51
|
Sheppard A, Ralli M, Gilardi A, Salvi R. Occupational Noise: Auditory and Non-Auditory Consequences. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8963. [PMID: 33276507 PMCID: PMC7729999 DOI: 10.3390/ijerph17238963] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/13/2022]
Abstract
Occupational noise exposure accounts for approximately 16% of all disabling hearing losses, but the true value and societal costs may be grossly underestimated because current regulations only identify hearing impairments in the workplace if exposures result in audiometric threshold shifts within a limited frequency region. Research over the past several decades indicates that occupational noise exposures can cause other serious auditory deficits such as tinnitus, hyperacusis, extended high-frequency hearing loss, and poor speech perception in noise. Beyond the audiogram, there is growing awareness that hearing loss is a significant risk factor for other debilitating and potentially life-threatening disorders such as cardiovascular disease and dementia. This review discusses some of the shortcomings and limitations of current noise regulations in the United States and Europe.
Collapse
Affiliation(s)
- Adam Sheppard
- Department of Communicative Disorders and Sciences and Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14221, USA;
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (M.R.); (A.G.)
| | - Antonio Gilardi
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (M.R.); (A.G.)
| | - Richard Salvi
- Department of Communicative Disorders and Sciences and Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14221, USA;
| |
Collapse
|
52
|
Noise and brain. Physiol Behav 2020; 227:113136. [DOI: 10.1016/j.physbeh.2020.113136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 07/13/2020] [Accepted: 08/11/2020] [Indexed: 01/05/2023]
|
53
|
Lee CH, Kim KW, Lee SM, Kim SY. Effect of acute noise trauma on the gene expression profile of the hippocampus. BMC Neurosci 2020; 21:45. [PMID: 33160313 PMCID: PMC7648995 DOI: 10.1186/s12868-020-00599-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/30/2020] [Indexed: 01/24/2023] Open
Abstract
Background This study aimed to investigate the changes in the expression of hippocampal genes upon acute noise exposure. Methods Three-week-old Sprague–Dawley rats were assigned to control (n = 15) and noise (n = 15) groups. White noise (2–20 kHz, 115 dB sound pressure level [SPL]) was delivered for 4 h per day for 3 days to the noise group. All rats were sacrificed on the last day of noise exposure, and gene expression in the hippocampus was analyzed using a microarray. Pathway analyses were conducted for genes that showed differential expression ≥ 1.5-fold and P ≤ 0.05 compared to the control group. The genes included in the putative pathways were measured using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Results Thirty-eight upregulated genes and 81 downregulated genes were identified. The pathway analyses revealed that upregulated genes were involved in the cellular responses to external stimuli and immune system pathways. qRT-PCR confirmed the upregulation of the involved genes. The downregulated genes were involved in neuronal systems and synapse-related pathways, and qRT-PCR confirmed the downregulation of the involved genes. Conclusions Acute noise exposure upregulated the expression of immune-related genes and downregulated the expression of neurotransmission-related genes in the hippocampus.
Collapse
Affiliation(s)
- Chang Ho Lee
- Department of Otorhinolaryngology, CHA University College of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, Gyeonggi-do, Korea
| | - Kyung Woon Kim
- Department of Otorhinolaryngology, CHA University College of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, Gyeonggi-do, Korea
| | - So Min Lee
- Department of Otorhinolaryngology, CHA University College of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, Gyeonggi-do, Korea
| | - So Young Kim
- Department of Otorhinolaryngology, CHA University College of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, Gyeonggi-do, Korea.
| |
Collapse
|
54
|
Karem H, Mehla J, Kolb BE, Mohajerani MH. Traffic noise exposure, cognitive decline, and amyloid-beta pathology in an AD mouse model. Synapse 2020; 75:e22192. [PMID: 33096582 DOI: 10.1002/syn.22192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 11/11/2022]
Abstract
Concerns are growing that exposure to environmental pollutants, such as traffic noise, might cause cognitive impairments and predispose individuals toward the development of Alzheimer's disease (AD) dementia. In this study in a knock-in mouse model of AD, we investigated how chronic traffic noise exposure (CTNE) impacts cognitive performance and amyloid-beta (Aβ) pathology. A group of APPNL-G-F/NL-G-F mice was exposed to CTNE (70 dBA , 8 hr/day for 1 month) and compared with nonexposed counterparts. Following CTNE, an increase in hypothalamic-pituitary-adrenal (HPA) axis responsivity was observed by corticosterone assay of the blood. One month after CTNE, the CTNE group demonstrated impairments in cognitive and motor functions, and indications of anxiety-like behavior, relative to the control animals. The noise-exposed group also showed elevated Aβ aggregation, as inferred by a greater number of plaques and larger average plaque size in various regions of the brain, including regions involved in stress regulation. The results support that noise-associated dysregulation of the neuroendocrine system as a potential risk factor for developing cognitive impairment and Aβ pathology, which should be further investigated in human studies.
Collapse
Affiliation(s)
- Hadil Karem
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Jogender Mehla
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
55
|
Jafari Z, Mehla J, Kolb BE, Mohajerani MH. Gestational Stress Augments Postpartum β-Amyloid Pathology and Cognitive Decline in a Mouse Model of Alzheimer's Disease. Cereb Cortex 2020; 29:3712-3724. [PMID: 30561536 DOI: 10.1093/cercor/bhy251] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/02/2018] [Indexed: 12/14/2022] Open
Abstract
Besides well-known risk factors for Alzheimer's disease (AD), stress, and in particular noise stress (NS), is a lifestyle risk factor common today. It is known that females are at a significantly greater risk of developing AD than males, and given that stress is a common adversity in females during pregnancy, we hypothesized that gestational noise exposure could exacerbate the postpartum development of the AD-like neuropathological changes during the life span. Pregnant APPNL-G-F/NL-G-F mice were randomly assigned to either the stress condition or control group. The stress group was exposed to the NS on gestational days 12-16, which resulted in a markedly higher hypothalamic-pituitary-adrenal (HPA) axis responsivity during the postpartum stage. Higher amyloid-β (Aβ) deposition and larger Aβ plaque size in the olfactory area were the early onset impacts of the gestational stress (GS) seen at the age of 4 months. This pattern of increased Aβ aggregation and larger plaque size were observed in various brain areas involved in both AD and stress regulation, especially in limbic structures, at the age of 6 months. The GS also produced anxiety-like behavior, deficits in learning and memory, and impaired motor coordination. The findings suggest that environmental stresses during pregnancy pose a potential risk factor in accelerating postpartum cognitive decline and AD-like neuropathological changes in the dams (mothers) later in life.
Collapse
Affiliation(s)
- Zahra Jafari
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience (CCBN), University of Lethbridge, Lethbridge, Canada.,Department of Basic Sciences in Rehabilitation, School of Rehabilitation Sciences, Iran University of Medical Science (IUMS), Tehran, Iran
| | - Jogender Mehla
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience (CCBN), University of Lethbridge, Lethbridge, Canada
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience (CCBN), University of Lethbridge, Lethbridge, Canada
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience (CCBN), University of Lethbridge, Lethbridge, Canada
| |
Collapse
|
56
|
Jafari Z, Kolb BE, Mohajerani MH. Noise exposure accelerates the risk of cognitive impairment and Alzheimer’s disease: Adulthood, gestational, and prenatal mechanistic evidence from animal studies. Neurosci Biobehav Rev 2020; 117:110-128. [DOI: 10.1016/j.neubiorev.2019.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 12/25/2022]
|
57
|
Freire-Cobo C, Wang J. Dietary phytochemicals modulate experience-dependent changes in Neurexin gene expression and alternative splicing in mice after chronic variable stress exposure. Eur J Pharmacol 2020; 883:173362. [PMID: 32663544 DOI: 10.1016/j.ejphar.2020.173362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 01/09/2023]
Abstract
Neurexins (NRXNs) are cell-adhesion molecules important in the formation and remodeling of neural circuits. It has been shown that aversive environmental stimuli can affect the expression pattern of Neurexin genes (Nrxns) impacting the regulation of synaptic strength. Accumulated evidence suggests that, after chronic exposure to psychological stress, the triggered changes in gene expression and splicing patterns of Nrxns may be involved in aversive conditioning. Previously, we have demonstrated that a novel treatment using dietary phytochemicals can modulate the response to chronic variable stress (CVS) in mice. Here, we aimed to further investigate the long-term plasticity changes after CVS by focusing on the regulation of NRXNs at synapses. We found that CVS differentially triggers the region-specific gene expression of Nrxns in mice Nucleus Accumbens (NAc) and Hippocampus (HIPP). The prophylactic treatment with the combination of two phytochemicals dihydrocaffeic acid (DHCA) and Malvidin-3-O-glucoside (Mal-gluc) differentially modulated the stress-induced effects on Nrxn1 and 3 mRNA expression in these brain areas and promoted the alternative splicing of Nrxn3 in HIPP. Overall, our data supports the prophylactic effect of dietary phytochemicals in the restoration of stress-induced plasticity changes in mouse brain. By intervening in activity-dependent plasticity at synapses, these compounds may attenuate the effects of chronic aversive conditioning. We propose that an early therapeutic intervention may help with disorders of negative affect, such as depression or post-traumatic stress disorder. Our future studies will address how DHCA/Mal-gluc might serve as a potential complement for current therapies in depression and other mood disorders.
Collapse
Affiliation(s)
- Carmen Freire-Cobo
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Jun Wang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, 10468, USA
| |
Collapse
|
58
|
Fernández-Quezada D, Moran-Torres D, Luquin S, Ruvalcaba-Delgadillo Y, García-Estrada J, Jáuregui-Huerta F. Male/female Differences in Radial Arm Water Maze Execution After Chronic Exposure to Noise. Noise Health 2020; 21:25-34. [PMID: 32098928 PMCID: PMC7050231 DOI: 10.4103/nah.nah_23_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Introduction: Noise is one of the main sources of discomfort in modern societies. It affects physiology, behavior, and cognition of exposed subjects. Although the effects of noise on cognition are well known, gender role in noise-cognition relationship remains controversial. Aim: We analyzed the effects of noise on the ability of male and female rats to execute the Radial Arm Water Maze (RAWM) paradigm. Materials and Methods: Male and female Wistar rats were exposed to noise for 3 weeks, and the cognitive effects were assessed at the end of the exposure. RAWM execution included a three-day training phase and a reversal-learning phase conducted on the fourth day. Escape latency, reference memory errors, and working memory errors were quantified and compared between exposed and non-exposed subjects. Results: We found that male rats were in general more affected by noise. Execution during the three-day learning phase evidenced that male exposed rats employed significantly more time to acquire the task than the non-exposed. On the other hand, the exposed females solved the paradigm in latencies similar to control rats. Both, males and females diminished their capacity to execute on the fourth day when re-learning abilities were tested. Conclusion: We conclude that male rats might be less tolerable to noise compared to female ones and that spatial learning may be a cognitive function comparably more vulnerable to noise.
Collapse
Affiliation(s)
- David Fernández-Quezada
- Laboratorio de Microscopía de Alta Resolución, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Mexico
| | - Diana Moran-Torres
- Laboratorio de Microscopía de Alta Resolución, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Mexico
| | - Sonia Luquin
- Laboratorio de Microscopía de Alta Resolución, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Mexico
| | - Yaveth Ruvalcaba-Delgadillo
- Laboratorio de Microscopía de Alta Resolución, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Mexico
| | - Joaquín García-Estrada
- Laboratorio de Microscopía de Alta Resolución, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Mexico
| | - Fernando Jáuregui-Huerta
- Laboratorio de Microscopía de Alta Resolución, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Mexico
| |
Collapse
|
59
|
Jafari Z, Kolb BE, Mohajerani MH. Prepulse inhibition of the acoustic startle reflex and P50 gating in aging and alzheimer's disease. Ageing Res Rev 2020; 59:101028. [PMID: 32092463 DOI: 10.1016/j.arr.2020.101028] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/20/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
Abstract
Inhibition plays a crucial role in many functional domains, such as cognition, emotion, and actions. Studies on cognitive aging demonstrate changes in inhibitory mechanisms are age- and pathology-related. Prepulse inhibition (PPI) is the suppression of an acoustic startle reflex (ASR) to an intense stimulus when a weak prepulse stimulus precedes the startle stimulus. A reduction of PPI is thought to reflect dysfunction of sensorimotor gating which normally suppresses excessive behavioral responses to disruptive stimuli. Both human and rodent studies show age-dependent alterations of PPI of the ASR that are further compromised in Alzheimer's disease (AD). The auditory P50 gating, an index of repetition suppression, also is characterized as a putative electrophysiological biomarker of prodromal AD. This review provides the latest evidence of age- and AD-associated impairment of sensorimotor gating based upon both human and rodent studies, as well as the AD-related disruption of P50 gating in humans. It begins with a concise review of neural networks underlying PPI regulation. Then, evidence of age- and AD-related dysfunction of both PPI and P50 gating is discussed. The attentional/ emotional aspects of sensorimotor gating and the neurotransmitter mechanisms underpinning PPI and P50 gating are also reviewed. The review ends with conclusions and research directions.
Collapse
Affiliation(s)
- Zahra Jafari
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, T1K 3M4 AB, Canada; Department of Basic Sciences in Rehabilitation, School of Rehabilitation Sciences, Iran University of Medical Science (IUMS), Tehran, Iran
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, T1K 3M4 AB, Canada.
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, T1K 3M4 AB, Canada.
| |
Collapse
|
60
|
Bagheri F, Rashedi V. Simultaneous exposure to noise and carbon monoxide increases the risk of Alzheimer's disease: a literature review. Med Gas Res 2020; 10:85-90. [PMID: 32541134 PMCID: PMC7885712 DOI: 10.4103/2045-9912.285562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Dementia is a syndrome of cognitive and functional decline, commonly occurring in later life as a result of neurodegenerative and cerebrovascular processes beginning earlier in the life course. An excess of free radicals has an essential role in neurodegenerative diseases and aging. This paper aims to review the effects of noise and carbon monoxide as a risk factor in Alzheimer's disease as well as the role of free radicals in the progress of Alzheimer's disease. Articles included in this review were identified through a search of the databases PubMed, Scopus, and Google Scholar using the search terms Alzheimer's disease, dementia, noise, reactive oxygen species, and Carbon Monoxide. The literature search was restricted to the years 1982 to 2020 and articles published in the English language. The metabolism rate of the body is very high when exposed to noise and carbon monoxide; this leads to overproduction of reactive oxygen species and oxidative stress conditions. Oxidative stress has an essential role in the mechanisms concerned in Alzheimer's disease. In addition to the consequences of noise and a chemical substance on the auditory system, they also have non-auditory effects that affect the brain and induced neurodegenerative disease.
Collapse
Affiliation(s)
- Fereshteh Bagheri
- Department of Audiology, School of Rehabilitation Sciences, Babol University of Medical Sciences, Mazandaran, Iran
| | - Vahid Rashedi
- School of Behavioral Sciences and Mental Health (Tehran Institute of Psychiatry), Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
61
|
Jafari Z, Kolb BE, Mohajerani MH. Life-Course Contribution of Prenatal Stress in Regulating the Neural Modulation Network Underlying the Prepulse Inhibition of the Acoustic Startle Reflex in Male Alzheimer's Disease Mice. Cereb Cortex 2020; 30:311-325. [PMID: 31070710 PMCID: PMC7029700 DOI: 10.1093/cercor/bhz089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The prepulse inhibition (PPI) of the acoustic startle reflex (ASR), as an index of sensorimotor gating, is one of the most extensively used paradigms in the field of neuropsychiatric disorders. Few studies have examined how prenatal stress (PS) regulates the sensorimotor gating during the lifespan and how PS modifies the development of amyloid-beta (Aβ) pathology in brain areas underlying the PPI formation. We followed alternations in corticosterone levels, learning and memory, and the PPI of the ASR measures in APPNL-G-F/NL-G-F offspring of dams exposed to gestational noise stress. In-depth quantifications of the Aβ plaque accumulation were also performed at 6 months. The results indicated an age-dependent deterioration of sensorimotor gating, long-lasting PS-induced abnormalities in PPI magnitudes, as well as deficits in spatial memory. The PS also resulted in a higher Aβ aggregation predominantly in brain areas associated with the PPI modulation network. The findings suggest the contribution of a PS-induced hypothalamic-pituitary-adrenal (HPA) axis hyperactivity in regulating the PPI modulation substrates leading to the abnormal development of the neural protection system in response to disruptive stimuli. The long-lasting HPA axis dysregulation appears to be the major underlying mechanism in precipitating the Aβ deposition, especially in brain areas contributed to the PPI modulation network.
Collapse
Affiliation(s)
- Zahra Jafari
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- Department of Basic Sciences in Rehabilitation, School of Rehabilitation Sciences, Iran University of Medical Science, Tehran, Iran
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
62
|
Jafari Z, Kolb BE, Mohajerani MH. Age-related hearing loss and tinnitus, dementia risk, and auditory amplification outcomes. Ageing Res Rev 2019; 56:100963. [PMID: 31557539 DOI: 10.1016/j.arr.2019.100963] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/20/2019] [Accepted: 09/18/2019] [Indexed: 01/07/2023]
Abstract
Age-related hearing loss (ARHL) or presbycusis, as the third leading cause of chronic disability in older adults, has been shown to be associated with predisposing cognitive impairment and dementia. Tinnitus is also a chronic auditory disorder demonstrating a growth rate with increasing age. Recent evidence stands for the link between bothersome tinnitus and impairments in various aspects of cognitive function. Both ARHL and age-related tinnitus affect mental health and contribute to developing anxiety, stress, and depression. The present review is a comprehensive multidisciplinary study on diverse interactions among ARHL, tinnitus, and cognitive decline in older adults. This review incorporates the latest evidence in prevalence and risk factors of ARHL and tinnitus, the neural substrates of tinnitus-related cognitive impairments, hypothesized mechanisms concerning the association between ARHL and increased risk of dementia, hearing amplification outcomes in cases with ARHL and cognitive decline, and preliminary findings on the link between ARHL and cognitive impairment in animal studies. Given extensive evidence that demonstrates advantages of using auditory amplification in the alleviation of hearing handicap, depression, and tinnitus, and the improvement of cognition, social communication, and quality of life, regular hearing screening programs for identification and management of midlife hearing loss and tinnitus is strongly recommended.
Collapse
|
63
|
Tao X, Yang W, Zhu S, Que R, Liu C, Fan T, Wang J, Mo D, Zhang Z, Tan J, Jin K, Yenari MA, Song T, Wang Q. Models of poststroke depression and assessments of core depressive symptoms in rodents: How to choose? Exp Neurol 2019; 322:113060. [PMID: 31505162 DOI: 10.1016/j.expneurol.2019.113060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/09/2019] [Accepted: 09/05/2019] [Indexed: 01/22/2023]
Abstract
Our previous studies have indicated that depression and declined cognition have been involved in some neurodegenerative diseases including Stroke, Parkinson's diseases and Vascular Parkinsonism. Post-stroke depression (PSD) is the most common psychiatric disorder following a stroke and has high morbidity and mortality. Studies on PSD are increasingly common, but the specific mechanisms remain unknown. Current research mainly includes clinical and animal aspects. Questionnaires and peripheral blood examination are two of the most common methods used to study clinical PSD. The results of questionnaires are influenced by multiple factors such as disease history, education background, occupation, economic status, family relationships and social support. There are certain limitations to blood sample testing; for example, it is influenced by cerebrovascular diseases and some other disruptions of the internal environment. It is difficult for either method to fully clarify the pathophysiological mechanism of PSD. Animal models provide alternative methods to further understand the pathophysiological mechanisms of PSD, such as the involvement of neuronal circuits and cytokines. More than ten animal models of PSD have been developed, and new models are constantly being introduced. Therefore, it is important to choose the appropriate model for any given study. In this paper, we will discuss the characteristics of the different models of PSD and comment on the advantages and disadvantages of each model, drawing from research on model innovation. Finally, we briefly describe the current assessment methods for the core symptoms of PSD models, point out the shortcomings, and present the improved sucrose preference test as a rational evaluation of anhedonia.
Collapse
Affiliation(s)
- Xi Tao
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, China
| | - Wanlin Yang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shuzhen Zhu
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Rongfang Que
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chujuan Liu
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, China
| | - Tao Fan
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jia Wang
- Department of Scientific Research, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, China
| | - Danheng Mo
- Department of Neurology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, China
| | - Zhuohua Zhang
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, China
| | - Jieqiong Tan
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, China
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Midori A Yenari
- Department of Neurology, University of California, San Francisco & the San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Tao Song
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, China.
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
64
|
Cheng H, Sun G, Li M, Yin M, Chen H. Neuron loss and dysfunctionality in hippocampus explain aircraft noise induced working memory impairment: a resting-state fMRI study on military pilots. Biosci Trends 2019; 13:430-440. [PMID: 31611544 DOI: 10.5582/bst.2019.01190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Huijuan Cheng
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, Gansu, China
| | - Guodong Sun
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
- The Regiment Medical Company, 96875 Army of PLA, Baoji, Shaanxi, China
| | - Mei Li
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Minhong Yin
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Hao Chen
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|
65
|
Hedges DW, Erickson LD, Kunzelman J, Brown BL, Gale SD. Association between exposure to air pollution and hippocampal volume in adults in the UK Biobank. Neurotoxicology 2019; 74:108-120. [DOI: 10.1016/j.neuro.2019.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/11/2019] [Accepted: 06/16/2019] [Indexed: 12/19/2022]
|
66
|
Prefrontal-posterior coupling mediates transitions between emotional states and influences executive functioning. Sci Rep 2019; 9:8252. [PMID: 31164677 PMCID: PMC6547671 DOI: 10.1038/s41598-019-44624-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/17/2019] [Indexed: 11/09/2022] Open
Abstract
Emotions often result from fluctuating experiences with self-regulation unfolding over time. However, most research has been focused on neural responses to static, affective stimuli. We studied emotion transitions, which correspond to dynamic conditions of varying affective valence or intensities. Functional coupling of prefrontal and posterior cortex (EEG coherence) was recorded during exposure to stable versus changing emotion-eliciting images (static vs. dynamic conditions). Prefrontal-posterior coupling was decreased in the dynamic conditions compared to the static conditions. A decrease in prefrontal-posterior coupling implies less control of the prefrontal cortex over perceptual information, which may allow the brain to become more affected by emotional fluctuations. We also assessed the aftereffect of EEG coherence on executive functioning, utilizing the flanker task. Among individuals reporting higher chronic stress, executive functioning decreased after dynamic conditions. This decrease in executive functioning was mediated by the decrease in prefrontal-posterior coupling in the dynamic conditions. These findings suggest that the strength of prefrontal-posterior coupling is not only related to emotional transitions but also to executive functioning. The deterioration of executive functioning after dynamic emotional processing may reflect the additional cognitive effort required to process dynamic shifts in affective stimuli, and this relationship is exacerbated by chronic stress.
Collapse
|
67
|
Fuks KB, Wigmann C, Altug H, Schikowski T. Road Traffic Noise at the Residence, Annoyance, and Cognitive Function in Elderly Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1790. [PMID: 31137595 PMCID: PMC6572214 DOI: 10.3390/ijerph16101790] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/15/2019] [Accepted: 05/18/2019] [Indexed: 01/18/2023]
Abstract
The detrimental effects of traffic noise on cognition in children are well documented. Not much is known about the health effects in adults. We investigated the association of residential exposure to road traffic noise and annoyance due to road traffic noise with cognitive function in a cohort of 288 elderly women from the longitudinal Study on the influence of Air pollution on Lung function, Inflammation and Aging (SALIA) in Germany. Residential noise levels-weighted 24-h mean (LDEN) and nighttime noise (LNIGHT)-were modeled for the most exposed facade of dwellings and dichotomized at ≥50 dB(A). Traffic noise annoyance (day and night) was estimated by questionnaire. Cognitive function was assessed using the Consortium to Establish a Registry on Alzheimer's Disease (CERAD-Plus) Neuropsychological Assessment Battery. The modeled noise levels were associated with impaired total cognition and the constructional praxis domain, independently of air pollution. Self-reported noise annoyance was associated with better performance in semantic memory and constructional praxis domains. This finding should be interpreted with caution since we could not control for potential confounding by hearing loss. Noise levels and annoyance were associated, but their health effects seemed mutually independent.
Collapse
Affiliation(s)
- Kateryna B Fuks
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany.
| | - Claudia Wigmann
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany.
| | - Hicran Altug
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany.
| | - Tamara Schikowski
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany.
| |
Collapse
|
68
|
Jafari Z, Okuma M, Karem H, Mehla J, Kolb BE, Mohajerani MH. Prenatal noise stress aggravates cognitive decline and the onset and progression of beta amyloid pathology in a mouse model of Alzheimer's disease. Neurobiol Aging 2019; 77:66-86. [DOI: 10.1016/j.neurobiolaging.2019.01.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 01/08/2019] [Accepted: 01/21/2019] [Indexed: 12/18/2022]
|
69
|
Issuriya A, Kumarnsit E, Reakkamnuan C, Samerphob N, Sathirapanya P, Cheaha D. Dexamethasone induces alterations of slow wave oscillation, rapid eye movement sleep and high-voltage spindle in rats. Acta Neurobiol Exp (Wars) 2019. [DOI: 10.21307/ane-2019-023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|