51
|
Chen W, Lin HR, Wei CM, Luo XH, Sun ML, Yang ZZ, Chen XY, Wang HB. Echinacoside, a phenylethanoid glycoside from Cistanche deserticola, extends lifespan of Caenorhabditis elegans and protects from Aβ-induced toxicity. Biogerontology 2017; 19:47-65. [PMID: 29185166 DOI: 10.1007/s10522-017-9738-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/23/2017] [Indexed: 10/18/2022]
Abstract
Cistanche deserticola has been found to exert protection against aging and age-related diseases, but mechanisms underlying its longevity effects remain largely unclear. Here, the multicellular model organism Caenorhabditis elegans was employed to identify lifespan extending and protective effects against β-amyloid (Aβ) induced toxicity by echinacoside (ECH), a phenylethanoid glycoside isolated from C. deserticola. Our results showed that ECH extends the mean lifespan of worms and increases their survival under oxidative stress. Levels of intracellular reactive oxygen species and fat accumulation were also significantly suppressed by ECH. Moreover, ECH-mediated lifespan extension was found to be dependent on mev-1, eat-2, daf-2, and daf-16, but not sir-2.1 or hsf-1 genes. Furthermore, ECH triggered DAF-16 nuclear localization and upregulated two of its downstream targets, sod-3 and hsp-16.2. In addition, ECH significantly improved the survival of CL4176 worms in response to proteotoxic stress induced by Aβ protein aggregation. Collectively, these findings suggested that reactive oxygen species scavenging, dietary restriction, and insulin/insulin-like growth factor signaling pathways could be partly involved in ECH-mediated lifespan extension. Thus, ECH may target multiple longevity mechanisms to extend lifespan and have a potency to prevent Alzheimer's disease progression.
Collapse
Affiliation(s)
- Wei Chen
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Hong-Ru Lin
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Cong-Min Wei
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xiao-Hua Luo
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Meng-Lu Sun
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zhen-Zhou Yang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xin-Yan Chen
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Hong-Bing Wang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
52
|
Peixoto H, Roxo M, Röhrig T, Richling E, Wang X, Wink M. Anti-Aging and Antioxidant Potential of Paullinia cupana var. sorbilis: Findings in Caenorhabditis elegans Indicate a New Utilization for Roasted Seeds of Guarana. MEDICINES (BASEL, SWITZERLAND) 2017; 4:E61. [PMID: 28930275 PMCID: PMC5622396 DOI: 10.3390/medicines4030061] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/08/2017] [Accepted: 08/12/2017] [Indexed: 12/21/2022]
Abstract
Background: Roasted seeds of Amazonian guarana (Paullinia cupana var. sorbilis; Sapindaceae) are popular in South America due to their stimulant activity on the central nervous system (CNS). Rich in purine alkaloids, markedly caffeine, the seeds are extensively used in the Brazilian beverage industry for the preparation of soft drinks and as additives in energy drinks. Methods: To investigate the putative anti-aging and antioxidant activity of guarana, we used the model organism Caenorhabditis elegans. Chemical analyses were performed using high-performance liquid chromatography (HPLC) and electrospray ionization-mass spectrometry (ESI-MS/MS). Results: When tested in the model system Caenorhabditis elegans, the water extract from roasted guarana seeds enhanced resistance against oxidative stress, extended lifespan and attenuated aging markers such as muscle function decline and polyQ40 aggregation. Conclusions: In the current study, we demonstrate that guarana extracts can work as a powerful antioxidant in vivo; moreover, guarana extracts exhibit anti-aging properties. Our results suggest that the biological activities of guarana go beyond the extensively reported CNS stimulation.
Collapse
Affiliation(s)
- Herbenya Peixoto
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, INF 364, D-69120 Heidelberg, Germany.
| | - Mariana Roxo
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, INF 364, D-69120 Heidelberg, Germany.
| | - Teresa Röhrig
- Department of Food Chemistry and Toxicology, Molecular Nutrition, University of Kaiserslautern, Erwin-Schroedinger-Strasse 52, D-67663 Kaiserslautern, Germany.
| | - Elke Richling
- Department of Food Chemistry and Toxicology, Molecular Nutrition, University of Kaiserslautern, Erwin-Schroedinger-Strasse 52, D-67663 Kaiserslautern, Germany.
| | - Xiaojuan Wang
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, INF 364, D-69120 Heidelberg, Germany.
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, INF 364, D-69120 Heidelberg, Germany.
| |
Collapse
|
53
|
Shih CT, Chang YF, Chen YT, Ma CP, Chen HW, Yang CC, Lu JC, Tsai YS, Chen HC, Tan BCM. The PPARγ-SETD8 axis constitutes an epigenetic, p53-independent checkpoint on p21-mediated cellular senescence. Aging Cell 2017; 16:797-813. [PMID: 28514051 PMCID: PMC5506440 DOI: 10.1111/acel.12607] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2017] [Indexed: 01/09/2023] Open
Abstract
Cellular senescence is a permanent proliferative arrest triggered by genome instability or aberrant growth stresses, acting as a protective or even tumor‐suppressive mechanism. While several key aspects of gene regulation have been known to program this cessation of cell growth, the involvement of the epigenetic regulation has just emerged but remains largely unresolved. Using a systems approach that is based on targeted gene profiling, we uncovered known and novel chromatin modifiers with putative link to the senescent state of the cells. Among these, we identified SETD8 as a new target as well as a key regulator of the cellular senescence signaling. Knockdown of SETD8 triggered senescence induction in proliferative culture, irrespectively of the p53 status of the cells; ectopic expression of this epigenetic writer alleviated the extent doxorubicin‐induced cellular senescence. This repressive effect of SETD8 in senescence was mediated by directly maintaining the silencing mark H4K20me1 at the locus of the senescence switch gene p21. Further in support of this regulatory link, depletion of p21 reversed this SETD8‐mediated cellular senescence. Additionally, we found that PPARγ acts upstream and regulates SETD8 expression in proliferating cells. Downregulation of PPARγ coincided with the senescence induction, while its activation inhibited the progression of this process. Viewed together, our findings delineated a new epigenetic pathway through which the PPARγ‐SETD8 axis directly silences p21 expression and consequently impinges on its senescence‐inducing function. This implies that SETD8 may be part of a cell proliferation checkpoint mechanism and has important implications in antitumor therapeutics.
Collapse
Affiliation(s)
- Chieh-Tien Shih
- Graduate Institute of Biomedical Sciences; College of Medicine; Chang Gung University; Kwei-San, Tao-Yuan Taiwan
| | - Yi-Feng Chang
- Molecular Medicine Research Center; Chang Gung University; Tao-Yuan Taiwan
| | - Yi-Tung Chen
- Graduate Institute of Biomedical Sciences; College of Medicine; Chang Gung University; Kwei-San, Tao-Yuan Taiwan
| | - Chung-Pei Ma
- Graduate Institute of Biomedical Sciences; College of Medicine; Chang Gung University; Kwei-San, Tao-Yuan Taiwan
| | - Hui-Wen Chen
- Department of Biomedical Sciences; College of Medicine; Chang Gung University; Kwei-San, Tao-Yuan Taiwan
| | - Chang-Ching Yang
- Graduate Institute of Biomedical Sciences; College of Medicine; Chang Gung University; Kwei-San, Tao-Yuan Taiwan
- Department of Biomedical Sciences; College of Medicine; Chang Gung University; Kwei-San, Tao-Yuan Taiwan
| | - Juu-Chin Lu
- Graduate Institute of Biomedical Sciences; College of Medicine; Chang Gung University; Kwei-San, Tao-Yuan Taiwan
- Department of Physiology and Pharmacology; College of Medicine; Chang Gung University; Kwei-San, Tao-Yuan Taiwan
- Division of Endocrinology and Metabolism; Department of Internal Medicine; Chang Gung Memorial Hospital; Linkou, Tao-Yuan Taiwan
| | - Yau-Sheng Tsai
- Institute of Clinical Medicine; National Cheng Kung University; Tainan Taiwan
| | - Hua-Chien Chen
- Graduate Institute of Biomedical Sciences; College of Medicine; Chang Gung University; Kwei-San, Tao-Yuan Taiwan
- Molecular Medicine Research Center; Chang Gung University; Tao-Yuan Taiwan
- Department of Biomedical Sciences; College of Medicine; Chang Gung University; Kwei-San, Tao-Yuan Taiwan
| | - Bertrand Chin-Ming Tan
- Graduate Institute of Biomedical Sciences; College of Medicine; Chang Gung University; Kwei-San, Tao-Yuan Taiwan
- Molecular Medicine Research Center; Chang Gung University; Tao-Yuan Taiwan
- Department of Biomedical Sciences; College of Medicine; Chang Gung University; Kwei-San, Tao-Yuan Taiwan
- Department of Neurosurgery; Lin-Kou Medical Center; Chang Gung Memorial Hospital; Linkou, Tao-Yuan Taiwan
| |
Collapse
|
54
|
The Ubiquitin Ligase CHIP Integrates Proteostasis and Aging by Regulation of Insulin Receptor Turnover. Cell 2017; 169:470-482.e13. [PMID: 28431247 PMCID: PMC5406386 DOI: 10.1016/j.cell.2017.04.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 02/21/2017] [Accepted: 04/03/2017] [Indexed: 12/13/2022]
Abstract
Aging is attended by a progressive decline in protein homeostasis (proteostasis), aggravating the risk for protein aggregation diseases. To understand the coordination between proteome imbalance and longevity, we addressed the mechanistic role of the quality-control ubiquitin ligase CHIP, which is a key regulator of proteostasis. We observed that CHIP deficiency leads to increased levels of the insulin receptor (INSR) and reduced lifespan of worms and flies. The membrane-bound INSR regulates the insulin and IGF1 signaling (IIS) pathway and thereby defines metabolism and aging. INSR is a direct target of CHIP, which triggers receptor monoubiquitylation and endocytic-lysosomal turnover to promote longevity. However, upon proteotoxic stress conditions and during aging, CHIP is recruited toward disposal of misfolded proteins, reducing its capacity to degrade the INSR. Our study indicates a competitive relationship between proteostasis and longevity regulation through CHIP-assisted proteolysis, providing a mechanistic concept for understanding the impact of proteome imbalance on aging. The ubiquitin ligase CHIP triggers insulin receptor turnover Insulin receptor level is linked to insulin and IGF1 signaling and longevity Engagement of CHIP in protein quality control limits insulin receptor degradation Proteotoxic stress aggravates insulin receptor stability, drives aging, and shortens lifespan
Collapse
|
55
|
Wang YA, Kammenga JE, Harvey SC. Genetic variation in neurodegenerative diseases and its accessibility in the model organism Caenorhabditis elegans. Hum Genomics 2017; 11:12. [PMID: 28545550 PMCID: PMC5445269 DOI: 10.1186/s40246-017-0108-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/12/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Neurodegenerative diseases (NGDs) such as Alzheimer's and Parkinson's are debilitating and largely untreatable conditions strongly linked to age. The clinical, neuropathological, and genetic components of NGDs indicate that neurodegeneration is a complex trait determined by multiple genes and by the environment. MAIN BODY The symptoms of NGDs differ among individuals due to their genetic background, and this variation affects the onset and progression of NGD and NGD-like states. Such genetic variation affects the molecular and cellular processes underlying NGDs, leading to differential clinical phenotypes. So far, we have a limited understanding of the mechanisms of individual background variation. Here, we consider how variation between genetic backgrounds affects the mechanisms of aging and proteostasis in NGD phenotypes. We discuss how the nematode Caenorhabditis elegans can be used to identify the role of variation between genetic backgrounds. Additionally, we review advances in C. elegans methods that can facilitate the identification of NGD regulators and/or networks. CONCLUSION Genetic variation both in disease genes and in regulatory factors that modulate onset and progression of NGDs are incompletely understood. The nematode C. elegans represents a valuable system in which to address such questions.
Collapse
Affiliation(s)
- Yiru Anning Wang
- Biomolecular Research Group, School of Human and Life Science, Canterbury Christ Church University, Canterbury, CT1 1QU UK
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Jan Edward Kammenga
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Simon Crawford Harvey
- Biomolecular Research Group, School of Human and Life Science, Canterbury Christ Church University, Canterbury, CT1 1QU UK
| |
Collapse
|
56
|
Woll SC, Podrabsky JE. Insulin-like growth factor signaling regulates developmental trajectory associated with diapause in embryos of the annual killifish Austrofundulus limnaeus. ACTA ACUST UNITED AC 2017; 220:2777-2786. [PMID: 28515235 DOI: 10.1242/jeb.151373] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 05/10/2017] [Indexed: 01/12/2023]
Abstract
Annual killifishes exhibit a number of unique life history characters including the occurrence of embryonic diapause, unique cell movements associated with dispersion and subsequent reaggregation of the embryonic blastomeres, and a short post-embryonic life span. Insulin-like growth factor (IGF) signaling is known to play a role in the regulation of metabolic dormancy in a number of animals but has not been explored in annual killifishes. The abundance of IGF proteins during development and the developmental effects of blocking IGF signaling by pharmacological inhibition of the insulin-like growth factor I receptor (IGF1R) were explored in embryos of the annual killifish Austrofundulus limnaeus Blocking of IGF signaling in embryos that would normally escape entrance into diapause resulted in a phenotype that was remarkably similar to that of embryos entering diapause. IGF-I protein abundance spikes during early development in embryos that will not enter diapause. In contrast, IGF-I levels remain low during early development in embryos that will enter diapause II. IGF-II protein is packaged at higher levels in escape-bound embryos compared with diapause-bound embryos. However, IGF-II levels quickly decrease and remain low during early development and only increase substantially during late development in both developmental trajectories. Developmental patterns of IGF-I and IGF-II protein abundance under conditions that would either induce or bypass entrance into diapause are consistent with a role for IGF signaling in the regulation of developmental trajectory and entrance into diapause in this species. We propose that IGF signaling may be a unifying regulatory pathway that explains the larger suite of characters that are associated with the complex life history of annual killifishes.
Collapse
Affiliation(s)
- S Cody Woll
- Department of Biology, Portland State University, PO Box 751, Portland, OR 97207, USA
| | - Jason E Podrabsky
- Department of Biology, Portland State University, PO Box 751, Portland, OR 97207, USA
| |
Collapse
|
57
|
Modulation of gut microbiota and delayed immunosenescence as a result of syringaresinol consumption in middle-aged mice. Sci Rep 2016; 6:39026. [PMID: 27976725 PMCID: PMC5157019 DOI: 10.1038/srep39026] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/16/2016] [Indexed: 12/21/2022] Open
Abstract
Age-associated immunological dysfunction (immunosenescence) is closely linked to perturbation of the gut microbiota. Here, we investigated whether syringaresinol (SYR), a polyphenolic lignan, modulates immune aging and the gut microbiota associated with this effect in middle-aged mice. Compared with age-matched control mice, SYR treatment delayed immunosenescence by enhancing the numbers of total CD3+ T cells and naïve T cells. SYR treatment induced the expression of Bim as well as activation of FOXO3 in Foxp3+ regulatory T cells (Tregs). Furthermore, SYR treatment significantly enhanced the Firmicutes/Bacteroidetes ratio compared with that in age-matched controls by increasing beneficial bacteria, Lactobacillus and Bifidobacterium, while reducing the opportunistic pathogenic genus, Akkermansia. In addition, SYR treatment reduced the serum level of lipopolysaccharide-binding protein, an inflammatory marker, and enhanced humoral immunity against influenza vaccination to the level of young control mice. Taken together, these findings suggest that SYR may rejuvenate the immune system through modulation of gut integrity and microbiota diversity as well as composition in middle-aged mice, which may delay the immunosenescence associated with aging.
Collapse
|
58
|
Protective Effects of α-Tocopherol, γ-Tocopherol and Oleic Acid, Three Compounds of Olive Oils, and No Effect of Trolox, on 7-Ketocholesterol-Induced Mitochondrial and Peroxisomal Dysfunction in Microglial BV-2 Cells. Int J Mol Sci 2016; 17:ijms17121973. [PMID: 27897980 PMCID: PMC5187773 DOI: 10.3390/ijms17121973] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/08/2016] [Accepted: 11/17/2016] [Indexed: 01/18/2023] Open
Abstract
Lipid peroxidation products, such as 7-ketocholesterol (7KC), may be increased in the body fluids and tissues of patients with neurodegenerative diseases and trigger microglial dysfunction involved in neurodegeneration. It is therefore important to identify synthetic and natural molecules able to impair the toxic effects of 7KC. We determined the impact of 7KC on murine microglial BV-2 cells, especially its ability to trigger mitochondrial and peroxisomal dysfunction, and evaluated the protective effects of α- and γ-tocopherol, Trolox, and oleic acid (OA). Multiple complementary chemical assays, flow cytometric and biochemical methods were used to evaluate the antioxidant and cytoprotective properties of these molecules. According to various complementary assays to estimate antioxidant activity, only α-, and γ-tocopherol, and Trolox had antioxidant properties. However, only α-tocopherol, γ-tocopherol and OA were able to impair 7KC-induced loss of mitochondrial transmembrane potential, which is associated with increased permeability to propidium iodide, an indicator of cell death. In addition, α-and γ-tocopherol, and OA were able to prevent the decrease in Abcd3 protein levels, which allows the measurement of peroxisomal mass, and in mRNA levels of Abcd1 and Abcd2, which encode for two transporters involved in peroxisomal β-oxidation. Thus, 7KC-induced side effects are associated with mitochondrial and peroxisomal dysfunction which can be inversed by natural compounds, thus supporting the hypothesis that the composition of the diet can act on the function of organelles involved in neurodegenerative diseases.
Collapse
|
59
|
Pinkas A, Aschner M. Advanced Glycation End-Products and Their Receptors: Related Pathologies, Recent Therapeutic Strategies, and a Potential Model for Future Neurodegeneration Studies. Chem Res Toxicol 2016; 29:707-14. [PMID: 27054356 DOI: 10.1021/acs.chemrestox.6b00034] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Advanced glycation end products (AGEs) are the result of a nonenzymatic reaction between sugars and proteins, lipids, or nucleic acids. AGEs are both consumed and endogenously formed; their accumulation is accelerated under hyperglycemic and oxidative stress conditions, and they are associated with the onset and complication of many diseases, such as cardiovascular diseases, diabetes, and Alzheimer's disease. AGEs exert their deleterious effects by either accumulating in the circulation and tissues or by receptor-mediated signal transduction. Several receptors bind AGEs: some are specific and contribute to clearance of AGEs, whereas others, like the RAGE receptor, are nonspecific, associated with inflammation and oxidative stress, and considered to be mediators of the aforementioned AGE-related diseases. Although several anti-AGE compounds have been studied, understanding the underlying mechanisms of RAGE and targeting it as a therapeutic strategy is becoming increasingly desirable. For achieving these goals efficiently and expeditiously, the C. elegans model has been suggested. This model is already used for studying several human diseases and, by expressing RAGE, could also be used to study RAGE-related pathways and pathologies to facilitate the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Adi Pinkas
- Albert Einstein College of Medicine , Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Forchheimer Building, Room 209, Bronx, New York 10461, United States
| | - Michael Aschner
- Albert Einstein College of Medicine , Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Forchheimer Building, Room 209, Bronx, New York 10461, United States
| |
Collapse
|
60
|
Knuppertz L, Osiewacz HD. Orchestrating the network of molecular pathways affecting aging: Role of nonselective autophagy and mitophagy. Mech Ageing Dev 2016; 153:30-40. [PMID: 26814678 DOI: 10.1016/j.mad.2016.01.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/08/2016] [Accepted: 01/20/2016] [Indexed: 12/28/2022]
Abstract
Autophagy is best known as a mechanism involved in cellular recycling of biomolecules during periods of nutritional starvation. More recently, an additional function of autophagy emerged: the selective degradation of functionally impaired or surplus proteins, organelles and invading bacteria. With this function autophagy is integrated in a network of pathways involved in molecular and cellular quality control with a key impact on development and aging. Impairments in the autophagic machinery lead to accelerated aging and the development of diseases. Here we focus on the role of nonselective autophagy and mitophagy, the selective autophagic degradation of mitochondria, on aging and lifespan of biological systems.
Collapse
Affiliation(s)
- Laura Knuppertz
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, Department of Biosciences, J. W. Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Heinz D Osiewacz
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, Department of Biosciences, J. W. Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|