [PMID: 29943910 PMCID: PMC6036387 DOI: 10.1002/acm2.12392] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 11/07/2022] Open
Affiliation(s)
- Eric Ehler
- Department of Radiation OncologyUniversity of MinnesotaMinneapolisMN55455USA
| | - Daniel Craft
- Department of Radiation PhysicsUniversity of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Yi Rong
- Department of Radiation OncologyUniversity of California Davis Comprehensive Cancer CenterSacramentoCA95817USA
| |
Collapse
|
73
|
Filippou V, Tsoumpas C. Recent advances on the development of phantoms using 3D printing for imaging with CT, MRI, PET, SPECT, and ultrasound. Med Phys 2018; 45. [PMID: 29933508 PMCID: PMC6849595 DOI: 10.1002/mp.13058] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/03/2018] [Accepted: 06/15/2018] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Printing technology, capable of producing three-dimensional (3D) objects, has evolved in recent years and provides potential for developing reproducible and sophisticated physical phantoms. 3D printing technology can help rapidly develop relatively low cost phantoms with appropriate complexities, which are useful in imaging or dosimetry measurements. The need for more realistic phantoms is emerging since imaging systems are now capable of acquiring multimodal and multiparametric data. This review addresses three main questions about the 3D printers currently in use, and their produced materials. The first question investigates whether the resolution of 3D printers is sufficient for existing imaging technologies. The second question explores if the materials of 3D-printed phantoms can produce realistic images representing various tissues and organs as taken by different imaging modalities such as computer tomography (CT), positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), ultrasound (US), and mammography. The emergence of multimodal imaging increases the need for phantoms that can be scanned using different imaging modalities. The third question probes the feasibility and easiness of "printing" radioactive or nonradioactive solutions during the printing process. METHODS A systematic review of medical imaging studies published after January 2013 is performed using strict inclusion criteria. The databases used were Scopus and Web of Knowledge with specific search terms. In total, 139 papers were identified; however, only 50 were classified as relevant for this paper. In this review, following an appropriate introduction and literature research strategy, all 50 articles are presented in detail. A summary of tables and example figures of the most recent advances in 3D printing for the purposes of phantoms across different imaging modalities are provided. RESULTS All 50 studies printed and scanned phantoms in either CT, PET, SPECT, mammography, MRI, and US-or a combination of those modalities. According to the literature, different parameters were evaluated depending on the imaging modality used. Almost all papers evaluated more than two parameters, with the most common being Hounsfield units, density, attenuation and speed of sound. CONCLUSIONS The development of this field is rapidly evolving and becoming more refined. There is potential to reach the ultimate goal of using 3D phantoms to get feedback on imaging scanners and reconstruction algorithms more regularly. Although the development of imaging phantoms is evident, there are still some limitations to address: One of which is printing accuracy, due to the printer properties. Another limitation is the materials available to print: There are not enough materials to mimic all the tissue properties. For example, one material can mimic one property-such as the density of real tissue-but not any other property, like speed of sound or attenuation.
Collapse
Affiliation(s)
- Valeria Filippou
- Institute of Medical and Biological EngineeringFaculty of Mechanical EngineeringUniversity of LeedsLeedsLS2 9JTWest YorkshireUK
| | - Charalampos Tsoumpas
- Department of Biomedical Imaging ScienceSchool of MedicineUniversity of LeedsLeedsLS2 9NLWest YorkshireUK
| |
Collapse
|
74
|
Craft DF, Kry SF, Balter P, Salehpour M, Woodward W, Howell RM. Material matters: Analysis of density uncertainty in 3D printing and its consequences for radiation oncology. Med Phys 2018; 45:1614-1621. [DOI: 10.1002/mp.12839] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/07/2017] [Accepted: 01/14/2018] [Indexed: 11/08/2022] Open
Affiliation(s)
- Daniel F. Craft
- Department of Radiation Physics; The University of Texas MD Anderson Cancer Center; Houston TX 77030 USA
- The University of Texas Graduate School of Biomedical Sciences at Houston; Houston TX 77030 USA
| | - Stephen F. Kry
- Department of Radiation Physics; The University of Texas MD Anderson Cancer Center; Houston TX 77030 USA
- The University of Texas Graduate School of Biomedical Sciences at Houston; Houston TX 77030 USA
| | - Peter Balter
- Department of Radiation Physics; The University of Texas MD Anderson Cancer Center; Houston TX 77030 USA
- The University of Texas Graduate School of Biomedical Sciences at Houston; Houston TX 77030 USA
| | - Mohammad Salehpour
- Department of Radiation Physics; The University of Texas MD Anderson Cancer Center; Houston TX 77030 USA
- The University of Texas Graduate School of Biomedical Sciences at Houston; Houston TX 77030 USA
| | - Wendy Woodward
- The University of Texas Graduate School of Biomedical Sciences at Houston; Houston TX 77030 USA
- Department of Radiation Oncology; The University of Texas MD Anderson Cancer Center; Houston TX 77030 USA
| | - Rebecca M. Howell
- Department of Radiation Physics; The University of Texas MD Anderson Cancer Center; Houston TX 77030 USA
- The University of Texas Graduate School of Biomedical Sciences at Houston; Houston TX 77030 USA
| |
Collapse
|
75
|
Robar JL, Moran K, Allan J, Clancey J, Joseph T, Chytyk-Praznik K, MacDonald RL, Lincoln J, Sadeghi P, Rutledge R. Intrapatient study comparing 3D printed bolus versus standard vinyl gel sheet bolus for postmastectomy chest wall radiation therapy. Pract Radiat Oncol 2017; 8:221-229. [PMID: 29452866 DOI: 10.1016/j.prro.2017.12.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/11/2017] [Accepted: 12/20/2017] [Indexed: 11/16/2022]
Abstract
PURPOSE This patient study evaluated the use of 3-dimensional (3D) printed bolus for chest wall radiation therapy compared with standard sheet bolus with regard to accuracy of fit, surface dose measured in vivo, and efficiency of patient setup. By alternating bolus type over the course of therapy, each patient served as her own control. METHODS AND MATERIALS For 16 patients undergoing chest wall radiation therapy, a custom 5.0 mm thick bolus was designed based on the treatment planning computed tomography scan and 3D printed using polylactic acid. Cone beam computed tomography scanning was used to image and quantify the accuracy of fit of the 2 bolus types with regard to air gaps between the bolus and skin. As a quality assurance measure for the 3D printed bolus, optically stimulated luminescent dosimetry provided in vivo comparison of surface dose at 7 points on the chest wall. Durations of patient setup and image guidance were recorded and compared. RESULTS In 13 of 16 patients, the bolus was printed without user intervention, and the median print time was 12.6 hours. The accuracy of fit of the bolus to the chest wall was improved significantly relative to standard sheet bolus, with the frequency of air gaps 5 mm or greater reduced from 30% to 13% (P < .001) and maximum air gap dimension diminished from 0.5 ± 0.3 to 0.3 ± 0.3 mm on average. Surface dose was within 3% for both standard sheet and 3D printed bolus. On average, the use of 3D printed bolus reduced the setup time from 104 to 76 seconds. CONCLUSIONS This study demonstrates 3D printed bolus in postmastectomy radiation therapy improves fit of the bolus and reduces patient setup time marginally compared with standard vinyl gel sheet bolus. The time savings on patient setup must be weighed against the considerable time needed for the 3D printing process.
Collapse
Affiliation(s)
- James L Robar
- Department of Radiation Oncology, Dalhousie University, Halifax, Canada; Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Canada; Nova Scotia Health Authority, Halifax, Canada.
| | | | - James Allan
- Nova Scotia Health Authority, Halifax, Canada
| | | | - Tami Joseph
- Nova Scotia Health Authority, Halifax, Canada
| | - Krista Chytyk-Praznik
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Canada; Nova Scotia Health Authority, Halifax, Canada
| | - R Lee MacDonald
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Canada
| | - John Lincoln
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Canada
| | - Parisa Sadeghi
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Canada
| | - Robert Rutledge
- Department of Radiation Oncology, Dalhousie University, Halifax, Canada; Nova Scotia Health Authority, Halifax, Canada
| |
Collapse
|