51
|
Muddapu VR, Dharshini SAP, Chakravarthy VS, Gromiha MM. Neurodegenerative Diseases - Is Metabolic Deficiency the Root Cause? Front Neurosci 2020; 14:213. [PMID: 32296300 PMCID: PMC7137637 DOI: 10.3389/fnins.2020.00213] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/26/2020] [Indexed: 01/31/2023] Open
Abstract
Neurodegenerative diseases, including Alzheimer, Parkinson, Huntington, and amyotrophic lateral sclerosis, are a prominent class of neurological diseases currently without a cure. They are characterized by an inexorable loss of a specific type of neurons. The selective vulnerability of specific neuronal clusters (typically a subcortical cluster) in the early stages, followed by the spread of the disease to higher cortical areas, is a typical pattern of disease progression. Neurodegenerative diseases share a range of molecular and cellular pathologies, including protein aggregation, mitochondrial dysfunction, glutamate toxicity, calcium load, proteolytic stress, oxidative stress, neuroinflammation, and aging, which contribute to neuronal death. Efforts to treat these diseases are often limited by the fact that they tend to address any one of the above pathological changes while ignoring others. Lack of clarity regarding a possible root cause that underlies all the above pathologies poses a significant challenge. In search of an integrative theory for neurodegenerative pathology, we hypothesize that metabolic deficiency in certain vulnerable neuronal clusters is the common underlying thread that links many dimensions of the disease. The current review aims to present an outline of such an integrative theory. We present a new perspective of neurodegenerative diseases as metabolic disorders at molecular, cellular, and systems levels. This helps to understand a common underlying mechanism of the many facets of the disease and may lead to more promising disease-modifying therapeutic interventions. Here, we briefly discuss the selective metabolic vulnerability of specific neuronal clusters and also the involvement of glia and vascular dysfunctions. Any failure in satisfaction of the metabolic demand by the neurons triggers a chain of events that precipitate various manifestations of neurodegenerative pathology.
Collapse
Affiliation(s)
- Vignayanandam Ravindernath Muddapu
- Laboratory for Computational Neuroscience, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - S. Akila Parvathy Dharshini
- Protein Bioinformatics Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - V. Srinivasa Chakravarthy
- Laboratory for Computational Neuroscience, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - M. Michael Gromiha
- Protein Bioinformatics Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
52
|
Theocharopoulou G. The ubiquitous role of mitochondria in Parkinson and other neurodegenerative diseases. AIMS Neurosci 2020; 7:43-65. [PMID: 32455165 PMCID: PMC7242057 DOI: 10.3934/neuroscience.2020004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/05/2020] [Indexed: 12/14/2022] Open
Abstract
Orderly mitochondrial life cycle, plays a key role in the pathology of neurodegenerative diseases. Mitochondria are ubiquitous in neurons as they respond to an ever-changing demand for energy supply. Mitochondria constantly change in shape and location, feature of their dynamic nature, which facilitates a quality control mechanism. Biological studies in mitochondria dynamics are unveiling the mechanisms of fission and fusion, which essentially arrange morphology and motility of these organelles. Control of mitochondrial network homeostasis is a critical factor for the proper function of neurons. Disease-related genes have been reported to be implicated in mitochondrial dysfunction. Increasing evidence implicate mitochondrial perturbation in neuronal diseases, such as AD, PD, HD, and ALS. The intricacy involved in neurodegenerative diseases and the dynamic nature of mitochondria point to the idea that, despite progress toward detecting the biology underlying mitochondrial disorders, its link to these diseases is difficult to be identified in the laboratory. Considering the need to model signaling pathways, both in spatial and temporal level, there is a challenge to use a multiscale modeling framework, which is essential for understanding the dynamics of a complex biological system. The use of computational models in order to represent both a qualitative and a quantitative structure of mitochondrial homeostasis, allows to perform simulation experiments so as to monitor the conformational changes, as well as the intersection of form and function.
Collapse
|
53
|
Ibrahim RR, El-Esawy RO, El-Sakaa MH. Troxerutin downregulates C/EBP-β gene expression via modulating the IFNγ-ERK1/2 signaling pathway to ameliorate rotenone-induced retinal neurodegeneration. J Biochem Mol Toxicol 2020; 34:e22482. [PMID: 32115830 DOI: 10.1002/jbt.22482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/10/2020] [Accepted: 02/14/2020] [Indexed: 12/31/2022]
Abstract
Troxerutin, a natural flavonoid guards against oxidative stress and apoptosis with a high capability of passing through the blood-brain barrier. Our aim was to investigate the role of troxerutin in experimentally induced retinal neurodegeneration by modulating the interferon-gamma (IFNγ)-extracellular signal-regulated kinases 1/2 (ERK1/2)-CCAAT enhancer-binding protein β (C/EBP-β) signaling pathway. Three groups of rats (10 each group) were included. Group I (control group), group II (rotenone treated group): the rats were injected subcutaneously with a single rotenone dosage of 3 mg/kg repeated every 48 hours for 60 days to trigger retinal neurodegeneration. Group III (troxerutin-treated group): rats received troxerutin (150 mg/kg/day) by oral gavage 1 hour before rotenone administration. A real-time polymerase chain reaction technique was applied to measure messenger RNA (mRNA) levels of retinal C/EBP-β. Enzyme-linked immunosorbent assay technique was utilized to assay tumor necrosis factor-α (TNF-α), IFNγ, and ERK1/2 levels. Finally, reactive oxygen species (ROS), as well as carbonylated protein (CP) levels, were assessed spectrophotometrically. Improved retinal neurodegeneration by downregulation of C/EBP-β mRNA gene expression, also caused a significant reduction of TNF-α, IFNγ, ERK1/2 as well as ROS and CP levels compared with the diseased group. These findings could hold promise for the usage of troxerutin as a protective agent against rotenone-induced retinal neurodegeneration.
Collapse
Affiliation(s)
- Rowida Raafat Ibrahim
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Mervat H El-Sakaa
- Physiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
54
|
Nasal administration of nanoencapsulated geraniol/ursodeoxycholic acid conjugate: Towards a new approach for the management of Parkinson's disease. J Control Release 2020; 321:540-552. [PMID: 32092370 DOI: 10.1016/j.jconrel.2020.02.033] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022]
Abstract
The combined use of different therapeutic agents in the treatment of neurodegenerative disorders is a promising strategy to halt the disease progression. In this context, we aimed to combine the anti-inflammatory properties of geraniol (GER) with the mitochondrial rescue effects of ursodeoxycholic acid (UDCA) in a newly-synthesized prodrug, GER-UDCA, a potential candidate against Parkinson's disease (PD). GER-UDCA was successfully synthetized and characterized in vitro for its ability to release the active compounds in physiological environments. Because of its very poor solubility, GER-UDCA was entrapped into both lipid (SLNs) and polymeric (NPs) nanoparticles in order to explore nose-to-brain pathway towards brain targeting. Both GER-UDCA nanocarriers displayed size below 200 nm, negative zeta potential and the ability to increase the aqueous dissolution rate of the prodrug. As SLNs exhibited the higher GER-UDCA dissolution rate, this formulation was selected for the in vivo GER-UDCA brain targeting experiments. The nasal administration of GER-UDCA-SLNs (1 mg/kg of GER-UDCA) allowed to detect the prodrug in rat cerebrospinal fluid (concentration range = 1.1 to 4.65 μg/mL, 30-150 min after the administration), but not in the bloodstream, thus suggesting the direct nose to brain delivery of the prodrug. Finally, histopathological evaluation demonstrated that, in contrast to the pure GER, nasal administration of GER-UDCA-SLNs did not damage the structural integrity of the nasal mucosa. In conclusion, the present data suggest that GER-UDCA-SLNs could provide an effective and non-invasive approach to boost the access of GER and UDCA to the brain with low dosages.
Collapse
|
55
|
What and How Can Physical Activity Prevention Function on Parkinson's Disease? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4293071. [PMID: 32215173 PMCID: PMC7042542 DOI: 10.1155/2020/4293071] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 12/15/2022]
Abstract
Aim This study was aimed at investigating the effects and molecular mechanisms of physical activity intervention on Parkinson's disease (PD) and providing theoretical guidance for the prevention and treatment of PD. Methods Four electronic databases up to December 2019 were searched (PubMed, Springer, Elsevier, and Wiley database), 176 articles were selected. Literature data were analyzed by the logic analysis method. Results (1) Risk factors of PD include dairy products, pesticides, traumatic brain injury, and obesity. Protective factors include alcohol, tobacco, coffee, black tea, and physical activity. (2) Physical activity can reduce the risk and improve symptoms of PD and the beneficial forms of physical activity, including running, dancing, traditional Chinese martial arts, yoga, and weight training. (3) Different forms of physical activity alleviate the symptoms of PD through different mechanisms, including reducing the accumulation of α-syn protein, inflammation, and oxidative stress, while enhancing BDNF activity, nerve regeneration, and mitochondrial function. Conclusion Physical activity has a positive impact on the prevention and treatment of PD. Illustrating the molecular mechanism of physical activity-induced protective effect on PD is an urgent need for improving the efficacy of PD therapy regimens in the future.
Collapse
|
56
|
Sivanesan S, Chang E, Howell MD, Rajadas J. Amyloid protein aggregates: new clients for mitochondrial energy production in the brain? FEBS J 2020; 287:3386-3395. [DOI: 10.1111/febs.15225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/08/2020] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Senthilkumar Sivanesan
- Biomaterials and Advanced Drug Delivery Laboratory Cardiovascular Institute Stanford University School of Medicine Stanford CA USA
| | - Edwin Chang
- Department of Radiology Stanford University School of Medicine Stanford CA USA
| | | | - Jayakumar Rajadas
- Biomaterials and Advanced Drug Delivery Laboratory Cardiovascular Institute Stanford University School of Medicine Stanford CA USA
- Department of Bioengineering and Therapeutic Sciences School of Pharmacy University of California San Francisco San Francisco CA USA
| |
Collapse
|
57
|
Alikatte K, Palle S, Rajendra Kumar J, Pathakala N. Fisetin Improved Rotenone-Induced Behavioral Deficits, Oxidative Changes, and Mitochondrial Dysfunctions in Rat Model of Parkinson's Disease. J Diet Suppl 2020; 18:57-71. [PMID: 31992104 DOI: 10.1080/19390211.2019.1710646] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oxidative stress plays an important role in the pathogenesis of Parkinson's disease (PD), particularly the inhibition of mitochondrial complex-I. This study aimed to evaluate the effect of fisetin in the rotenone-induced rat model of PD. Rotenone was administered (2 mg/kg s.c.) for 35 days to induce PD in animals. Fisetin was administered at two doses (10 mg/kg and 20 mg/kg p.o.) for 25 days to the animals that were given rotenone. Behavioral experiment, i.e. cylinder test, was performed to assess the motor asymmetry. Animals were euthanized, and mid brains were isolated for the estimation of tricarboxylic acid cycle enzymes, oxidative measures (lipid peroxidation (LPO), glutathione (GSH) and catalase) and complex-I activity. In addition, histopathological studies were conducted. Fisetin treatment improved motor function in the cylinder test and reversed the rotenone-induced changes in mitochondrial enzymes, striatal dopamine levels, antioxidant enzyme levels and histological changes. An important finding of this study was both the doses of fisetin significantly (p < 0.05) enhanced rotenone-induced behavioral and biochemical changes and the effects were found to be dose dependent. Based on the present results, we hypothesize that fisetin may improve the mitochondrial enzyme activity, thereby preventing the pathogenesis of PD.
Collapse
Affiliation(s)
- Kanakalatha Alikatte
- Department of Pharmacology, St. Peters Institute of Pharmaceutical Sciences, Warangal, Telangana, India
| | - Suresh Palle
- Department of Pharmacology, Vaagdevi Institute of Pharmaceutical Sciences, Warangal, Telangana, India
| | - Jadi Rajendra Kumar
- Department of Pharmaceutics, University College of Technology, Osmania University, Hyderabad, Telangana, India
| | - Naveen Pathakala
- Department of Pharmaceutics, University College of Technology, Osmania University, Hyderabad, Telangana, India
| |
Collapse
|
58
|
Rasagiline and selegiline modulate mitochondrial homeostasis, intervene apoptosis system and mitigate α-synuclein cytotoxicity in disease-modifying therapy for Parkinson's disease. J Neural Transm (Vienna) 2020; 127:131-147. [PMID: 31993732 DOI: 10.1007/s00702-020-02150-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Abstract
Parkinson's disease has been considered as a motor neuron disease with dopamine (DA) deficit caused by neuronal loss in the substantia nigra, but now proposed as a multi-system disorder associated with α-synuclein accumulation in neuronal and non-neuronal systems. Neuroprotection in Parkinson's disease has intended to halt or reverse cell death of nigro-striatal DA neurons and prevent the disease progression, but clinical studies have not presented enough beneficial results, except the trial of rasagiline by delayed start design at low dose of 1 mg/day only. Now strategy of disease-modifying therapy should be reconsidered taking consideration of accumulation and toxicity of α-synuclein preceding the manifest of motor symptoms. Hitherto neuroprotective therapy has been aimed to mitigate non-specific risk factors; oxidative stress, mitochondrial dysfunction, apoptosis, deficits of neurotrophic factors (NTFs), inflammation and accumulation of pathogenic protein. Future disease-modify therapy should target more specified pathogenic factors, including deregulated mitochondrial homeostasis, deficit of NTFs and α-synuclein toxicity. Selegiline and rasagiline, inhibitors of type B monoamine oxidase, have been proved to exhibit potent neuroprotective function: regulation of mitochondrial apoptosis system, maintenance of mitochondrial function, increased expression of genes coding antioxidant enzymes, anti-apoptotic Bcl-2 and pro-survival NTFs, and suppression of oligomerization and aggregation of α-synuclein and the toxicity in cellular and animal experiments. However, the present available pharmacological therapy starts too late to reverse disease progression, and future disease-modifying therapy should include also non-pharmacological complementary therapy during the prodromal stage.
Collapse
|
59
|
Hentrich T, Wassouf Z, Riess O, Schulze-Hentrich JM. SNCA overexpression disturbs hippocampal gene expression trajectories in midlife. Aging (Albany NY) 2019; 10:4024-4041. [PMID: 30543522 PMCID: PMC6326667 DOI: 10.18632/aging.101691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023]
Abstract
Synucleinopathies like Parkinson's disease and dementia with Lewy bodies originate from a complex and still largely enigmatic interplay of genetic predisposition, age, and environmental factors. While progressively declining motor functions hallmark late-life symptoms, first signs of the disease often surface already decades earlier during midlife. To better understand early disease stages with respect to the genetic, temporal, and environmental dimension, we interrogated hippocampal transcriptome data obtained during midlife for a mouse model overexpressing human SNCA, a pivotal gene in synucleinopathies, under different environments. To relate differentially expressed genes to human, we integrated expression signatures for aging and Parkinson's disease. We identified two distinctive modes of age-dependent disturbances: First, cellular processes seemingly activated too early that reflected advanced stages of age and, second, typical longitudinal adaptations of the system that no longer occurred during midlife. Environmental enrichment prevented both disturbances modes despite persistent SNCA overload. Together, our results caution the view that expression changes characterising early stages of SNCA-related pathology reflect accelerated aging alone. Instead, we provide evidence that failure to undergo healthy adaptions during midlife represents a second origin of disturbances. This bimodal disturbance principle could inform therapeutic efforts to distinguish between preventive and restorative attempts to target the disease.
Collapse
Affiliation(s)
- Thomas Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Zinah Wassouf
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
60
|
Li L, Zhou F, Gao Q, Lu Y, Xu X, Hu R, Wang Z, Peng M, Yang Z, Tang BZ. Visualizing Dynamic Performance of Lipid Droplets in a Parkinson's Disease Model via a Smart Photostable Aggregation-Induced Emission Probe. iScience 2019; 21:261-272. [PMID: 31677478 PMCID: PMC6838505 DOI: 10.1016/j.isci.2019.10.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/26/2019] [Accepted: 10/14/2019] [Indexed: 12/28/2022] Open
Abstract
Parkinson’s disease (PD) is a complex neurodegenerative disease affected by diverse factors, and lipid droplets (LDs) are increasingly recognized as major players in PD because of their relevance to neuron activity. However, long-term dynamic changes of LDs and their relative activity remain unclear. Here, an aggregation-induced emission (AIE) probe named 2-DPAN was prepared and employed to visualize dynamic processes of LDs in a 6-hydroxydopamine model of PD for the first time, and LDs' accumulation-peak/plateau-decrease were confirmed. We further found a close relationship between LDs and variation in mitochondrial activity. Strikingly, the progression of cell death was accelerated by lipase, whereas pre-stimulation of LDs by unsaturated fatty acid-oleic acid decreased the death process by inhibiting excessive reactive oxygen species (ROS) and fatty acid production, thereby protecting mitochondria. The utilization of 2-DPAN demonstrates the importance of LDs in neuronal homeostasis, and effective tuning of LDs may prevent or inhibit PD progression. 2-DPAN monitors the dynamic changes of Lipid droplets (LDs) in Parkinson disease LDs' dynamic change process including three phases, accumulation-plateau-decrease LDs' change trend was highly correlated with mitochondrial disruption Efficient tuning of LDs could slow the PD progress
Collapse
Affiliation(s)
- Lihua Li
- State Key Laboratory of Luminescent Materials and Devices, Applied Techniques School of Materials Science and Engineering and Center for Aggregation-Induced Emission, Guangdong Provincial Key Laboratory of Fiber Laser Materials, School of Materials Science and Engineering, School of Physics, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Fan Zhou
- State Key Laboratory of Luminescent Materials and Devices, Applied Techniques School of Materials Science and Engineering and Center for Aggregation-Induced Emission, Guangdong Provincial Key Laboratory of Fiber Laser Materials, School of Materials Science and Engineering, School of Physics, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Qun Gao
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Graduate School of Peking Union Medical College, Beijing 100005, China
| | - Yao Lu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou 510282, China
| | - Xingyi Xu
- State Key Laboratory of Luminescent Materials and Devices, Applied Techniques School of Materials Science and Engineering and Center for Aggregation-Induced Emission, Guangdong Provincial Key Laboratory of Fiber Laser Materials, School of Materials Science and Engineering, School of Physics, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Rong Hu
- State Key Laboratory of Luminescent Materials and Devices, Applied Techniques School of Materials Science and Engineering and Center for Aggregation-Induced Emission, Guangdong Provincial Key Laboratory of Fiber Laser Materials, School of Materials Science and Engineering, School of Physics, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Zhiming Wang
- State Key Laboratory of Luminescent Materials and Devices, Applied Techniques School of Materials Science and Engineering and Center for Aggregation-Induced Emission, Guangdong Provincial Key Laboratory of Fiber Laser Materials, School of Materials Science and Engineering, School of Physics, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| | - Mingying Peng
- State Key Laboratory of Luminescent Materials and Devices, Applied Techniques School of Materials Science and Engineering and Center for Aggregation-Induced Emission, Guangdong Provincial Key Laboratory of Fiber Laser Materials, School of Materials Science and Engineering, School of Physics, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| | - Zhongmin Yang
- State Key Laboratory of Luminescent Materials and Devices, Applied Techniques School of Materials Science and Engineering and Center for Aggregation-Induced Emission, Guangdong Provincial Key Laboratory of Fiber Laser Materials, School of Materials Science and Engineering, School of Physics, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Applied Techniques School of Materials Science and Engineering and Center for Aggregation-Induced Emission, Guangdong Provincial Key Laboratory of Fiber Laser Materials, School of Materials Science and Engineering, School of Physics, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
61
|
Iron and other metals in the pathogenesis of Parkinson's disease: Toxic effects and possible detoxification. J Inorg Biochem 2019; 199:110717. [DOI: 10.1016/j.jinorgbio.2019.110717] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/24/2022]
|
62
|
O’Hara D, Davis GM, Adlesic NA, Hayes JM, Davey GP. Dichloroacetate Stabilizes Mitochondrial Fusion Dynamics in Models of Neurodegeneration. Front Mol Neurosci 2019; 12:219. [PMID: 31619961 PMCID: PMC6759677 DOI: 10.3389/fnmol.2019.00219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/29/2019] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial dysfunction is a recognized hallmark of neurodegenerative diseases and abnormal mitochondrial fusion-fission dynamics have been implicated in the pathogenesis of neurodegenerative disorders. This study characterizes the effects of metabolic flux inhibitors and activators on mitochondrial fusion dynamics in the neuronal cell culture model of differentiated PC12 cells. Using a real time confocal microscopy assay, it was found that the carnitine palmitoyltransferase I (CPTI) inhibitor, etomoxir, reduced mitochondrial fusion dynamics in a time-dependent manner. Etomoxir also decreased JO2, ΔΨm and reactive oxygen species (ROS) production rates. The mitochondrial pyruvate carrier (MPC) inhibitor, UK5099, reduced fusion dynamics and in combination with etomoxir these inhibitory effects were amplified. Use of the pyruvate dehydrogenase (PDH) kinase inhibitor dichloroacetate, which is known to increase metabolic flux through PDH, reversed the etomoxir-induced effects on fusion dynamics, JO2, ΔΨm but not ROS production rates. Dichloroacetate also partially reversed inhibition of mitochondrial fusion dynamics caused by the parkinsonian-inducing neurotoxin, MPP+. These results suggest that dichloroacetate-induced activation of metabolic flux in the mitochondrion may be a mechanism to restore normal mitochondrial fusion-fission dynamics in metabolically challenged cells.
Collapse
Affiliation(s)
| | | | | | | | - Gavin P. Davey
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
63
|
Martín-Nieto J, Uribe ML, Esteve-Rudd J, Herrero MT, Campello L. A role for DJ-1 against oxidative stress in the mammalian retina. Neurosci Lett 2019; 708:134361. [PMID: 31276729 DOI: 10.1016/j.neulet.2019.134361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 01/04/2023]
Abstract
We have previously reported the expression of Parkinson disease-associated genes encoding α-synuclein, parkin and UCH-L1 in the retina across mammals. DJ-1, or parkinsonism-associated deglycase, is a redox-sensitive protein with putative roles in cellular protection against oxidative stress, among a variety of functions, acting through distinct pathways and mechanisms in a wide variety of tissues. Its function in counteracting oxidative stress in the retina, as it occurs in Parkinson and other human neurodegenerative diseases, is, however, poorly understood. In the present study, we address the expression of DJ-1 in the mammalian retina and its putative neuroprotective role in this tissue in a well-known model of parkinsonism, the rotenone-treated rat. As a result, we demonstrate that the DJ1 gene is expressed at both mRNA and protein levels in the neural retina and retinal pigment epithelium (RPE) of all mammalian species studied. We also present evidence that DJ-1 functions in the retina as a sensor of cellular redox homeostasis, which reacts to oxidative stress by increasing its intracellular levels and additionally becoming oxidized. Levels of α-synuclein also became upregulated, although parkin and UCH-L1 expression remained unchanged. It is inferred that DJ-1 likely exerts in the retina a potential neuroprotective role against oxidative stress, including α-synuclein oxidation and aggregation, which should be operative under both physiological and pathological conditions.
Collapse
Affiliation(s)
- José Martín-Nieto
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, 03080 Alicante, Spain; Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef" (IMEM), Universidad de Alicante, 03080 Alicante, Spain.
| | - Mary Luz Uribe
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, 03080 Alicante, Spain
| | - Julián Esteve-Rudd
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, 03080 Alicante, Spain
| | - María Trinidad Herrero
- Neurociencia Clínica y Experimental (NiCE), Facultad de Medicina, Instituto de Investigación en Envejecimiento, Instituto Murciano de Investigación Biosanitaria (IMIB), Universidad de Murcia, 30071 Murcia, Spain
| | - Laura Campello
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, 03080 Alicante, Spain
| |
Collapse
|
64
|
Linsley JW, Reisine T, Finkbeiner S. Cell death assays for neurodegenerative disease drug discovery. Expert Opin Drug Discov 2019; 14:901-913. [PMID: 31179783 DOI: 10.1080/17460441.2019.1623784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: Neurodegenerative diseases affect millions of people worldwide. Neurodegeneration is gradual over time, characterized by neuronal death that causes deterioration of cognitive or motor functions, ultimately leading to the patient's death. Currently, there are no treatments that effectively slow the progression of any neurodegenerative disease, but improved microscopy assays and models for neurodegeneration could lead the way to the discovery of disease-modifying therapeutics. Areas covered: Herein, the authors describe cell-based assays used to discover drugs with the potential to slow neurodegeneration, and their associated disease models. They focus on microscopy technologies that can be adapted to a high-throughput screening format that both detect cell death and monitor early signs of neurodegeneration and functional changes to identify drugs that the block early stages of neurodegeneration. Expert opinion: Many different phenotypes have been used in screens for the development of therapeutics towards neurodegenerative disease. The context of each phenotype in relation to neurodegeneration must be established to identify therapeutics likely to successfully target and treat disease. The use of improved models of neurodegeneration, statistical analyses, computational models, and improved markers of neuronal death will help in this pursuit and lead to better screening methods to identify therapeutic compounds against neurodegenerative disease.
Collapse
Affiliation(s)
- Jeremy W Linsley
- a Gladstone Center for Systems and Therapeutics , San Francisco , CA , USA
| | - Terry Reisine
- b Independent scientific consultant , Santa Cruz , CA , USA
| | - Steven Finkbeiner
- a Gladstone Center for Systems and Therapeutics , San Francisco , CA , USA.,c Neuroscience Graduate Program, University of California , San Francisco , CA , USA.,d Biomedical Sciences and Neuroscience Graduate Program, University of California , San Francisco , CA , USA.,e Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes , San Francisco , CA , USA.,f Department of Neurology, University of California , San Francisco , CA , USA.,g Department of Physiology, University of California , San Francisco , CA , USA
| |
Collapse
|
65
|
LRRK2, alpha-synuclein, and tau: partners in crime or unfortunate bystanders? Biochem Soc Trans 2019; 47:827-838. [PMID: 31085616 DOI: 10.1042/bst20180466] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022]
Abstract
The identification of genetic forms of Parkinson's disease (PD) has tremendously expanded our understanding of the players and mechanisms involved. Mutations in the genes encoding for alpha-synuclein (aSyn), LRRK2, and tau have been associated with familial and sporadic forms of the disease. aSyn is the major component of Lewy bodies and Lewy neurites, which are pathognomonic protein inclusions in PD. Hyperphosphorylated tau protein accumulates in neurofibrillary tangles in the brains of Alzheimer's disease patients but is also seen in the brains of PD patients. LRRK2 is a complex multi-domain protein with kinase and GTPase enzymatic activity. Since aSyn and tau are phosphoproteins, we review the possible interplay between the three proteins. Understanding the interplay between LRRK2, aSyn and tau is extremely important, as this may enable the identification of novel targets and pathways for therapeutic intervention.
Collapse
|
66
|
D'Andrea G, Pizzolato G, Gucciardi A, Stocchero M, Giordano G, Baraldi E, Leon A. Different Circulating Trace Amine Profiles in De Novo and Treated Parkinson's Disease Patients. Sci Rep 2019; 9:6151. [PMID: 30992490 PMCID: PMC6467876 DOI: 10.1038/s41598-019-42535-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/29/2019] [Indexed: 12/18/2022] Open
Abstract
Early diagnosis of Parkinson’s disease (PD) remains a challenge to date. New evidence highlights the potential clinical value of circulating trace amines (TAs) in early-stage PD and their involvement in disease progression. A new ultra performance chromatography mass spectrometry (UPLC-MS/MS) method was developed to quantify plasmatic TAs, and the catecholamines and indolamines pertaining to the same biochemical pathways. Three groups of subjects were recruited: 21 de novo, drug untreated, PD patients, 27 in treatment PD patients and 10 healthy subjects as controls. Multivariate and univariate data analyses were applied to reveal metabolic changes among the groups in attempt to discover new putative markers for early PD detection and disease progression. Different circulating levels of tyrosine (p = 0.002), tyramine (p < 0.001), synephrine (p = 0.015), norepinephrine (p = 0.012), metanephrine (p = 0.001), β-phenylethylamine (p = 0.001) and serotonin (p = 0.006) were found among the three groups. While tyramine behaves as a putative biomarker for early-stage PD (AUC = 0.90) tyramine, norepinephrine, and tyrosine appear to act as biomarkers of disease progression (AUC > 0.75). The findings of this pilot cross-sectional study suggest that biochemical anomalies of the aminergic and indolic neurotransmitters occur in PD patients. Compounds within the TAs family may constitute putative markers for early stage detection and progression of PD.
Collapse
Affiliation(s)
| | - Gilberto Pizzolato
- Department of Medical Sciences, Neurology Unit, University of Trieste, Trieste, Italy
| | - Antonina Gucciardi
- Mass Spectrometry and Metabolomic Laboratory, Women's and Children's Health Department, University of Padova, Padova, Italy. .,Fondazione Istituto di Ricerca Pediatrica Cittàdella Speranza, Padova, Italy.
| | - Matteo Stocchero
- Mass Spectrometry and Metabolomic Laboratory, Women's and Children's Health Department, University of Padova, Padova, Italy.,Fondazione Istituto di Ricerca Pediatrica Cittàdella Speranza, Padova, Italy
| | - Giuseppe Giordano
- Mass Spectrometry and Metabolomic Laboratory, Women's and Children's Health Department, University of Padova, Padova, Italy.,Fondazione Istituto di Ricerca Pediatrica Cittàdella Speranza, Padova, Italy
| | - Eugenio Baraldi
- Mass Spectrometry and Metabolomic Laboratory, Women's and Children's Health Department, University of Padova, Padova, Italy.,Fondazione Istituto di Ricerca Pediatrica Cittàdella Speranza, Padova, Italy
| | - Alberta Leon
- Research and Innovation (R&I Genetics) s.r.l., Padova, Italy
| |
Collapse
|
67
|
von Stockum S, Sanchez-Martinez A, Corrà S, Chakraborty J, Marchesan E, Locatello L, Da Rè C, Cusumano P, Caicci F, Ferrari V, Costa R, Bubacco L, Rasotto MB, Szabo I, Whitworth AJ, Scorrano L, Ziviani E. Inhibition of the deubiquitinase USP8 corrects a Drosophila PINK1 model of mitochondria dysfunction. Life Sci Alliance 2019; 2:2/2/e201900392. [PMID: 30988163 PMCID: PMC6467245 DOI: 10.26508/lsa.201900392] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 02/02/2023] Open
Abstract
Aberrant mitochondrial dynamics disrupts mitochondrial function and contributes to disease conditions. A targeted RNA interference screen for deubiquitinating enzymes (DUBs) affecting protein levels of multifunctional mitochondrial fusion protein Mitofusin (MFN) identified USP8 prominently influencing MFN levels. Genetic and pharmacological inhibition of USP8 normalized the elevated MFN protein levels observed in PINK1 and Parkin-deficient models. This correlated with improved mitochondrial function, locomotor performance and life span, and prevented dopaminergic neurons loss in Drosophila PINK1 KO flies. We identified a novel target antagonizing pathologically elevated MFN levels, mitochondrial dysfunction, and dopaminergic neuron loss of a Drosophila model of mitochondrial dysfunction.
Collapse
Affiliation(s)
| | | | - Samantha Corrà
- Department of Biology, University of Padova, Padova, Italy,Neurogenetics and Behavior of Drosophila Lab, Department of Biology, University of Padova, Padova, Italy
| | | | | | - Lisa Locatello
- Department of Biology, University of Padova, Padova, Italy
| | - Caterina Da Rè
- Department of Biology, University of Padova, Padova, Italy,Neurogenetics and Behavior of Drosophila Lab, Department of Biology, University of Padova, Padova, Italy
| | - Paola Cusumano
- Department of Biology, University of Padova, Padova, Italy,Neurogenetics and Behavior of Drosophila Lab, Department of Biology, University of Padova, Padova, Italy
| | | | - Vanni Ferrari
- Department of Biology, University of Padova, Padova, Italy
| | - Rodolfo Costa
- Department of Biology, University of Padova, Padova, Italy,Neurogenetics and Behavior of Drosophila Lab, Department of Biology, University of Padova, Padova, Italy
| | - Luigi Bubacco
- Department of Biology, University of Padova, Padova, Italy
| | | | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy
| | | | - Luca Scorrano
- Department of Biology, University of Padova, Padova, Italy,Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Elena Ziviani
- Fondazione Ospedale San Camillo, IRCCS, Venezia, Italy,Department of Biology, University of Padova, Padova, Italy,Correspondence:
| |
Collapse
|
68
|
Water-soluble CoQ10 as A Promising Anti-aging Agent for Neurological Dysfunction in Brain Mitochondria. Antioxidants (Basel) 2019; 8:antiox8030061. [PMID: 30862106 PMCID: PMC6466529 DOI: 10.3390/antiox8030061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/19/2019] [Accepted: 03/08/2019] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial function has been closely associated with normal aging and age-related diseases. Age-associated declines in mitochondrial function, such as changes in oxygen consumption rate, cytochrome c oxidase activity of complex IV, and mitochondrial coenzyme Q (CoQ) levels, begin as early as 12 to 15 months of age in male mouse brains. Brain mitochondrial dysfunction is accompanied by increased accumulation of phosphorylated α-synuclein in the motor cortex and impairment of motor activities, which are similar characteristics of Parkinson's disease. However, these age-associated defects are completely rescued by the administration of exogenous CoQ10 to middle-aged mice via its water solubilization by emulsification in drinking water. Further efforts to develop strategies to enhance the biological availability of CoQ10 to successfully ameliorate age-related brain mitochondrial dysfunction or neurodegenerative disorders may provide a promising anti-aging agent.
Collapse
|
69
|
Sarni AR, Baroni L. Milk and Parkinson disease: Could galactose be the missing link. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2019. [DOI: 10.3233/mnm-180234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Luciana Baroni
- Primary Care Unit, Northern District, Local Health Unit 2 Marca Trevigiana, Treviso, Italy
| |
Collapse
|
70
|
Lin KL, Lin KJ, Wang PW, Chuang JH, Lin HY, Chen SD, Chuang YC, Huang ST, Tiao MM, Chen JB, Huang PH, Liou CW, Lin TK. Resveratrol provides neuroprotective effects through modulation of mitochondrial dynamics and ERK1/2 regulated autophagy. Free Radic Res 2019; 52:1371-1386. [DOI: 10.1080/10715762.2018.1489128] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kai-Lieh Lin
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Department of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Kai-Jung Lin
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Department of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Pei-Wen Wang
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Jiin-Haur Chuang
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Division of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Hung-Yu Lin
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Shang-Der Chen
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Yao-Chung Chuang
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Sheng-Teng Huang
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Mao-Meng Tiao
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Jin-Bor Chen
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Department of Nephrology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Pei-Hsuan Huang
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Chia-Wei Liou
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Tsu-Kung Lin
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| |
Collapse
|
71
|
Yu X, Jia L, Yu W, Du H. Dephosphorylation by calcineurin regulates translocation of dynamin-related protein 1 to mitochondria in hepatic ischemia reperfusion induced hippocampus injury in young mice. Brain Res 2019; 1711:68-76. [PMID: 30659828 DOI: 10.1016/j.brainres.2019.01.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 12/12/2022]
Abstract
Hepatic ischemia reperfusion (HIR) has been found to induce brain injury and cognitive dysfunction. Dynamin-related protein 1 (Drp1) mediated mitochondrial fission involves oxidative stress, apoptosis and several neurological diseases. In this study, we investigated whether Drp1 translocation to mitochondria was implicated in HIR induced hippocampus injury in young mice, and further detected the role of calcineurin in the regulation of mitochondrial dynamics. 2-week C57BL/6 mice were chosen to make HIR model. Western blot was used to detect mitochondrial dynamics regulating proteins in whole hippocampal tissues and extracted mitochondria. Transmission electron microscopy was used to observe mitochondrial morphology. TUNEL staining and ELISA (serum S100β/NSE concentrations) were used to evaluate neurons apoptosis and brain injury respectively. Drp1 inhibitor Mdivi-1 and calcineurin inhibitor FK506 were utilized to further confirm the role of Drp1 and calcineurin. Results showed that HIR affected mitochondrial dynamics in a fission-dominant manner with translocation of Drp1 to mitochondria in hippocampus of young mice. HIR induced increased expression of calcineurin and dephosphorylation of Drp1 at Ser637 in hippocampus. Treatment with Mdivi-1 and FK506 upregulated the phosphorylation of Drp1, inhibited Drp1 translocation to mitochondria, and alleviated mitochondrial fragmentation after HIR. What's more, Mdivi-1 and FK506 restrained cytochrome c release and cleaved caspase-3 expression, ameliorated hippocampal neurons apoptosis, and decreased serum S100β/NSE concentrations as well. These data suggest that calcineurin mediated Drp1 dephosphorylation and translocation to mitochondria play a crucial role in HIR induced mitochondrial fragmentation and neurons apoptosis in hippocampus.
Collapse
Affiliation(s)
- Xiangyang Yu
- Tianjin Medical University First Center Clinical College, Tianjin, China
| | - Lili Jia
- Department of Anesthesiology, Tianjin First Center Hospital, Tianjin, China
| | - Wenli Yu
- Department of Anesthesiology, Tianjin First Center Hospital, Tianjin, China.
| | - Hongyin Du
- Department of Anesthesiology, Tianjin First Center Hospital, Tianjin, China
| |
Collapse
|
72
|
Andrade S, Ramalho MJ, Pereira MDC, Loureiro JA. Resveratrol Brain Delivery for Neurological Disorders Prevention and Treatment. Front Pharmacol 2018; 9:1261. [PMID: 30524273 PMCID: PMC6262174 DOI: 10.3389/fphar.2018.01261] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022] Open
Abstract
Resveratrol (RES) is a natural polyphenolic non-flavonoid compound present in grapes, mulberries, peanuts, rhubarb and in several other plants. Numerous health effects have been related with its intake, such as anti-carcinogenic, anti-inflammatory and brain protective effects. The neuroprotective effects of RES in neurological diseases, such as Alzheimer's (AD) and Parkinson's (PD) diseases, are related to the protection of neurons against oxidative damage and toxicity, and to the prevention of apoptotic neuronal death. In brain cancer, RES induces cell apoptotic death and inhibits angiogenesis and tumor invasion. Despite its great potential as therapeutic agent for the treatment of several diseases, RES exhibits some limitations. It has poor water solubility and it is chemically instable, being degraded by isomerization once exposed to high temperatures, pH changes, UV light, or certain types of enzymes. Thus, RES has low bioavailability, limiting its biological and pharmacological benefits. To overcome these limitations, RES can be delivered by nanocarriers. This field of nanomedicine studies how the drug administration, pharmacokinetics, and pharmacodynamics are affected by the use of nanosized materials. The role of nanotechnology, in the prevention and treatment of neurological diseases, arises from the necessity to mask the physicochemical properties of therapeutic drugs to prolong the half-life and to be able to cross the blood-brain barrier (BBB). This can be achieved by encapsulating the drug in a nanoparticle (NP), which can be made of different kinds of materials. An increasing trend to encapsulate and direct RES to the brain has been observed. RES has been encapsulated in many different types of nanosystems, as liposomes, lipid and polymeric NPs. Furthermore, some of these nanocarriers have been modified with targeting molecules able to recognize the brain areas. Then, this article aims to overview the RES benefits and limitations in the treatment of neurological diseases, as the different nanotechnology strategies to overcome these limitations.
Collapse
Affiliation(s)
| | | | | | - Joana A. Loureiro
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal
| |
Collapse
|
73
|
Tambasco N, Romoli M, Calabresi P. Selective basal ganglia vulnerability to energy deprivation: Experimental and clinical evidences. Prog Neurobiol 2018; 169:55-75. [DOI: 10.1016/j.pneurobio.2018.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 02/07/2023]
|
74
|
Peng K, Xiao J, Yang L, Ye F, Cao J, Sai Y. Mutual Antagonism of PINK1/Parkin and PGC-1α Contributes to Maintenance of Mitochondrial Homeostasis in Rotenone-Induced Neurotoxicity. Neurotox Res 2018; 35:331-343. [PMID: 30242625 DOI: 10.1007/s12640-018-9957-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a progressive, selective, and age-related neurodegenerative disease. The pathogenic focus of PD is mitochondrial dysfunction. When mitochondrial homeostasis was damaged, it can lead to reactive oxygen species formation to further accelerate the accumulation of dysfunctional mitochondria, resulting in a vicious cycle harmful to the neuron. PINK1 and Parkin, two proteins that are linked to PD, play vital roles in mitophagy, which was very important in maintaining mitochondrial homeostasis. Thus, at present, we explored mitochondrial biogenesis, mitophagy, and fission/fusion in rotenone-induced dopamine neurotoxicity. In particular, we focused on interactions between the PINK1/Parkin pathway and PGC-1α in the regulation of mitochondrial homeostasis impairment. The results indicated that both the autophagy and mitophagy levels increased significantly and were accompanied by altered levels of PINK1/Parkin proteins in rotenone-induced neurotoxicity. PINK1 influenced mitochondrial biogenesis by inhibiting PGC-1α and mtTFA protein expression as well as the mtDNA copy number. PGC-1α, in turn, inhibited PINK1/Parkin protein expression and the mitophagy levels. Furthermore, the results demonstrated that PINK1 influenced mitochondrial fission/fusion by regulating MFN2 and phosphorylating Drp1. In summary, mutual antagonism of the PINK1/Parkin pathway and PGC-1α formed a balance that regulated mitochondrial biogenesis, fission/fusion, and mitophagy. These effects contributed to the maintenance of mitochondrial homeostasis in rotenone-induced neurotoxicity.
Collapse
Affiliation(s)
- Kaige Peng
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Jingsong Xiao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Likui Yang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Feng Ye
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Yan Sai
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
75
|
Zhu MM, Lai JSM, Choy BNK, Shum JWH, Lo ACY, Ng ALK, Chan JCH, So KF. Physical exercise and glaucoma: a review on the roles of physical exercise on intraocular pressure control, ocular blood flow regulation, neuroprotection and glaucoma-related mental health. Acta Ophthalmol 2018; 96:e676-e691. [PMID: 29338126 DOI: 10.1111/aos.13661] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022]
Abstract
The benefits of physical exercise on health and well-being have been studied in a wide range of systemic and ocular diseases, including glaucoma, a progressive optic neuropathy characterized by accelerated apoptosis of retinal ganglion cells (RGCs). Elevated intraocular pressure (IOP) and insufficient ocular perfusion have been postulated to be the two main theories in glaucoma development and progression. The effects of exercise in these two aspects have been demonstrated by numerous researches. A review in 2009 focusing on these two theories concluded that exercise results in transient IOP reduction but an inconsistent elevation in ocular perfusion. However, the majority of the studies had been conducted in healthy subjects. Over the past decade, technological advancement has brought forth new and more detailed evidence regarding the effects of exercise. Moreover, the neuroprotective effect of exercise by upregulation of neurotrophin and enhancement of mitochondrial function has been a focus of interest. Apart from visual impairment, the mental health issues in patients with glaucoma, which include anxiety and depression, should also be addressed. In this review, we mainly focus on publications from the recent years, so as to provide a comprehensive review on the impact of physical exercise on IOP, ocular perfusion, neuroprotection and mental health in patients with glaucoma.
Collapse
Affiliation(s)
- Ming Ming Zhu
- Department of Ophthalmology; LKS Faculty of Medicine; The University of Hong Kong; Hong Kong SAR China
| | - Jimmy Shiu Ming Lai
- Department of Ophthalmology; LKS Faculty of Medicine; The University of Hong Kong; Hong Kong SAR China
| | - Bonnie Nga Kwan Choy
- Department of Ophthalmology; LKS Faculty of Medicine; The University of Hong Kong; Hong Kong SAR China
| | - Jennifer Wei Huen Shum
- Department of Ophthalmology; LKS Faculty of Medicine; The University of Hong Kong; Hong Kong SAR China
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology; LKS Faculty of Medicine; The University of Hong Kong; Hong Kong SAR China
| | - Alex Lap Ki Ng
- Department of Ophthalmology; LKS Faculty of Medicine; The University of Hong Kong; Hong Kong SAR China
| | - Jonathan Cheuk Hung Chan
- Department of Ophthalmology; LKS Faculty of Medicine; The University of Hong Kong; Hong Kong SAR China
| | - Kwok Fai So
- Department of Ophthalmology; LKS Faculty of Medicine; The University of Hong Kong; Hong Kong SAR China
- School of Biomedical Sciences; LKS Faculty of Medicine; The University of Hong Kong; Hong Kong SAR China
- State Key Laboratory of Brain and Cognitive Sciences; The University of Hong Kong; Hong Kong SAR China
- GHM Institute of CNS Regeneration; Ministry of Education CNS Regeneration Collaborative Joint Laboratory; Jinan University; Guangzhou China
| |
Collapse
|
76
|
Modulation of mitochondrial phenotypes by endurance exercise contributes to neuroprotection against a MPTP-induced animal model of PD. Life Sci 2018; 209:455-465. [DOI: 10.1016/j.lfs.2018.08.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/11/2018] [Accepted: 08/19/2018] [Indexed: 12/31/2022]
|
77
|
Phenylalanine hydroxylase: A biomarker of disease susceptibility in Parkinson’s disease and Amyotrophic lateral sclerosis. Med Hypotheses 2018; 118:29-33. [DOI: 10.1016/j.mehy.2018.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/29/2018] [Accepted: 06/19/2018] [Indexed: 11/18/2022]
|
78
|
Wu HC, Hu QL, Zhang SJ, Wang YM, Jin ZK, Lv LF, Zhang S, Liu ZL, Wu HL, Cheng OM. Neuroprotective effects of genistein on SH-SY5Y cells overexpressing A53T mutant α-synuclein. Neural Regen Res 2018; 13:1375-1383. [PMID: 30106049 PMCID: PMC6108222 DOI: 10.4103/1673-5374.235250] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2018] [Indexed: 12/25/2022] Open
Abstract
Genistein, a potent antioxidant compound, protects dopaminergic neurons in a mouse model of Parkinson's disease. However, the mechanism underlying this action remains unknown. This study investigated human SH-SY5Y cells overexpressing the A53T mutant of α-synuclein. Four groups of cells were assayed: a control group (without any treatment), a genistein group (incubated with 20 μM genistein), a rotenone group (treated with 50 μM rotenone), and a rotenone + genistein group (incubated with 20 μM genistein and then treated with 50 μM rotenone). A lactate dehydrogenase release test confirmed the protective effect of genistein, and genistein remarkably reversed mitochondrial oxidative injury caused by rotenone. Western blot assays showed that BCL-2 and Beclin 1 levels were markedly higher in the genistein group than in the rotenone group. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling revealed that genistein inhibited rotenone-induced apoptosis in SH-SY5Y cells. Compared with the control group, the expression of NFE2L2 and HMOX1 was significantly increased in the genistein + rotenone group. However, after treatment with estrogen receptor and NFE2L2 channel blockers (ICI-182780 and ML385, respectively), genistein could not elevate NFE2L2 and HMOX1 expression. ICI-182780 effectively prevented genistein-mediated phosphorylation of NFE2L2 and remarkably suppressed phosphorylation of AKT, a protein downstream of the estrogen receptor. These findings confirm that genistein has neuroprotective effects in a cell model of Parkinson's disease. Genistein can reduce oxidative stress damage and cell apoptosis by activating estrogen receptors and NFE2L2 channels.
Collapse
Affiliation(s)
- Huan-Cheng Wu
- Graduate School, Tianjin Medical University, Tianjin, China
- Tianjin Beichen Hospital, Tianjin, China
| | | | | | | | | | - Ling-Fu Lv
- Tianjin Beichen Hospital, Tianjin, China
| | - Sai Zhang
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Center for Neurology and Neurosurgery of Affiliated Hospital, Logistics University of Chinese People's Armed Police Force, Tianjin, China
| | - Zhen-Lin Liu
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Center for Neurology and Neurosurgery of Affiliated Hospital, Logistics University of Chinese People's Armed Police Force, Tianjin, China
| | - Hong-Lian Wu
- Department of Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Ou-Mei Cheng
- Department of Clinical Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
79
|
Sharma NK, Sharma R, Mathur D, Sharad S, Minhas G, Bhatia K, Anand A, Ghosh SP. Role of Ionizing Radiation in Neurodegenerative Diseases. Front Aging Neurosci 2018; 10:134. [PMID: 29867445 PMCID: PMC5963202 DOI: 10.3389/fnagi.2018.00134] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 04/23/2018] [Indexed: 02/03/2023] Open
Abstract
Ionizing radiation (IR) from terrestrial sources is continually an unprotected peril to human beings. However, the medical radiation and global radiation background are main contributors to human exposure and causes of radiation sickness. At high-dose exposures acute radiation sickness occurs, whereas chronic effects may persist for a number of years. Radiation can increase many circulatory, age related and neurodegenerative diseases. Neurodegenerative diseases occur a long time after exposure to radiation, as demonstrated in atomic bomb survivors, and are still controversial. This review discuss the role of IR in neurodegenerative diseases and proposes an association between neurodegenerative diseases and exposure to IR.
Collapse
Affiliation(s)
- Neel K. Sharma
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Rupali Sharma
- Center for Neuroscience and Regenerative Medicine, Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Deepali Mathur
- Neurobiology Laboratory, School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Shashwat Sharad
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Gillipsie Minhas
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | | | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Sanchita P. Ghosh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
80
|
Kim HY, Jeon H, Kim H, Koo S, Kim S. Sophora flavescens Aiton Decreases MPP +-Induced Mitochondrial Dysfunction in SH-SY5Y Cells. Front Aging Neurosci 2018; 10:119. [PMID: 29740311 PMCID: PMC5928137 DOI: 10.3389/fnagi.2018.00119] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/06/2018] [Indexed: 11/13/2022] Open
Abstract
Sophora flavescens Aiton (SF) has been used to treat various diseases including fever and inflammation in China, South Korea and Japan. Several recent reports have shown that SF has anti-inflammatory and anti-apoptotic effects, indicating that it is a promising candidate for treatment of Parkinson's disease (PD). We evaluated the protective effect of SF against neurotoxin 1-methyl-4-phenylpyridinium ion (MPP+)-induced mitochondrial dysfunction in SH-SY5Y human neuroblastoma cells, an in vitro PD model. SH-SY5Y cells were incubated with SF for 24 h, after which they were treated with MPP+. MPP+-induced cytotoxicity and apoptosis were confirmed by 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling assay. MitoSOX red mitochondrial superoxide indicator, tetramethylrhodamine methyl ester perchlorate and Parkin, PTEN-induced putative kinase 1 (PINK1), and DJ-1 immunofluorescent staining were conducted to confirm the mitochondrial function. In addition, western blot was performed to evaluate apoptosis factors (Bcl-2, Bax, caspase-3 and cytochrome c) and mitochondrial function-related factors (Parkin, PINK1 and DJ-1). SF suppressed MPP+-induced cytotoxicity, apoptosis and collapse of mitochondrial membrane potential by inhibiting the increase of reactive oxidative species (ROS) and DNA fragmentation, and controlling Bcl-2, Bax, caspase-3 and cytochrome c expression. Moreover, it attenuated Parkin, PINK1 and DJ-1 expression from MPP+-induced decrease. SF effectively suppressed MPP+-induced cytotoxicity, apoptosis and mitochondrial dysfunction by regulating generation of ROS, disruption of mitochondrial membrane potential, mitochondria-dependent apoptosis and loss or mutation of mitochondria-related PD markers including Parkin, PINK1 and DJ-1.
Collapse
Affiliation(s)
- Hee-Young Kim
- Korean Medicine Research Center for Healthy Aging, Pusan National University, Yangsan, South Korea
| | - Hyongjun Jeon
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, South Korea
| | - Hyungwoo Kim
- Division of Pharmacology, School of Korean Medicine, Pusan National University, Yangsan, South Korea
| | - Sungtae Koo
- Korean Medicine Research Center for Healthy Aging, Pusan National University, Yangsan, South Korea.,Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, South Korea
| | - Seungtae Kim
- Korean Medicine Research Center for Healthy Aging, Pusan National University, Yangsan, South Korea.,Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, South Korea
| |
Collapse
|
81
|
Shen Y, Wu L, Wang J, Wu X, Zhang X. The Role of Mitochondria in Methamphetamine-induced inhibitory effects on osteogenesis of Mesenchymal Stem Cells. Eur J Pharmacol 2018; 826:56-65. [PMID: 29501866 DOI: 10.1016/j.ejphar.2018.02.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/25/2018] [Accepted: 02/28/2018] [Indexed: 01/22/2023]
Abstract
Methamphetamine (METH) abuse causes significant physical, psychological, and social concerns. Therefore, in this study, we investigated its effects on osteogenic differentiation of mesenchymal stem cells (MSCs). We found that METH dose-dependently affected MSCs viability. Upon osteogenic induction, the 3 and 30 µmol/l METH dosages without deleterious effects on MSCs viability resulted in the down-regulation of osteoblastic marker genes (Alp, Bglap, and Runx2), suppression of the protein expression of RUNX2, and decreased ALP activity and mineralization ability. Mitochondria are essential during osteogenesis of MSCs. Our analysis on mitochondrial function revealed that METH decreased ATP production, suppressed the oxygen consumption rate, and depolarized the mitochondrial membrane potential, but it had no significant effects on the protein expression of the five complexes on the respiratory chain. Additionally, METH could impair mitochondrial biogenesis, as demonstrated by decreased mtDNA and down-regulated biogenesis factors. Mitochondrial fusion regulators were also decreased at the mRNA and protein levels. However, mitochondrial fission and mitophagy were not affected. In conclusion, our study revealed that exposure to METH could result in decreased mitochondrial biogenesis and fusion as well as mitochondrial dysfunction, and thus it suppressed the osteogenesis of MSCs.
Collapse
Affiliation(s)
- Yulai Shen
- State Key Laboratory of Reproductive Medicine (SKLRM) and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Lu Wu
- State Key Laboratory of Reproductive Medicine (SKLRM) and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Jun Wang
- State Key Laboratory of Reproductive Medicine (SKLRM) and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine (SKLRM) and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211100, China.
| | - Xuemei Zhang
- State Key Laboratory of Reproductive Medicine (SKLRM) and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211100, China.
| |
Collapse
|
82
|
Himmelberg MM, West RJH, Elliott CJH, Wade AR. Abnormal visual gain control and excitotoxicity in early-onset Parkinson's disease Drosophila models. J Neurophysiol 2018; 119:957-970. [PMID: 29142100 PMCID: PMC5899316 DOI: 10.1152/jn.00681.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022] Open
Abstract
The excitotoxic theory of Parkinson's disease (PD) hypothesizes that a pathophysiological degeneration of dopaminergic neurons stems from neural hyperactivity at early stages of disease, leading to mitochondrial stress and cell death. Recent research has harnessed the visual system of Drosophila PD models to probe this hypothesis. Here, we investigate whether abnormal visual sensitivity and excitotoxicity occur in early-onset PD (EOPD) Drosophila models DJ-1αΔ72, DJ-1βΔ 93, and PINK15. We used an electroretinogram to record steady-state visually evoked potentials driven by temporal contrast stimuli. At 1 day of age, all EOPD mutants had a twofold increase in response amplitudes compared with w̄ controls. Furthermore, we found that excitotoxicity occurs in older EOPD models after increased neural activity is triggered by visual stimulation. In an additional analysis, we used a linear discriminant analysis to test whether there were subtle variations in neural gain control that could be used to classify Drosophila into their correct age and genotype. The discriminant analysis was highly accurate, classifying Drosophila into their correct genotypic class at all age groups at 50-70% accuracy (20% chance baseline). Differences in cellular processes link to subtle alterations in neural network operation in young flies, all of which lead to the same pathogenic outcome. Our data are the first to quantify abnormal gain control and excitotoxicity in EOPD Drosophila mutants. We conclude that EOPD mutations may be linked to more sensitive neuronal signaling in prodromal animals that may cause the expression of PD symptomologies later in life. NEW & NOTEWORTHY Steady-state visually evoked potential response amplitudes to multivariate temporal contrast stimuli were recorded in early-onset PD Drosophila models. Our data indicate that abnormal gain control and a subsequent visual loss occur in these PD mutants, supporting a broader excitotoxicity hypothesis in genetic PD. Furthermore, linear discriminant analysis could accurately classify Drosophila into their correct genotype at different ages throughout their lifespan. Our results suggest increased neural signaling in prodromal PD patients.
Collapse
Affiliation(s)
- Marc M Himmelberg
- Department of Psychology, The University of York , York , United Kingdom
| | - Ryan J H West
- Department of Biology, The University of York , York , United Kingdom
| | | | - Alex R Wade
- Department of Psychology, The University of York , York , United Kingdom
| |
Collapse
|
83
|
Identification of a highly neurotoxic α-synuclein species inducing mitochondrial damage and mitophagy in Parkinson's disease. Proc Natl Acad Sci U S A 2018; 115:E2634-E2643. [PMID: 29487216 DOI: 10.1073/pnas.1713849115] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Exposure of cultured primary neurons to preformed α-synuclein fibrils (PFFs) leads to the recruitment of endogenous α-synuclein and its templated conversion into fibrillar phosphorylated α-synuclein (pα-synF) aggregates resembling those involved in Parkinson's disease (PD) pathogenesis. Pα-synF was described previously as inclusions morphologically similar to Lewy bodies and Lewy neurites in PD patients. We discovered the existence of a conformationally distinct, nonfibrillar, phosphorylated α-syn species that we named "pα-syn*." We uniquely describe the existence of pα-syn* in PFF-seeded primary neurons, mice brains, and PD patients' brains. Through immunofluorescence and pharmacological manipulation we showed that pα-syn* results from incomplete autophagic degradation of pα-synF. Pα-synF was decorated with autophagic markers, but pα-syn* was not. Western blots revealed that pα-syn* was N- and C-terminally trimmed, resulting in a 12.5-kDa fragment and a SDS-resistant dimer. After lysosomal release, pα-syn* aggregates associated with mitochondria, inducing mitochondrial membrane depolarization, cytochrome C release, and mitochondrial fragmentation visualized by confocal and stimulated emission depletion nanoscopy. Pα-syn* recruited phosphorylated acetyl-CoA carboxylase 1 (ACC1) with which it remarkably colocalized. ACC1 phosphorylation indicates low ATP levels, AMPK activation, and oxidative stress and induces mitochondrial fragmentation via reduced lipoylation. Pα-syn* also colocalized with BiP, a master regulator of the unfolded protein response and a resident protein of mitochondria-associated endoplasmic reticulum membranes that are sites of mitochondrial fission and mitophagy. Pα-syn* aggregates were found in Parkin-positive mitophagic vacuoles and imaged by electron microscopy. Collectively, we showed that pα-syn* induces mitochondrial toxicity and fission, energetic stress, and mitophagy, implicating pα-syn* as a key neurotoxic α-syn species and a therapeutic target.
Collapse
|
84
|
Palle S, Neerati P. Improved neuroprotective effect of resveratrol nanoparticles as evinced by abrogation of rotenone-induced behavioral deficits and oxidative and mitochondrial dysfunctions in rat model of Parkinson's disease. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:445-453. [PMID: 29411055 DOI: 10.1007/s00210-018-1474-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 01/24/2018] [Indexed: 12/21/2022]
Abstract
The objective of the present study was to evaluate the protective effect of resveratrol nanoparticles (NRSV) against rotenone-induced neurodegeneration in rats. NRSV were prepared by temperature-controlled antisolvent precipitation method and characterized for its particle size, shape, and dissolution properties. Moreover, NRSV effects compared with the free resveratrol (RSV). Animals were divided into four groups: (I) control, (II) rotenone (2 mg/kg s.c.), (III) RSV (40 mg/kg, p.o.) + rotenone, and (IV) NRSV (40 mg/kg, p.o.) + rotenone. Animals received treatments 30 min before rotenone administration for a period of 35 days. Behavioral quantifications were done using rota rod test and rearing behavior after 24 h of last dose. Animals were euthanized, and mid brains were isolated for the estimation of tricarboxylic acid cycle enzymes, oxidative measures (lipid peroxidation (LPO), glutathione (GSH), and catalase), and complex-I activity. In addition, histopathological studies were also performed. Our results showed that chronic rotenone treatment causes motor deficits, decreased rearing behavior, mitochondrial dysfunction, and oxidative stress. Furthermore, histological analysis demonstrated neuronal degeneration in rotenone-treated rats. An important finding of the present study was NRSV showed comparatively better efficacy than the RSV treatment in attenuating the rotenone-induced Parkinson's like behavioral alterations, biochemical and histological changes, oxidative stress, and mitochondrial dysfunction in rats.
Collapse
Affiliation(s)
- Suresh Palle
- DMPK & Clinical Pharmacology Division, Department of Pharmacology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, TS, 506002, India
| | - Prasad Neerati
- DMPK & Clinical Pharmacology Division, Department of Pharmacology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, TS, 506002, India.
| |
Collapse
|
85
|
Sarbishegi M, Charkhat Gorgich EA, Khajavi O, Komeili G, Salimi S. The neuroprotective effects of hydro-alcoholic extract of olive (Olea europaea L.) leaf on rotenone-induced Parkinson's disease in rat. Metab Brain Dis 2018; 33:79-88. [PMID: 29039078 DOI: 10.1007/s11011-017-0131-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/09/2017] [Indexed: 01/06/2023]
Abstract
Parkinson's disease (PD) is an age-related disease in which dopaminergic neurons in the nigrostriatal pathway are destroyed, resulting in movement and behavioral problems. Oxidative stress and the generation of reactive oxygen species play key roles in neurodegenerative diseases, such as PD. Rotenone (ROT) is a common pesticide that induces oxidative stress. Olive leaves extract (OLE) has antioxidant and neuroprotective effects. Thus, the aim of this study was to investigate the neuroprotective effects of OLE on ROT-induced oxidative stress in the midbrain of a rat model of PD. Ninety-six Wistar rats were randomly divided into the following 6 groups (n = 16 rats/group): Control, Sham, ROT, and 3 ROT + OLE (75, 150, and 300 mg/kg/daily) groups. ROT (2.5 mg/kg/48 h) was injected subcutaneously, and vehicle or OLE was orally administered for 30 days. The animals were then sacrificed, and their brains were removed. Biochemical measures, including the levels of catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), and malondialdehyde (MDA), and the number of tyrosine hydroxylase (TH)-positive neurons were determined, and behavioral (rotarod and hanging) tests were conducted. The balance and muscle strength of the OLE (150 and 300 mg/kg)-treated groups were significantly improved. Treatment with OLE prevented the increases in the levels of MDA, significantly improved the SOD, CAT, and GPx levels in the midbrain, and prevented the depletion of the TH-positive neurons. These findings suggested that OLE has neuroprotective properties and that it might be useful for preventing the death of dopaminergic neurons in patients with PD.
Collapse
Affiliation(s)
- Maryam Sarbishegi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, IR, Iran.
- Department of Anatomy, School of Medicine, Zahedan University of Medical Sciences, Zahedan, IR, Iran.
| | | | - Ozra Khajavi
- Department of Anatomy, School of Medicine, Zahedan University of Medical Sciences, Zahedan, IR, Iran
| | - Gholamreza Komeili
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, IR, Iran
| | - Saeedeh Salimi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, IR, Iran
- Department of Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, IR, Iran
| |
Collapse
|
86
|
Peng K, Hu J, Xiao J, Dan G, Yang L, Ye F, Zou Z, Cao J, Sai Y. Mitochondrial ATP-sensitive potassium channel regulates mitochondrial dynamics to participate in neurodegeneration of Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1086-1103. [PMID: 29353068 DOI: 10.1016/j.bbadis.2018.01.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/25/2017] [Accepted: 01/12/2018] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is the second most common age-related neurodegenerative disease. Mitochondrial dysfunction has been the focus of the pathogenesis of PD. The mitochondrial ATP-sensitive potassium channel (mitoKATP) plays a significant role in mitochondrial physiology and has been extensively shown to protect against ischemic and brain reperfusion injury. However, there have long been controversies regarding its role in Parkinson's disease. We investigated the role of mitoKATP channels in rotenone-induced PD model in vivo and vitro and the interactions of mitoKATP channels, mitochondrial dynamics and PD. The results indicated that the use of diazoxide to activate mitoKATP channels resulted in the aggravation of rotenone-induced dopamine neurodegeneration in PC12 cells and SD rats. In contrast, the use of 5-hydroxydecanoate (5-HD) to inhibit mitoKATP channels improved rotenone-induced dopamine neurodegeneration, which was not consistent with mitoKATP channels in ischemic and brain reperfusion injury. Further analysis determined that the mitoKATP channel was involved in PD mainly via the regulation of mitochondrial biogenesis and fission/fusion. And the pore subunits of Kir6.1, the major component of mitoKATP channels, was the key contributor in its interaction with mitochondrial dynamics in rotenone-induced dopamine neurodegeneration. Therefore, it can be concluded that mitoKATP channels regulate mitochondrial dynamics to participate in rotenone-induced PD mainly attributes to the pore subunits of Kir6.1. And additionally, though mitoKATP channels may represent a direction of one potential target for neuroprotection, it should be noted that the effects are different in the activation or inhibition of mitoKATP channels in different models.
Collapse
Affiliation(s)
- Kaige Peng
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China
| | - Jun Hu
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Jingsong Xiao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China
| | - Guorong Dan
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China
| | - Likui Yang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China
| | - Feng Ye
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China
| | - Zhongmin Zou
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China.
| | - Yan Sai
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China.
| |
Collapse
|
87
|
Gao Y, Wilson GR, Stephenson SEM, Bozaoglu K, Farrer MJ, Lockhart PJ. The emerging role of Rab GTPases in the pathogenesis of Parkinson's disease. Mov Disord 2018; 33:196-207. [DOI: 10.1002/mds.27270] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 11/16/2017] [Accepted: 11/19/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- Yujing Gao
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; The University of Melbourne; Melbourne Victoria Australia
| | - Gabrielle R. Wilson
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; The University of Melbourne; Melbourne Victoria Australia
| | - Sarah E. M. Stephenson
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; The University of Melbourne; Melbourne Victoria Australia
| | - Kiymet Bozaoglu
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; The University of Melbourne; Melbourne Victoria Australia
| | - Matthew J. Farrer
- Djavad Mowafaghian Centre for Brain Health, Centre of Applied Neurogenetics, Department of Medical Genetics; University of British Columbia; Vancouver British Columbia Canada
| | - Paul J. Lockhart
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; The University of Melbourne; Melbourne Victoria Australia
| |
Collapse
|
88
|
Sirtuins as Modifiers of Huntington's Disease (HD) Pathology. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 154:105-145. [DOI: 10.1016/bs.pmbts.2017.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
89
|
Dynamic Changes of Mitochondrial Fusion and Fission in Brain Injury after Cardiac Arrest in Rats. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1948070. [PMID: 29445732 PMCID: PMC5763114 DOI: 10.1155/2017/1948070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/02/2017] [Accepted: 12/07/2017] [Indexed: 12/24/2022]
Abstract
Mitochondria change their morphology dynamically by continual fusion and fission processes to fulfill their function. However, little is known about the effect of cardiac arrest on mitochondrial dynamics. This study aimed to investigate time-dependent change of the mitochondrial dynamics after brain ischemic injury in rats of cardiac arrest. After resuscitation, obvious neuronal injury, reduced adenosine triphosphate (ATP) levels, excessive reactive oxygen species (ROS) generation, decreased mitochondrial membrane potential (MMP), and increased release of mitochondrial cytochrome c were observed at 12 h and 24 h after cardiac arrest. Moreover, we found that elongation of mitochondria was observed at 4 h after cardiac arrest, whereas fragmented mitochondria were significantly increased, along with concomitant increase in the fission proteins Drp1 and Fis1 and a reduction in the fusion proteins Mfn1 and Mfn2 at 12 h and 24 h after cardiac arrest. Taken together, these findings suggest that imbalance in mitochondrial dynamics probably contributes to brain injury after cardiac arrest.
Collapse
|
90
|
Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Mitochondrial bioenergetics decay in aging: beneficial effect of melatonin. Cell Mol Life Sci 2017; 74:3897-3911. [PMID: 28785806 PMCID: PMC11107727 DOI: 10.1007/s00018-017-2619-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/03/2017] [Indexed: 12/18/2022]
Abstract
Aging is a biological process characterized by progressive decline in physiological functions, increased oxidative stress, reduced capacity to respond to stresses, and increased risk of contracting age-associated disorders. Mitochondria are referred to as the powerhouse of the cell through their role in the oxidative phosphorylation to generate ATP. These organelles contribute to the aging process, mainly through impairment of electron transport chain activity, opening of the mitochondrial permeability transition pore and increased oxidative stress. These events lead to damage to proteins, lipids and mitochondrial DNA. Cardiolipin, a phospholipid of the inner mitochondrial membrane, plays a pivotal role in several mitochondrial bioenergetic processes as well as in mitochondrial-dependent steps of apoptosis and in mitochondrial membrane stability and dynamics. Cardiolipin alterations are associated with mitochondrial bienergetics decline in multiple tissues in a variety of physiopathological conditions, as well as in the aging process. Melatonin, the major product of the pineal gland, is considered an effective protector of mitochondrial bioenergetic function. Melatonin preserves mitochondrial function by preventing cardiolipin oxidation and this may explain, at least in part, the protective role of this compound in mitochondrial physiopathology and aging. Here, mechanisms through which melatonin exerts its protective role against mitochondrial dysfunction associated with aging and age-associated disorders are discussed.
Collapse
Affiliation(s)
- Giuseppe Paradies
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.
| | - Valeria Paradies
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Francesca M Ruggiero
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Giuseppe Petrosillo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| |
Collapse
|
91
|
Diminished stress resistance and defective adaptive homeostasis in age-related diseases. Clin Sci (Lond) 2017; 131:2573-2599. [PMID: 29070521 DOI: 10.1042/cs20160982] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/31/2017] [Accepted: 09/15/2017] [Indexed: 02/06/2023]
Abstract
Adaptive homeostasis is defined as the transient expansion or contraction of the homeostatic range following exposure to subtoxic, non-damaging, signaling molecules or events, or the removal or cessation of such molecules or events (Mol. Aspects Med. (2016) 49, 1-7). Adaptive homeostasis allows us to transiently adapt (and then de-adapt) to fluctuating levels of internal and external stressors. The ability to cope with transient changes in internal and external environmental stress, however, diminishes with age. Declining adaptive homeostasis may make older people more susceptible to many diseases. Chronic oxidative stress and defective protein homeostasis (proteostasis) are two major factors associated with the etiology of age-related disorders. In the present paper, we review the contribution of impaired responses to oxidative stress and defective adaptive homeostasis in the development of age-associated diseases.
Collapse
|
92
|
Wang L, Chen B, Peng P, Hu W, Liu Z, Pei X, Zhao W, Zhang C, Li L, Huang W. Fluorescence imaging mitochondrial copper(II) via photocontrollable fluorogenic probe in live cells. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
93
|
Sashourpour M, Zahri S, Radjabian T, Ruf V, Pan-Montojo F, Morshedi D. A study on the modulation of alpha-synuclein fibrillation by Scutellaria pinnatifida extracts and its neuroprotective properties. PLoS One 2017; 12:e0184483. [PMID: 28957336 PMCID: PMC5619708 DOI: 10.1371/journal.pone.0184483] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 08/24/2017] [Indexed: 01/08/2023] Open
Abstract
Aggregation of alpha-synuclein (α-SN) is a key pathogenic event in Parkinson's disease (PD) leading to dopaminergic degeneration. The identification of natural compounds inhibiting α-SN aggregation may have a major role in treating PD. Different Scutellaria species are known as valuable medicinal plants, primarily due to their high flavonoid levels. Scutellaria pinnatifida (S. pinnatifida) is endemic to Iran; however, the knowledge of its pharmaceutical properties is limited. Here we report that S. pinnatifida extracts have an anti-fibrillation effect on α-SN aggregation and neuroprotective properties on PC12 and primary dopaminergic neurons. Treatment during α-SN fibril formation with S. pinnatifida extracts showed that the extractions performed with dichloromethane (DCMEx) and n-butanol (BuOHEx) strongly inhibited α-SN fibrillation. TLC-based analysis revealed that S. pinnatifida contains a great amount of flavonoids with high antioxidant properties as shown using a radical scavenging assay. Further analysis using HPLC and Mass spectroscopy on the DCMEx revealed the presence of baicalein in this extract. We then selected the more efficient extracts based on cell viability and ROS scavenging on PC12 cells and tested their neuroprotective properties on primary dopaminergic neurons. Our results showed the extracts strongly protected against α-SN oligomers. Surprisingly, they also neutralized the severe toxicity of paraquat. Therefore, S. pinnatifida may be a potential valuable medicinal herb for further studies related to the treatment of PD.
Collapse
Affiliation(s)
- Mahdyeh Sashourpour
- Department of Biology, Faculty of Science, Mohaghegh Ardabili University, Ardabil, Iran
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Saber Zahri
- Department of Biology, Faculty of Science, Mohaghegh Ardabili University, Ardabil, Iran
| | - Tayebeh Radjabian
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, Ludwig-Maximilian University, Munich, Germany
| | - Francisco Pan-Montojo
- Department of Neurology, University Hospital, LMU, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Dina Morshedi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
94
|
López A, Ortiz F, Doerrier C, Venegas C, Fernández-Ortiz M, Aranda P, Díaz-Casado ME, Fernández-Gil B, Barriocanal-Casado E, Escames G, López LC, Acuña-Castroviejo D. Mitochondrial impairment and melatonin protection in parkinsonian mice do not depend of inducible or neuronal nitric oxide synthases. PLoS One 2017; 12:e0183090. [PMID: 28800639 PMCID: PMC5553810 DOI: 10.1371/journal.pone.0183090] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 07/28/2017] [Indexed: 12/15/2022] Open
Abstract
MPTP-mouse model constitutes a well-known model of neuroinflammation and mitochondrial failure occurring in Parkinson’s disease (PD). Although it has been extensively reported that nitric oxide (NO●) plays a key role in the pathogenesis of PD, the relative roles of nitric oxide synthase isoforms iNOS and nNOS in the nigrostriatal pathway remains, however, unclear. Here, the participation of iNOS/nNOS isoforms in the mitochondrial dysfunction was analyzed in iNOS and nNOS deficient mice. Our results showed that MPTP increased iNOS activity in substantia nigra and striatum, whereas it sharply reduced complex I activity and mitochondrial bioenergetics in all strains. In the presence of MPTP, mice lacking iNOS showed similar restricted mitochondrial function than wild type or mice lacking nNOS. These results suggest that iNOS-dependent elevated nitric oxide, a major pathological hallmark of neuroinflammation in PD, does not contribute to mitochondrial impairment. Therefore, neuroinflammation and mitochondrial dysregulation seem to act in parallel in the MPTP model of PD. Melatonin administration, with well-reported neuroprotective properties, counteracted these effects, preventing from the drastic changes in mitochondrial oxygen consumption, increased NOS activity and prevented reduced locomotor activity induced by MPTP. The protective effects of melatonin on mitochondria are also independent of its anti-inflammatory properties, but both effects are required for an effective anti-parkinsonian activity of the indoleamine as reported in this study.
Collapse
Affiliation(s)
- Ana López
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, and Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Francisco Ortiz
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, and Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Carolina Doerrier
- CIBERfes, Ibs.Granada, Complejo Hospitalario de Granada, Granada, Spain
| | - Carmen Venegas
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, and Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Marisol Fernández-Ortiz
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, and Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Paula Aranda
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, and Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - María E. Díaz-Casado
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, and Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Beatriz Fernández-Gil
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, and Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Eliana Barriocanal-Casado
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, and Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Germaine Escames
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, and Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
- CIBERfes, Ibs.Granada, Complejo Hospitalario de Granada, Granada, Spain
| | - Luis C. López
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, and Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
- CIBERfes, Ibs.Granada, Complejo Hospitalario de Granada, Granada, Spain
| | - Darío Acuña-Castroviejo
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, and Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
- CIBERfes, Ibs.Granada, Complejo Hospitalario de Granada, Granada, Spain
- UGC de Laboratorios Clínicos, Complejo Hospitalario de Granada, Granada, Spain
- * E-mail:
| |
Collapse
|
95
|
He YC, Kong FZ, Fan LY, Wu JY, Liu XP, Li J, Sun Y, Zhang Q, Yang Y, Wu XJ, Xiao H, Cao CX. Preparation of intact mitochondria using free-flow isoelectric focusing with post-pH gradient sample injection for morphological, functional and proteomics studies. Anal Chim Acta 2017; 982:200-208. [DOI: 10.1016/j.aca.2017.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 06/10/2017] [Accepted: 06/13/2017] [Indexed: 12/31/2022]
|
96
|
Rostovtseva TK, Hoogerheide DP, Rovini A, Bezrukov SM. Lipids in Regulation of the Mitochondrial Outer Membrane Permeability, Bioenergetics, and Metabolism. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-55539-3_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
97
|
Formation of neurodegenerative aggresome and death-inducing signaling complex in maternal diabetes-induced neural tube defects. Proc Natl Acad Sci U S A 2017; 114:4489-4494. [PMID: 28396396 DOI: 10.1073/pnas.1616119114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diabetes mellitus in early pregnancy increases the risk in infants of birth defects, such as neural tube defects (NTDs), known as diabetic embryopathy. NTDs are associated with hyperglycemia-induced protein misfolding and Caspase-8-induced programmed cell death. The present study shows that misfolded proteins are ubiquitinylated, suggesting that ubiquitin-proteasomal degradation is impaired. Misfolded proteins form aggregates containing ubiquitin-binding protein p62, suggesting that autophagic-lysosomal clearance is insufficient. Additionally, these aggregates contain the neurodegenerative disease-associated proteins α-Synuclein, Parkin, and Huntingtin (Htt). Aggregation of Htt may lead to formation of a death-inducing signaling complex of Hip1, Hippi, and Caspase-8. Treatment with chemical chaperones, such as sodium 4-phenylbutyrate (PBA), reduces protein aggregation in neural stem cells in vitro and in embryos in vivo. Furthermore, treatment with PBA in vivo decreases NTD rate in the embryos of diabetic mice, as well as Caspase-8 activation and cell death. Enhancing protein folding could be a potential interventional approach to preventing embryonic malformations in diabetic pregnancies.
Collapse
|
98
|
Flippo KH, Strack S. Mitochondrial dynamics in neuronal injury, development and plasticity. J Cell Sci 2017; 130:671-681. [PMID: 28154157 DOI: 10.1242/jcs.171017] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria fulfill numerous cellular functions including ATP production, Ca2+ buffering, neurotransmitter synthesis and degradation, ROS production and sequestration, apoptosis and intermediate metabolism. Mitochondrial dynamics, a collective term for the processes of mitochondrial fission, fusion and transport, governs mitochondrial function and localization within the cell. Correct balance of mitochondrial dynamics is especially important in neurons as mutations in fission and fusion enzymes cause peripheral neuropathies and impaired development of the nervous system in humans. Regulation of mitochondrial dynamics is partly accomplished through post-translational modification of mitochondrial fission and fusion enzymes, in turn influencing mitochondrial bioenergetics and transport. The importance of post-translational regulation is highlighted by numerous neurodegenerative disorders associated with post-translational modification of the mitochondrial fission enzyme Drp1. Not surprisingly, mitochondrial dynamics also play an important physiological role in the development of the nervous system and synaptic plasticity. Here, we highlight recent findings underlying the mechanisms and regulation of mitochondrial dynamics in relation to neurological disease, as well as the development and plasticity of the nervous system.
Collapse
Affiliation(s)
- Kyle H Flippo
- Department of Pharmacology, University of Iowa, Iowa City, USA
| | - Stefan Strack
- Department of Pharmacology, University of Iowa, Iowa City, USA
| |
Collapse
|
99
|
Dutta D, Ali N, Banerjee E, Singh R, Naskar A, Paidi RK, Mohanakumar KP. Low Levels of Prohibitin in Substantia Nigra Makes Dopaminergic Neurons Vulnerable in Parkinson's Disease. Mol Neurobiol 2017; 55:804-821. [PMID: 28062948 DOI: 10.1007/s12035-016-0328-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/29/2016] [Indexed: 12/18/2022]
Abstract
Since substantia nigra (SN) and ventral tegmental area (VTA) dopaminergic neurons are, respectively, susceptible or largely unaffected in Parkinson's disease (PD), we searched for protein(s) that regulates this differential sensitivity. Differentially, expressed proteins in SN and VTA were investigated employing two-directional gel electrophoresis- matrix-assisted laser desorption ionization time of flight (MALDI-TOF-TOF) analyses. Prohibitin, which is involved in mitochondrial integrity, was validated using immunoblot, qRT-PCR, and immunohistochemistry in normal mice as well as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-model, PD postmortem human brains, and PD cybrids. In prohibitin over-expression, differentiated SH-SY5Y neurons were investigated for their susceptibility to PD neurotoxin, 1-methyl-4-phenyl-pyridnium (MPP+). Prohibitin, Hsc73, and Cu-Zn superoxide dismutase (Cu-Zn SOD) were highly expressed in VTA, whereas heat shock protein A8 (HSPA8) and 14-3-3ζ/δ were 2-fold more in SN. Prohibitin level was transiently increased in SN but unaltered in VTA on the third day of MPTP-induced mice, whereas in PD human brains, prohibitin was depleted in both these regions. Parallel to mouse SN, an enhanced prohibitin expression was found in human PD cybrids. In MPP+-induced cellular model of PD, reduction in prohibitin level was found to be associated with a loss in its binding with Ndufs3, a mitochondrial complex I protein partner. Prohibitin over-expression resisted MPP+-induced neuronal death by restoring mitochondrial membrane potential, preventing reactive oxygen species generation and cytochrome c release into cytosol. These protective phenomena exerted by prohibitin over-expression altogether hinder caspase 3 activation induced by MPP+. These results imply that prohibitin is an important negotiator protein that regulates dopaminergic cell death in SN and their protection in VTA in PD.
Collapse
Affiliation(s)
- Debashis Dutta
- Laboratory of Clinical and Experimental Neuroscience, Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata, 700 032, India
| | - Nilufar Ali
- Laboratory of Clinical and Experimental Neuroscience, Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata, 700 032, India
| | - Emili Banerjee
- Laboratory of Clinical and Experimental Neuroscience, Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata, 700 032, India
| | - Raghavendra Singh
- Laboratory of Clinical and Experimental Neuroscience, Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata, 700 032, India
| | - Amit Naskar
- Laboratory of Clinical and Experimental Neuroscience, Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata, 700 032, India
| | - Ramesh Kumar Paidi
- Laboratory of Clinical and Experimental Neuroscience, Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata, 700 032, India
| | - Kochupurackal P Mohanakumar
- Laboratory of Clinical and Experimental Neuroscience, Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata, 700 032, India. .,Inter University Centre for Biomedical Research and Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O, Kottayam, Kerala, 686009, India.
| |
Collapse
|
100
|
Fruhmann G, Seynnaeve D, Zheng J, Ven K, Molenberghs S, Wilms T, Liu B, Winderickx J, Franssens V. Yeast buddies helping to unravel the complexity of neurodegenerative disorders. Mech Ageing Dev 2017; 161:288-305. [DOI: 10.1016/j.mad.2016.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/22/2016] [Accepted: 05/02/2016] [Indexed: 12/31/2022]
|