51
|
Liu X, Ye Y, Chen Y, Li X, Feng B, Cao G, Xiao J, Zeng W, Li X, Sun J, Ning D, Yang Y, Yao Z, Guo Y, Wang Q, Zhang Y, Ma W, Du Q, Zhang B, Liu T. Effects of prenatal exposure to air particulate matter on the risk of preterm birth and roles of maternal and cord blood LINE-1 methylation: A birth cohort study in Guangzhou, China. ENVIRONMENT INTERNATIONAL 2019; 133:105177. [PMID: 31622906 DOI: 10.1016/j.envint.2019.105177] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/10/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Epidemiological studies have found that increased risk of preterm birth (PTB) is associated with higher prenatal exposure to PM10 and PM2.5, but few studies have been conducted to assess the impacts of extremely fine particulate matter (PM1) which may have more toxic effects than other types of ambient particulate air pollution (PM). Several studies have separately investigated the associations between DNA methylation and PTB risk and PM. Maternal LINE-1 methylation level negatively correlated with prenatal exposure to PM and risk of PTB. A comprehensive picture is lacking regarding the associations between prenatal exposure to PM, LINE-1 methylation, and risk of PTB. OBJECTIVES This study aimed to estimate the effects of exposure to ambient PM (PM10, PM2.5, and PM1) of different sizes during pregnancy on risk of PTB, identify susceptible exposure windows, and illustrate the roles of LINE-1 methylation in the associations between PM and PTB risk. METHODS The Birth Cohort Study on Prenatal Environments and Offspring Health (PEOH) has been ongoing since 2016 in Guangzhou, China. A total of 4928 pregnant women were recruited during early pregnancy, and 4278 (86.8%) were successfully followed-up. Each individual weekly exposure to PM10 and PM2.5 from 3 months before pregnancy to childbirth was assessed using a spatiotemporal land use regression model, and the weekly PM1 exposure was estimated by employing a generalized additive model. Maternal and cord blood LINE-1 methylation levels (%5mC) were tested using bisulfite-PCR pyrosequencing. A distributed lag nonlinear model incorporated with a Cox proportional hazard model was applied to assess the effect of weekly-specific maternal PM exposure on PTB risk, and a multiple-linear regression model was employed to investigate the associations between PM exposure and LINE-1 methylation levels of maternal and cord bloods. We also assessed the associations between LINE-1 methylation levels and PTB risk by using a logistic regression model. RESULTS The risk of PTB was positively associated with PM2.5 and PM1 concentrations during the 12th to 20th gestational weeks, and the strongest association was in the fourth quartile (Q4) versus the first quartile (Q1) and observed during the 16th gestational week (PM2.5: harzard ratio [HR] = 1.18, 95%CI: 1.04-1.35, IQR = 11.94 μg/m3. PM1: HR = 1.20, 95%CI: 1.03-1.39, IQR = 11.36 μg/m3). We observed significantly negative associations of PM10(β = -0.51%5mC per 10 μg/m3, P = 0.014), PM2.5 (β = -0.66%5mC per 10 μg/m3, P = 0.032) and PM1 (β = -0.67%5mC per 10 μg/m3, P = 0.032) concentrations with cord blood LINE-1 methylation levels, and a negative association between PM1 concentration and maternal LINE-1 methylation level (β = -0.86%5mC per 10 μg/m3, P = 0.034). CONCLUSION Higher prenatal exposure to PM1 and PM2.5 during the 12th to 20th gestational weeks was associated with increased risk of PTB. Maternal and fetal LINE-1 methylation alternation might be an underlying mechanism of PM that increasing the risk of PTB.
Collapse
Affiliation(s)
- Xin Liu
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Yufeng Ye
- Guangzhou Panyu Central Hospital, Guangzhou 511400, China
| | - Yi Chen
- Guangzhou Panyu Central Hospital, Guangzhou 511400, China
| | - Xiaona Li
- Department of Environmental and Occupational Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Baixiang Feng
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Ganxiang Cao
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Jianpeng Xiao
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Weilin Zeng
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Xing Li
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Jiufeng Sun
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Dan Ning
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Yi Yang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Zhenjiang Yao
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Qiong Wang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yonghui Zhang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Wenjun Ma
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China; General Practice Center, Nanhai Hospital, Southern Medical University, Foshan 528200, China
| | - Qingfeng Du
- General Practice Center, Nanhai Hospital, Southern Medical University, Foshan 528200, China
| | - Bo Zhang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China; Department of Environmental and Occupational Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Tao Liu
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China; General Practice Center, Nanhai Hospital, Southern Medical University, Foshan 528200, China.
| |
Collapse
|
52
|
Siddika N, Rantala AK, Antikainen H, Balogun H, Amegah AK, Ryti NRI, Kukkonen J, Sofiev M, Jaakkola MS, Jaakkola JJK. Synergistic effects of prenatal exposure to fine particulate matter (PM 2.5) and ozone (O 3) on the risk of preterm birth: A population-based cohort study. ENVIRONMENTAL RESEARCH 2019; 176:108549. [PMID: 31252204 DOI: 10.1016/j.envres.2019.108549] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND There is some evidence that prenatal exposure to low-level air pollution increases the risk of preterm birth (PTB), but little is known about synergistic effects of different pollutants. OBJECTIVES We assessed the independent and joint effects of prenatal exposure to air pollution during the entire duration of pregnancy. METHODS The study population consisted of the 2568 members of the Espoo Cohort Study, born between 1984 and 1990, and living in the City of Espoo, Finland. We assessed individual-level prenatal exposure to ambient air pollutants of interest at all the residential addresses from conception to birth. The pollutant concentrations were estimated both by using regional-to-city-scale dispersion modelling and land-use regression-based method. We applied Poisson regression analysis to estimate the adjusted risk ratios (RRs) with their 95% confidence intervals (CI) by comparing the risk of PTB among babies with the highest quartile (Q4) of exposure during the entire duration of pregnancy with those with the lower exposure quartiles (Q1-Q3). We adjusted for season of birth, maternal age, sex of the baby, family's socioeconomic status, maternal smoking during pregnancy, maternal exposure to environmental tobacco smoke during pregnancy, single parenthood, and exposure to other air pollutants (only in multi-pollutant models) in the analysis. RESULTS In a multi-pollutant model estimating the effects of exposure during entire pregnancy, the adjusted RR was 1.37 (95% CI: 0.85, 2.23) for PM2.5 and 1.64 (95% CI: 1.15, 2.35) for O3. The joint effect of PM2.5 and O3 was substantially higher, an adjusted RR of 3.63 (95% CI: 2.16, 6.10), than what would have been expected from their independent effects (0.99 for PM2.5 and 1.34 for O3). The relative risk due to interaction (RERI) was 2.30 (95% CI: 0.95, 4.57). DISCUSSION Our results strengthen the evidence that exposure to fairly low-level air pollution during pregnancy increases the risk of PTB. We provide novel observations indicating that individual air pollutants such as PM2.5 and O3 may act synergistically potentiating each other's adverse effects.
Collapse
Affiliation(s)
- Nazeeba Siddika
- Center for Environmental and Respiratory Health Research, Faculty of Medicine, P.O. Box 5000, FI-90014, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital, P.O. Box 8000, FI-90014, University of Oulu, Oulu, Finland
| | - Aino K Rantala
- Center for Environmental and Respiratory Health Research, Faculty of Medicine, P.O. Box 5000, FI-90014, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital, P.O. Box 8000, FI-90014, University of Oulu, Oulu, Finland
| | - Harri Antikainen
- Geography Research Unit, P.O. Box 3000, 90014, University of Oulu, Oulu, Finland
| | - Hamudat Balogun
- Center for Environmental and Respiratory Health Research, Faculty of Medicine, P.O. Box 5000, FI-90014, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital, P.O. Box 8000, FI-90014, University of Oulu, Oulu, Finland
| | - A Kofi Amegah
- Public Health Research Group, Department of Biomedical Sciences, University Post Office, University of Cape Coast, Cape Coast, Ghana
| | - Niilo R I Ryti
- Center for Environmental and Respiratory Health Research, Faculty of Medicine, P.O. Box 5000, FI-90014, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital, P.O. Box 8000, FI-90014, University of Oulu, Oulu, Finland
| | - Jaakko Kukkonen
- Finnish Meteorological Institute, P.O. Box 503, FI-00101, Helsinki, Finland
| | - Mikhail Sofiev
- Finnish Meteorological Institute, P.O. Box 503, FI-00101, Helsinki, Finland
| | - Maritta S Jaakkola
- Center for Environmental and Respiratory Health Research, Faculty of Medicine, P.O. Box 5000, FI-90014, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital, P.O. Box 8000, FI-90014, University of Oulu, Oulu, Finland
| | - Jouni J K Jaakkola
- Center for Environmental and Respiratory Health Research, Faculty of Medicine, P.O. Box 5000, FI-90014, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital, P.O. Box 8000, FI-90014, University of Oulu, Oulu, Finland.
| |
Collapse
|
53
|
Liang Z, Yang Y, Li J, Zhu X, Ruan Z, Chen S, Huang G, Lin H, Zhou JY, Zhao Q. Migrant population is more vulnerable to the effect of air pollution on preterm birth: Results from a birth cohort study in seven Chinese cities. Int J Hyg Environ Health 2019; 222:1047-1053. [DOI: 10.1016/j.ijheh.2019.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/27/2019] [Accepted: 07/10/2019] [Indexed: 10/26/2022]
|