51
|
Bai J, Lin QY, An X, Liu S, Wang Y, Xie Y, Liao J. Low-Dose Gallic Acid Administration Does Not Improve Diet-Induced Metabolic Disorders and Atherosclerosis in Apoe Knockout Mice. J Immunol Res 2022; 2022:7909971. [PMID: 35652108 PMCID: PMC9150997 DOI: 10.1155/2022/7909971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/21/2022] [Accepted: 05/04/2022] [Indexed: 01/17/2023] Open
Abstract
Diets rich in polyphenols are known to be beneficial for cardiovascular health. Gallic acid (GA) is a plant-derived triphenolic chemical with multiple cardio-protective properties, such as antiobesity, anti-inflammation, and antioxidation. However, whether GA could protect against atherosclerotic cardiovascular diseases is still not defined. Here, we investigated the effects of low-dose GA administration on diet-induced metabolic disorders and atherosclerosis in the atherosclerosis-prone apolipoprotein E (Apoe) knockout mice fed on a high-fat Western-type diet (WTD) for 8 weeks. Our data showed that GA administration by oral gavage at a daily dosage of 20 mg/kg body weight did not significantly ameliorate WTD-induced hyperlipidemia, hepatosteatosis, adipogenesis, or insulin resistance; furthermore, GA administration did not significantly ameliorate WTD-induced atherosclerosis. In conclusion, our data demonstrate that low-dose GA administration does not elicit significant health effect on diet-induced metabolic disorders or atherosclerosis in the Apoe knockout mice. Whether GA could be beneficial for atherosclerotic cardiovascular diseases therefore needs further exploration.
Collapse
Affiliation(s)
- Jie Bai
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Qiu-Yue Lin
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiangbo An
- Department of Interventional Therapy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Shuang Liu
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Yao Wang
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yunpeng Xie
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Jiawei Liao
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
52
|
Mirzaei S, Saghari S, Bassiri F, Raesi R, Zarrabi A, Hushmandi K, Sethi G, Tergaonkar V. NF-κB as a regulator of cancer metastasis and therapy response: A focus on epithelial-mesenchymal transition. J Cell Physiol 2022; 237:2770-2795. [PMID: 35561232 DOI: 10.1002/jcp.30759] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022]
Abstract
Metastasis of tumor cells is a complex challenge and significantly diminishes the overall survival and prognosis of cancer patients. The epithelial-to-mesenchymal transition (EMT) is a well-known mechanism responsible for the invasiveness of tumor cells. A number of molecular pathways can regulate the EMT mechanism in cancer cells and nuclear factor-kappaB (NF-κB) is one of them. The nuclear translocation of NF-κB p65 can induce the transcription of several genes involved in EMT induction. The present review describes NF-κB and EMT interaction in cancer cells and their association in cancer progression. Due to the oncogenic role NF-κB signaling, its activation enhances metastasis of tumor cells via EMT induction. This has been confirmed in various cancers including brain, breast, lung and gastric cancers, among others. The ZEB1/2, transforming growth factor-β, and Slug as inducers of EMT undergo upregulation by NF-κB to promote metastasis of tumor cells. After EMT induction driven by NF-κB, a significant decrease occurs in E-cadherin levels, while N-cadherin and vimentin levels undergo an increase. The noncoding RNAs can potentially also function as upstream mediators and modulate NF-κB/EMT axis in cancers. Moreover, NF-κB/EMT axis is involved in mediating drug resistance in tumor cells. Thus, suppressing NF-κB/EMT axis can also promote the sensitivity of cancer cells to chemotherapeutic agents.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sam Saghari
- Department of Health Services Management, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farzaneh Bassiri
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran.,Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Rasoul Raesi
- PhD in Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology and Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Yong Loo Lin School of Medicine, NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
53
|
Zhang R, Liu T, Li W, Ma Z, Pei P, Zhang W, Yang K, Tao Y. Tumor microenvironment-responsive BSA nanocarriers for combined chemo/chemodynamic cancer therapy. J Nanobiotechnology 2022; 20:223. [PMID: 35549949 PMCID: PMC9097166 DOI: 10.1186/s12951-022-01442-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023] Open
Abstract
Tumor microenvironment (TME), characterized by high glutathione (GSH), high hydrogen peroxide (H2O2) and acidic pH levels, is favorable for the growth, invasion and metastasis of cancer cells. Taking advantage of the specific characteristics of tumors, TME-responsive GCBD NPs are designed to deliver nanoscale coordination polymers (NCPs, GA-Cu) and chemotherapy drugs (doxorubicin, DOX) based on bovine serum albumin (BSA) nanocarriers into cancer cells for combined chemodynamic therapy (CDT) and chemotherapy. In an acidic environment, GCBD NPs could release approximately 90% copper ions, which can not only consume overexpressed GSH to modulate the TME but can also react with endogenous H2O2 in a Fenton-like reaction to achieve the CDT effect. Meanwhile, the released DOX could enter the nucleus of tumor cells and affect their proliferation to achieve efficient chemotherapy. Both in vitro and in vivo experiments showed that GCBD NPs had good biosafety and could effectively inhibit the growth of cancer cells. GCBD NPs are promising as a biocompatible nanoplatform to exploit TME characteristics for combined chemo and chemodynamic therapy, providing a novel strategy to eradicate tumors with high efficiency and specificity.
Collapse
Affiliation(s)
- Ruiyi Zhang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Teng Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Wanzhen Li
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Zhiyuan Ma
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Pei Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Weiwei Zhang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Yugui Tao
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China.
| |
Collapse
|
54
|
Entezari M, Sadrkhanloo M, Rashidi M, Asnaf SE, Taheriazam A, Hashemi M, Ashrafizadeh M, Zarrabi A, Rabiee N, Hushmandi K, Mirzaei S, Sethi G. Non-coding RNAs and macrophage interaction in tumor progression. Crit Rev Oncol Hematol 2022; 173:103680. [PMID: 35405273 DOI: 10.1016/j.critrevonc.2022.103680] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
The macrophages are abundantly found in TME and their M2 polarization is in favor of tumor malignancy. On the other hand, non-coding RNAs (ncRNAs) can modulate macrophage polarization in TME to affect cancer progression. The miRNAs can dually induce/suppress M2 polarization of macrophages and by affecting various molecular pathways, they modulate tumor progression and therapy response. The lncRNAs can affect miRNAs via sponging and other molecular pathways to modulate macrophage polarization. A few experiments have also examined role of circRNAs in targeting signaling networks and affecting macrophages. The therapeutic targeting of these ncRNAs can mediate TME remodeling and affect macrophage polarization. Furthermore, exosomal ncRNAs derived from tumor cells or macrophages can modulate polarization and TME remodeling. Suppressing biogenesis and secretion of exosomes can inhibit ncRNA-mediated M2 polarization of macrophages and prevent tumor progression. The ncRNAs, especially exosomal ncRNAs can be considered as non-invasive biomarkers for tumor diagnosis.
Collapse
Affiliation(s)
- Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sholeh Etehad Asnaf
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
55
|
Feng SX, Han XX, Zhao D, Li RR, Liu XF, Tian YG, Li JS. Simultaneous quantitation of 31 bioactive components in different parts of Ardisiae Japonicae Herba from different regions by UPLC-Orbitrap Fusion MS. J LIQ CHROMATOGR R T 2022. [DOI: 10.1080/10826076.2022.2038195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Su-Xiang Feng
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province and Education Ministry of P. R. China, Zhengzhou, China
| | - Xiao-Xiao Han
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province and Education Ministry of P. R. China, Zhengzhou, China
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Di Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province and Education Ministry of P. R. China, Zhengzhou, China
| | - Rong-Rong Li
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province and Education Ministry of P. R. China, Zhengzhou, China
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xue-Fang Liu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province and Education Ministry of P. R. China, Zhengzhou, China
| | - Yan-Ge Tian
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province and Education Ministry of P. R. China, Zhengzhou, China
| | - Jian-Sheng Li
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province and Education Ministry of P. R. China, Zhengzhou, China
- The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
56
|
Gallic Acid Derivatives Propyl Gallate and Epigallocatechin Gallate Reduce rRNA Transcription via Induction of KDM2A Activation. Biomolecules 2021; 12:biom12010030. [PMID: 35053178 PMCID: PMC8773796 DOI: 10.3390/biom12010030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022] Open
Abstract
We previously reported that lysine-demethylase 2A (KDM2A), a Jumonji-C histone demethylase, is activated by gallic acid to reduce H3K36me2 levels in the rRNA gene promoter and consequently inhibit rRNA transcription and cell proliferation in the breast cancer cell line MCF-7. Gallic acid activates AMP-activated protein kinase (AMPK) and increases reactive oxygen species (ROS) production to activate KDM2A. Esters of gallic acid, propyl gallate (PG) and epigallocatechin gallate (EGCG), and other chemicals, reduce cancer cell proliferation. However, whether these compounds activate KDM2A has yet to be tested. In this study, we found that PG and EGCG decreased rRNA transcription and cell proliferation through KDM2A in MCF-7 cells. The activation of both AMPK and ROS production by PG or EGCG was required to activate KDM2A. Of note, while the elevation of ROS production by PG or EGCG was limited in time, it was sufficient to activate KDM2A. Importantly, the inhibition of rRNA transcription and cell proliferation by gallic acid, PG, or EGCG was specifically observed in MCF-7 cells, whereas it was not observed in non-tumorigenic MCF10A cells. Altogether, these results suggest that the derivatization of gallic acid may be used to obtain new compounds with anti-cancer activity.
Collapse
|
57
|
Quality Evaluation of Taxilli Herba from Different Hosts Based on Simultaneous Determination of Multiple Bioactive Constituents Combined with Multivariate Statistical Analysis. Molecules 2021; 26:molecules26247490. [PMID: 34946568 PMCID: PMC8703938 DOI: 10.3390/molecules26247490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022] Open
Abstract
Taxilli Herba (TAXH) is an important traditional Chinese medicine with a long history, dating from the Eastern Han Dynasty to the present times. However, the active constituents in it that parasitize different hosts vary, affecting its clinical efficacy. Given the complexity of the host origins, evaluating the quality of TAXH is critical to ensure the safety and effectiveness of clinical medication. In the present study, a quantitative method based on ultra-fast liquid chromatography tandem triple quadrupole mass spectrometry (UFLC-QTRAP-MS/MS) was established, which simultaneously determined the content of 33 active constituents, including 12 flavonoids, 4 organic acids, 12 amino acids, and 5 nucleosides in 45 samples. Orthogonal partial least squares discriminant analysis (OPLS-DA) was employed to classify and distinguish between TAXH and its adulterants, Tolypanthi Herba (TOLH). A hierarchical clustering analysis (HCA) was conducted combined with a heatmap to visually observe the distribution regularity of 33 constituents in each sample. Furthermore, gray relational analysis (GRA) was applied to evaluate the quality of samples to get the optimal host. The results demonstrated that TAXH excelled TOLH in quality as a whole. The quality of TAXH parasitizing Morus alba was also better, while those that were parasitic on Cinnamomum camphora and Glyptostrobus pensilis had relatively poor quality. This study may provide comprehensive information that is necessary for quality control and supply a scientific basis for further exploring the quality formation mechanism of TAXH.
Collapse
|
58
|
Impact of Drying Methods on Phenolic Components and Antioxidant Activity of Sea Buckthorn ( Hippophae rhamnoides L.) Berries from Different Varieties in China. Molecules 2021; 26:molecules26237189. [PMID: 34885771 PMCID: PMC8659002 DOI: 10.3390/molecules26237189] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/24/2022] Open
Abstract
Sea buckthorn berries are rich in bioactive compounds and can be used for medicine and food. The variety and drying method used have an important influence on quality. In this study, different sea buckthorn varieties from China were selected and dried with four common drying methods. The total phenolic content (TPC), total flavonoids content (TFC), contents of 12 phenolic compounds and antioxidant capacity in vitro were analyzed. The results showed that the TPC, TFC and antioxidant activity of two wild sea buckthorn berries were higher than those of three cultivated berries, and for the same varieties, measured chemical contents and antioxidant activity of the freeze-dried fruit were significantly higher than those obtained with three conventional drying methods. In addition, forty-one compounds in sea buckthorn berry were identified by UPLC-PDA-Q/TOF-MS, most of which were isorhamnetin derivatives. Multivariate statistical analysis revealed narcissin and isorhamnetin-3-O-glucoside varied significantly in sea buckthorn berries of different varieties and with different drying methods; they were potential quality markers. Strong correlations were found between TPC, gallic acid and antioxidant capacity (p < 0.05). The results revealed how components and antioxidant activity varied in different sea buckthorn, which provides a valuable reference for quality control and further development and utilization of sea buckthorn.
Collapse
|
59
|
Targeting Cancer Stem Cells by Dietary Agents: An Important Therapeutic Strategy against Human Malignancies. Int J Mol Sci 2021; 22:ijms222111669. [PMID: 34769099 PMCID: PMC8584029 DOI: 10.3390/ijms222111669] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/23/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023] Open
Abstract
As a multifactorial disease, treatment of cancer depends on understanding unique mechanisms involved in its progression. The cancer stem cells (CSCs) are responsible for tumor stemness and by enhancing colony formation, proliferation as well as metastasis, and these cells can also mediate resistance to therapy. Furthermore, the presence of CSCs leads to cancer recurrence and therefore their complete eradication can have immense therapeutic benefits. The present review focuses on targeting CSCs by natural products in cancer therapy. The growth and colony formation capacities of CSCs have been reported can be attenuated by the dietary agents. These compounds can induce apoptosis in CSCs and reduce tumor migration and invasion via EMT inhibition. A variety of molecular pathways including STAT3, Wnt/β-catenin, Sonic Hedgehog, Gli1 and NF-κB undergo down-regulation by dietary agents in suppressing CSC features. Upon exposure to natural agents, a significant decrease occurs in levels of CSC markers including CD44, CD133, ALDH1, Oct4 and Nanog to impair cancer stemness. Furthermore, CSC suppression by dietary agents can enhance sensitivity of tumors to chemotherapy and radiotherapy. In addition to in vitro studies, as well as experiments on the different preclinical models have shown capacity of natural products in suppressing cancer stemness. Furthermore, use of nanostructures for improving therapeutic impact of dietary agents is recommended to rapidly translate preclinical findings for clinical use.
Collapse
|