51
|
Xu T, Hou J, Cheng J, Zhang R, Yin W, Huang C, Zhu X, Chen W, Yuan J. Estimated individual inhaled dose of fine particles and indicators of lung function: A pilot study among Chinese young adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:505-513. [PMID: 29324380 DOI: 10.1016/j.envpol.2017.12.074] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/04/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
Fine particle (PM2.5)-related lung damage has been reported in most studies regarding environmental or personal PM2.5 concentrations. To assess effects of personal PM2.5 exposures on lung function, we recruited 20 postgraduate students and estimated the individual doses of inhaled PM2.5 based on their microenvironmetal PM2.5 concentrations, time-activity patterns and refereed inhalation rates. During the period of seven consecutive days in each of the four seasons, we repeatedly measured the daily lung function parameters and airway inflammation makers such as fractional exhaled nitric oxide (FeNO) as well as systemic inflammation markers including interleukin-1β on the final day. The high individual dose (median (IQR)) of inhaled PM2.5 was 957 (948) μg/day. We observed a maximum FeNO increase (9.1% (95%CI: 2.2-15.5)) at lag 0 day, a maximum decrease of maximum voluntary ventilation (11.8% (95% CI: 4.6-19.0)) at lag 5 day and a maximum interleukin-1β increase (103% (95% CI: 47-159)) at lag 2 day for an interquartile range increase in the individual dose of inhaled PM2.5 during the four seasons. Short-term exposure to PM2.5 assessed by the individual dose of inhaled PM2.5 was associated with higher airway and systemic inflammation and reduced lung function. Further studies are needed to understand better underlying mechanisms of lung damage following acute exposure to PM2.5.
Collapse
Affiliation(s)
- Tian Xu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Jian Hou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Juan Cheng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Runbo Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Wenjun Yin
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Cheng Huang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Xiaochuan Zhu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Jing Yuan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China.
| |
Collapse
|
52
|
Gu XY, Chu X, Zeng XL, Bao HR, Liu XJ. Effects of PM2.5 exposure on the Notch signaling pathway and immune imbalance in chronic obstructive pulmonary disease. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 226:163-173. [PMID: 28431315 DOI: 10.1016/j.envpol.2017.03.070] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 03/02/2017] [Accepted: 03/28/2017] [Indexed: 05/17/2023]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is associated with T lymphocytes subset (Th1/Th2, Th17/Treg) imbalance. Notch signaling pathway plays a key role in the development of the adaptive immunity. The immune disorder induced by fine particulate matter (PM2.5) is related to COPD. The aim of this study was to investigate the mechanism by which PM2.5 influences the Notch signaling pathway leading to worsening immune disorder and accelerating COPD development. A COPD mouse model was established by cigarette smoke exposure. PM2.5 exposure was performed by aerosol inhalation. γ-secretase inhibitor (GSI) was given using intraperitoneal injection. Splenic T lymphocytes were purified using a density gradient centrifugation method. CD4+ T lymphocyte subsets (Th1/Th2, Th17/Treg) were detected using flow cytometry. mRNA and proteins of Notch1/2/3/4, Hes1/5, and Hey1 were detected using RT-PCR and Western blot. Serum INF-γ, IL-4, IL-17 and IL-10 concentrations were measured using ELISA. The results showed that in COPD mice Th1% and Th17%, Th1/Th2 and Th17/Treg were increased, and the levels of mRNA and protein in Notch1/2/3/4, Hes1/5, and Hey1 and serum INF-γ and IL-17 concentrations were significantly increased, and Th2%, Treg%, and serum IL-4 and IL-10 concentrations were significantly decreased. COPD Mice have Th1- and Th17-mediated immune disorder, and the Notch signaling pathway is in an overactivated state. PM2.5 promotes the overactivation of the Notch signaling pathway and aggravates the immune disorder of COPD. GSI can partially inhibit the activation of the Notch signaling pathway and alleviate the immune disorder under basal state and the immune disorder of COPD caused by PM2.5. This result suggests that PM2.5 is involved in the immune disorder of mice with COPD by affecting the Notch signaling pathway and that PM2.5 aggravates COPD.
Collapse
Affiliation(s)
- Xing-Yu Gu
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xu Chu
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiao-Li Zeng
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Hai-Rong Bao
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiao-Ju Liu
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
53
|
Chen S, Gu Y, Qiao L, Wang C, Song Y, Bai C, Sun Y, Ji H, Zhou M, Wang H, Chen R, Kan H. Fine Particulate Constituents and Lung Dysfunction: A Time-Series Panel Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:1687-1694. [PMID: 28056177 DOI: 10.1021/acs.est.6b03901] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The evidence is quite limited regarding the constituents of fine particulate matter (PM2.5) responsible for lung dysfunction. We designed a time-series panel study in 28 patients to examine the effects of 10 major constituents of PM2.5 on lung function with repeated daily measurements from December 2012 to May 2013 in Shanghai, China. We applied a linear mixed-effect model combined with a distributed lag model to estimate the cumulative effects of PM2.5 constituents on morning/evening forced expiratory volume in 1-s (FEV1) and peak expiratory flow (PEF) over a week. The cumulative decreases in morning FEV1, evening FEV1, morning PEF and evening PEF associated with an interquartile range (35.8 μg/m3) increase in PM2.5 concentrations were 33.49 [95% confidence interval(CI):2.45,54.53] mL, 16.80 (95%CI:3.75,29.86) mL, 4.48 (95%CI:2.30,6.66) L/min, and 1.31 (95%CI:-0.85,3.47) L/min, respectively. These results were not substantially changed after adjusting for gases in two-pollutant models. The associations of elemental carbon (EC) and nitrates with morning/evening FEV1, and the associations of EC and sulfates with morning PEF were robust after controlling for PM2.5. This study demonstrated that short-term exposure to PM2.5 was associated with reduced pulmonary function. Some constituents (EC, sulfate and nitrate) may be responsible for the detrimental effects.
Collapse
Affiliation(s)
- Shujing Chen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University , Shanghai 200032, China
| | - Yutong Gu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University , Shanghai 200032, China
| | - Liping Qiao
- State Environmental Protection Key Laboratory of the Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences , Shanghai 200233, China
| | - Cuicui Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University , Shanghai 200032, China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University , Shanghai 200032, China
| | - Chunxue Bai
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University , Shanghai 200032, China
| | - Yuchun Sun
- Medical Department, Zhongshan Hospital, Fudan University , Shanghai 200032, China
| | - Haiying Ji
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University , Shanghai 200032, China
| | - Min Zhou
- State Environmental Protection Key Laboratory of the Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences , Shanghai 200233, China
| | - Hongli Wang
- State Environmental Protection Key Laboratory of the Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences , Shanghai 200233, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University , Shanghai 200032, China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University , Shanghai 200433, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University , Shanghai 200032, China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University , Shanghai 200433, China
| |
Collapse
|
54
|
Hu LW, Lawrence WR, Liu Y, Yang BY, Zeng XW, Chen W, Dong GH. Ambient Air Pollution and Morbidity in Chinese. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1017:123-151. [PMID: 29177961 DOI: 10.1007/978-981-10-5657-4_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The rapid economic growth in China is coupled with a severe ambient air pollution, which poses a huge threat to human health and the sustainable development of social economy. The rapid urbanization and industrialization over the last three decades have placed China as one of countries with the greatest disease burden in world. Notably, the prevalence rate of chronic noncommunicable diseases (CND), including respiratory diseases, CVD, and stroke, in 2010 reaches 16.9%. The continuous growth of the incidence of CND urgent needs for effective regulatory action for health protection. This study aims to evaluate the impact of rapid urbanization on status of ambient air pollution and associated adverse health effects on the incidence and the burden of CND and risk assessment. Our findings would be greatly significant in the prediction of the risk of ambient air pollution on CND and for evidence-based policy making and risk management in China.
Collapse
Affiliation(s)
- Li-Wen Hu
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Wayne R Lawrence
- Department of Epidemiology and Biostatistics, School of Public Health, State University of New York, Albany, NY, 12144-3445, USA
| | - Yimin Liu
- Laboratory of Occupational Environment and Health Effects, Guangzhou Key Medical Discipline of Occupational Health Guardianship, Guangzhou Prevention and Treatment Center for Occupational Diseases, Guangzhou Twelfth People's Hospital, Guangzhou, 510620, China
| | - Bo-Yi Yang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Xiao-Wen Zeng
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Wen Chen
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Guang-Hui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|