51
|
Gene expression in trypanosomatid parasites. J Biomed Biotechnol 2010; 2010:525241. [PMID: 20169133 PMCID: PMC2821653 DOI: 10.1155/2010/525241] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 11/04/2009] [Indexed: 12/21/2022] Open
Abstract
The parasites Leishmania spp., Trypanosoma brucei, and Trypanosoma cruzi are the trypanosomatid protozoa that cause the deadly human diseases leishmaniasis, African sleeping sickness, and Chagas disease, respectively. These organisms possess unique mechanisms for gene expression such as constitutive polycistronic transcription of protein-coding genes and trans-splicing. Little is known about either the DNA sequences or the proteins that are involved in the initiation and termination of transcription in trypanosomatids. In silico analyses of the genome databases of these parasites led to the identification of a small number of proteins involved in gene expression. However, functional studies have revealed that trypanosomatids have more general transcription factors than originally estimated. Many posttranslational histone modifications, histone variants, and chromatin modifying enzymes have been identified in trypanosomatids, and recent genome-wide studies showed that epigenetic regulation might play a very important role in gene expression in this group of parasites. Here, we review and comment on the most recent findings related to transcription initiation and termination in trypanosomatid protozoa.
Collapse
|
52
|
Abstract
RNA interference (RNAi) is defined as the mechanism through which double-stranded RNA (dsRNA) triggers degradation of homologous transcripts. Besides providing an invaluable tool to downregulate gene expression in a variety of organisms, it is now evident that RNAi acts beyond the cytoplasm and is involved in a variety of gene-silencing phenomena in the nucleus. In the present work we review the current status of the knowledge about RNAi in protozoan parasites that belong to the Trypanosoma genus and have medical relevance. While RNAi was first discovered in Trypanosoma brucei, it became evident that other members of the same genus of organisms, namely Trypanosoma cruzi, does not possess RNAi, probably due to the lack of Ago protein analogs in their genomes. We will discuss the genome organization of Trypanosoma cruzi and propose that the absence of both RNAi and gene promoters is symptomatic of alternative epigenetic controls in this parasite orchestrated by parasite-host interactions. Whereas in Trypanosoma brucei, RNAi and other epigenetic controls dictate alternative transcriptional programs critical for virulence.
Collapse
|
53
|
Elias MC, Nardelli SC, Schenkman S. Chromatin and nuclear organization in Trypanosoma cruzi. Future Microbiol 2009; 4:1065-74. [DOI: 10.2217/fmb.09.74] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A total of 100 years have passed since the discovery of the protozoan Trypanosoma cruzi, the etiologic agent of Chagas’ disease. Since its discovery, the molecular and cellular biology of this early divergent eukaryote, as well as its interactions with the mammalian and insect hosts, has progressed substantially. It is now clear that this parasite presents unique mechanisms controlling gene expression, DNA replication, cell cycle and differentiation, generating several morphological forms that are adapted to survive in different hosts. In recent years, the relationship between the chromatin structure and nuclear organization with the unusual transcription, splicing, DNA replication and DNA repair mechanisms have been investigated in T. cruzi. This article reviews the relevant aspects of these mechanisms in relation to chromatin and nuclear organization.
Collapse
Affiliation(s)
| | - Sheila Cristina Nardelli
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, R. Botucatu 862 8a, 04023-062 São Paulo, Brazil
| | - Sergio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, R. Botucatu 862 8a, 04023-062 São Paulo, Brazil
| |
Collapse
|
54
|
Abstract
Epigenetic regulation is important in many facets of eukaryotic biology. Recent work has suggested that the basic mechanisms underlying epigenetic regulation extend to eukaryotic parasites. The identification of post-translational histone modifications and chromatin-modifying enzymes is beginning to reveal both common and novel functions for chromatin in these parasites. In this Review, we compare the role of epigenetics in African trypanosomes and humans in several biological processes. We discuss how the study of trypanosome chromatin might help us to better understand the evolution of epigenetic processes.
Collapse
|
55
|
Wang CM, Tsai SN, Yew TW, Kwan YW, Ngai SM. Identification of histone methylation multiplicities patterns in the brain of senescence-accelerated prone mouse 8. Biogerontology 2009; 11:87-102. [PMID: 19434510 DOI: 10.1007/s10522-009-9231-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 04/27/2009] [Indexed: 12/31/2022]
Abstract
Histone post-translational modifications (PTMs) are involved in diverse biological processes and methylation was regarded as a long-term epigenetic mark. Though aging represented one of the major risk factors for neurodegenerative diseases, no systematic investigations had correlated the patterns of histone PTMs in the brain with aging and the roles of such concerted histone PTMs in brain aging are still unknown. In this study, enzyme digestion, nano-LC, MALDI-TOF/TOF MS analysis and Western blotting were combined to investigate the defined methylation of core histones (H2A, H2B, H3 and H4) in the brain of 12-month-old senescence accelerated mouse prone 8 (SAMP8). The expression of several modified histones in the brain of 3-, and 12-month-old SAMP8 mice as well as that of the age-matched control senescence accelerated-resistant mouse (SAMR1) was compared. In the brain of 12-month-old SAMP8 mice, seven methylation sites (H3K24, H3K27, H3K36, H3K79, H3R128, H4K20 and H2A R89) were detected and most PTMs sites were located on histone H3. Mono-methylated H4K20 decreased significantly in the brain of 12-month-old SAMP8 mice. Methylated H3K27 and H3K36 coexisted in the aged brain with different methylation multiplicities. Di-methylated H3K79 expressed in the neurons of cerebral cortex and hippocampus. This study showed histone methylation patterns in the aged SAMP8 mice brain and provided the experimental evidences for further research on histone PTMs in the aged brain. We hope these results could initiate a platform for the exchange of comprehensive information concerning aging or neurodegenerative disease and help us interpret the change of gene expression and DNA repair ability at epigenetic level.
Collapse
Affiliation(s)
- Chun Mei Wang
- Department of Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | | | | | | | | |
Collapse
|
56
|
Distinct acetylation of Trypanosoma cruzi histone H4 during cell cycle, parasite differentiation, and after DNA damage. Chromosoma 2009; 118:487-99. [PMID: 19396454 DOI: 10.1007/s00412-009-0213-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 04/04/2009] [Accepted: 04/06/2009] [Indexed: 10/20/2022]
Abstract
Histones of trypanosomes are quite divergent when compared to histones of most eukaryotes. Nevertheless, the histone H4 of Trypanosoma cruzi, the protozoan that causes Chagas' disease, is acetylated in the N terminus at lysines 4, 10, and 14. Here, we investigated the cellular distribution of histone H4 containing each one of these posttranslational modifications by using specific antibodies. Histone H4 acetylated at lysine 4 (H4-K4ac) is found in the entire nuclear space preferentially at dense chromatin regions, excluding the nucleolus of replicating epimastigote forms of the parasite. In contrast, histone H4 acetylated either at K10 or K14 is found at dispersed foci all over the nuclei and at the interface between dense and nondense chromatin areas as observed by ultrastructural immunocytochemistry. The level of acetylation at K4 decreases in nonreplicating forms of the parasites when compared to K10 and K14 acetylations. Antibodies recognizing the K14 acetylation strongly labeled cells at G2 and M stages of the cell cycle. Besides that, hydroxyurea synchronized parasites show an increased acetylation at K4, K10, and K14 after S phase. Moreover, we do not observed specific colocalization of K4 modifications with the major sites of RNA polymerase II. Upon gamma-irradiation that stops parasite replication until the DNA is repaired, dense chromatin disappears and K4 acetylation decreases, while K10 and K14 acetylation increase. These results indicate that each lysine acetylation has a different role in T. cruzi. While K4 acetylation occurs preferentially in proliferating situations and accumulates in packed chromatin, K10 and K14 acetylations have a particular distribution probably at the boundaries between packed and unpacked chromatin.
Collapse
|
57
|
Siegel TN, Hekstra DR, Kemp LE, Figueiredo LM, Lowell JE, Fenyo D, Wang X, Dewell S, Cross GAM. Four histone variants mark the boundaries of polycistronic transcription units in Trypanosoma brucei. Genes Dev 2009; 23:1063-76. [PMID: 19369410 DOI: 10.1101/gad.1790409] [Citation(s) in RCA: 267] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Unusually for a eukaryote, genes transcribed by RNA polymerase II (pol II) in Trypanosoma brucei are arranged in polycistronic transcription units. With one exception, no pol II promoter motifs have been identified, and how transcription is initiated remains an enigma. T. brucei has four histone variants: H2AZ, H2BV, H3V, and H4V. Using chromatin immunoprecipitation (ChIP) and sequencing (ChIP-seq) to examine the genome-wide distribution of chromatin components, we show that histones H4K10ac, H2AZ, H2BV, and the bromodomain factor BDF3 are enriched up to 300-fold at probable pol II transcription start sites (TSSs). We also show that nucleosomes containing H2AZ and H2BV are less stable than canonical nucleosomes. Our analysis also identifies >60 unexpected TSS candidates and reveals the presence of long guanine runs at probable TSSs. Apparently unique to trypanosomes, additional histone variants H3V and H4V are enriched at probable pol II transcription termination sites. Our findings suggest that histone modifications and histone variants play crucial roles in transcription initiation and termination in trypanosomes and that destabilization of nucleosomes by histone variants is an evolutionarily ancient and general mechanism of transcription initiation, demonstrated in an organism in which general pol II transcription factors have been elusive.
Collapse
Affiliation(s)
- T Nicolai Siegel
- Laboratory of Molecular Parasitology, The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Villanova GV, Nardelli SC, Cribb P, Magdaleno A, Silber AM, Motta MCM, Schenkman S, Serra E. Trypanosoma cruzi bromodomain factor 2 (BDF2) binds to acetylated histones and is accumulated after UV irradiation. Int J Parasitol 2008; 39:665-73. [PMID: 19136002 DOI: 10.1016/j.ijpara.2008.11.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 11/14/2008] [Accepted: 11/18/2008] [Indexed: 11/27/2022]
Abstract
Histone tail post-translational modifications (acetylation, methylation, phosphorylation, ubiquitination and ADP-ribosylation) regulate many cellular processes. Among these modifications, phosphorylation, methylation and acetylation have already been described in trypanosomatid histones. Bromodomains, together with chromodomains and histone-binding SANT domains, were proposed to be responsible for "histone code" reading. The Trypanosoma cruzi genome encodes four coding sequences (CDSs) that contain a bromodomain, named TcBDF1-4. Here we show that one of those, TcBDF2, is expressed in discrete regions inside the nucleus of all the parasite life cycle stages and binds H4 and H2A purified histones from T. cruzi. Immunolocalization experiments using both anti-histone H4 acetylated peptides and anti-TcBDF2 antibodies determined that TcBDF2 co-localizes with histone H4 acetylated at lysines K10 and K14. TcDBF2 and K10 acetylated H4 interaction was confirmed by co-immunoprecipitation. It is also shown that TcBDF2 was accumulated after UV irradiation of T. cruzi epimastigotes. These results suggest that TcBDF2 could be taking part in a chromatin remodelling complex in T. cruzi.
Collapse
Affiliation(s)
- Gabriela Vanina Villanova
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 351, 2000, Rosario, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Gelato KA, Fischle W. Role of histone modifications in defining chromatin structure and function. Biol Chem 2008; 389:353-63. [PMID: 18225984 DOI: 10.1515/bc.2008.048] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chromosomes in eukaryotic cell nuclei are not uniformly organized, but rather contain distinct chromatin elements, with each state having a defined biochemical structure and biological function. These are recognizable by their distinct architectures and molecular components, which can change in response to cellular stimuli or metabolic requirements. Chromatin elements are characterized by the fundamental histone and DNA components, as well as other associated non-histone proteins and factors. Post-translational modifications of histone proteins in particular often correlate with a specific chromatin structure and function. Patterns of histone modifications are implicated as having a role in directing the level of chromatin compaction, as well as playing roles in multiple functional pathways directing the readout of distinct regions of the genome. We review the properties of various chromatin elements and the apparent links of histone modifications with chromatin organization and functional output.
Collapse
Affiliation(s)
- Kathy A Gelato
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | | |
Collapse
|
60
|
Brumbaugh J, Phanstiel D, Coon JJ. Unraveling the histone's potential: a proteomics perspective. Epigenetics 2008; 3:254-7. [PMID: 18849650 DOI: 10.4161/epi.3.5.7005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Post translational modification (PTM) of histones has long been associated with epigenetic regulation. Although genomic approaches have established correlation between a handful of histone PTMs and transcriptional states, only recently have advancements in proteomics provided the tools necessary to study histone proteins and their relevant modifications in this context. Using mass spectrometry, researchers have demonstrated the ability to determine the full repertoire of histone PTMs, their residue specific location, the combinations in which they exist, and the proteins that interact with these combinations. Moving forward it will be imperative to develop novel approaches that combine proteomic and genomic technologies to determine the functional significance of these combinations of modifications. Assays with increased specificity will resolve more focused biological questions and determine to what extent, and by what mechanisms, histones influence transcription.
Collapse
Affiliation(s)
- Justin Brumbaugh
- Department of Chemistry and Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
61
|
Figueiredo LM, Janzen CJ, Cross GA. A histone methyltransferase modulates antigenic variation in African trypanosomes. PLoS Biol 2008; 6:e161. [PMID: 18597556 PMCID: PMC2443197 DOI: 10.1371/journal.pbio.0060161] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 05/23/2008] [Indexed: 11/18/2022] Open
Abstract
To evade the host immune system, several pathogens periodically change their cell-surface epitopes. In the African trypanosomes, antigenic variation is achieved by tightly regulating the expression of a multigene family encoding a large repertoire of variant surface glycoproteins (VSGs). Immune evasion relies on two important features: exposing a single type of VSG at the cell surface and periodically and very rapidly switching the expressed VSG. Transcriptional switching between resident telomeric VSG genes does not involve DNA rearrangements, and regulation is probably epigenetic. The histone methyltransferase DOT1B is a nonessential protein that trimethylates lysine 76 of histone H3 in Trypanosoma brucei. Here we report that transcriptionally silent telomeric VSGs become partially derepressed when DOT1B is deleted, whereas nontelomeric loci are unaffected. DOT1B also is involved in the kinetics of VSG switching: in ΔDOT1B cells, the transcriptional switch is so slow that cells expressing two VSGs persist for several weeks, indicating that monoallelic transcription is compromised. We conclude that DOT1B is required to maintain strict VSG silencing and to ensure rapid transcriptional VSG switching, demonstrating that epigenetics plays an important role in regulating antigenic variation in T. brucei. The surface of Trypanosoma brucei, a unicellular parasite that lives in the bloodstream of its mammalian host, is coated with glycoprotein (VSG) molecules. To evade elimination by the immune system, this parasite replaces its coat with one tailored from another glycoprotein variant. Even though there are hundreds of VSG genes in the genome, this process, called antigenic variation, works because all are silenced except for the one that encodes the current coat. In this work, we show that the chromatin-modifying enzyme DOT1B helps to epigenetically regulate the number of VSGs each parasite can have at a time at the surface and how fast each parasite can switch from one coat to another. In parasites lacking DOT1B, silent VSG genes become partially active and the switch from one VSG to another slows down, allowing two different VSGs to appear on the surface of an individual parasite at the same time. Our studies reveal the importance of epigenetics in regulating VSG genes and provide new insights toward the understanding of this unique survival device. Antigenic variation in Trypanosoma brucei relies on monoallelic expression of a multigene family. New evidence shows that a chromatin-modifying enzyme prevents simultaneous expression of different proteins at the parasite's surface.
Collapse
Affiliation(s)
- Luisa M Figueiredo
- Laboratory of Molecular Parasitology, the Rockefeller University, New York, New York, United States of America
| | | | - George A.M Cross
- Laboratory of Molecular Parasitology, the Rockefeller University, New York, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
62
|
Kawahara T, Siegel TN, Ingram AK, Alsford S, Cross GAM, Horn D. Two essential MYST-family proteins display distinct roles in histone H4K10 acetylation and telomeric silencing in trypanosomes. Mol Microbiol 2008; 69:1054-68. [PMID: 18631159 PMCID: PMC2556858 DOI: 10.1111/j.1365-2958.2008.06346.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chromatin modification is important for virtually all aspects of DNA metabolism but little is known about the consequences of such modification in trypanosomatids, early branching protozoa of significant medical and veterinary importance. MYST-family histone acetyltransferases in other species function in transcription regulation, DNA replication, recombination and repair. Trypanosoma brucei HAT3 was recently shown to acetylate histone H4K4 and we now report characterization of all three T. brucei MYST acetyltransferases (HAT1–3). First, GFP-tagged HAT1–3 all localize to the trypanosome nucleus. While HAT3 is dispensable, both HAT1 and HAT2 are essential for growth. Strains with HAT1 knock-down display mitosis without nuclear DNA replication and also specific de-repression of a telomeric reporter gene, a rare example of transcription control in an organism with widespread and constitutive polycistronic transcription. Finally, we show that HAT2 is responsible for H4K10 acetylation. By analogy to the situation in Saccharomyces cerevisiae, we discuss low-level redundancy of acetyltransferase function in T. brucei and suggest that two MYST-family acetyltransferases are essential due to the absence of a Gcn5 homologue. The results are also consistent with the idea that HAT1 contributes to establishing boundaries between transcriptionally active and repressed telomeric domains in T. brucei.
Collapse
Affiliation(s)
- Taemi Kawahara
- London School of Hygiene and Tropical Medicine, London, UK
| | | | | | | | | | | |
Collapse
|
63
|
Respuela P, Ferella M, Rada-Iglesias A, Åslund L. Histone acetylation and methylation at sites initiating divergent polycistronic transcription in Trypanosoma cruzi. J Biol Chem 2008; 283:15884-92. [PMID: 18400752 PMCID: PMC3259629 DOI: 10.1074/jbc.m802081200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Indexed: 01/23/2023] Open
Abstract
Trypanosomes are ancient eukaryotic parasites in which the protein-coding genes, organized in large polycistronic clusters on both strands, are transcribed from as yet unidentified promoters. In an effort to reveal transcriptional initiation sites, we examined the Trypanosoma cruzi genome for histone modification patterns shown to be linked to active genes in various organisms. Here, we show that acetylated and methylated histones were found to be enriched at strand switch regions of divergent gene arrays, not at convergent clusters or intra- and intergenic regions within clusters. The modified region showed a bimodular profile with two peaks centered over the 5'-regions of the gene pair flanking the strand switch region. This pattern, which demarcates polycistronic transcription units originating from bidirectional initiation sites, is likely to be common in kinetoplastid parasites as well as in other organisms with polycistronic transcription. In contrast, no acetylation was found at promoters of the highly expressed rRNA and spliced leader genes or satellite DNA or at tested retrotransposonal elements. These results reveal, for the first time, the presence of specific epigenetic marks in T. cruzi with potential implications for transcriptional regulation; they indicate that both histone modifications and bidirectional transcription are evolutionarily conserved.
Collapse
Affiliation(s)
- Patricia Respuela
- Department of Genetics and Pathology,
Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden and the
Program for Genomics and Bioinformatics,
Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77
Stockholm, Sweden
| | - Marcela Ferella
- Department of Genetics and Pathology,
Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden and the
Program for Genomics and Bioinformatics,
Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77
Stockholm, Sweden
| | - Alvaro Rada-Iglesias
- Department of Genetics and Pathology,
Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden and the
Program for Genomics and Bioinformatics,
Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77
Stockholm, Sweden
| | - Lena Åslund
- Department of Genetics and Pathology,
Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden and the
Program for Genomics and Bioinformatics,
Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77
Stockholm, Sweden
| |
Collapse
|
64
|
Mandava V, Janzen CJ, Cross GAM. Trypanosome H2Bv replaces H2B in nucleosomes enriched for H3 K4 and K76 trimethylation. Biochem Biophys Res Commun 2008; 368:846-51. [PMID: 18261990 DOI: 10.1016/j.bbrc.2008.01.144] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 01/22/2008] [Indexed: 10/22/2022]
Abstract
Some inroads have been made into characterizing histone variants and post translational modifications of histones in Trypanosoma brucei. Histone variant H2BV lysine 129 is homologous to Saccharomyces cerevisiae H2B lysine 123, whose ubiquitination is required for methylation of H3 lysines 4 and 79. We show that T. brucei H2BV K129 is not ubiquitinated, but trimethylation of H3 K4 and K76, homologs of H3 K4 and K79 in yeast, was enriched in nucleosomes containing H2BV. Mutation of H2BV K129 to alanine or arginine did not disrupt H3 K4 or K76 methylation. These data suggest that H3 K4 and K76 methylation in trypanosomes is regulated by a novel mechanism, possibly involving the replacement of H2B with H2BV in the nucleosome.
Collapse
Affiliation(s)
- Veena Mandava
- Laboratory of Molecular Parasitology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | |
Collapse
|
65
|
Siegel TN, Kawahara T, Degrasse JA, Janzen CJ, Horn D, Cross GAM. Acetylation of histone H4K4 is cell cycle regulated and mediated by HAT3 in Trypanosoma brucei. Mol Microbiol 2007; 67:762-71. [PMID: 18179414 PMCID: PMC2253726 DOI: 10.1111/j.1365-2958.2007.06079.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Post-translational histone modifications have been studied intensively in several eukaryotes. It has been proposed that these modifications constitute a 'histone code' that specifies epigenetic information for transcription regulation. With a limited number of histone-modifying enzymes, implying less redundancy, Trypanosoma brucei represents an excellent system in which to investigate the function of individual histone modifications and histone-modifying enzymes. In this study, we characterized the acetylation of lysine 4 of histone H4 (H4K4), the most abundant acetylation site in T. brucei histones. Because of the large sequence divergence of T. brucei histones, we generated highly specific antibodies to acetylated and unmodified H4K4. Immunofluorescence microscopy and Western blots with sorted cells revealed a strong enrichment of unmodified H4K4 in S phase and suggested a G1/G0-specific masking of the site, owing to non-covalently binding factors. Finally, we showed that histone acetyltransferase 3 (HAT3) is responsible for H4K4 acetylation and that treatment of cells with the protein synthesis inhibitor cycloheximide led to an almost instantaneous loss of unmodified H4K4 sites. As HAT3 is located inside the nucleus, our findings suggest that newly synthesized histone H4 with an unmodified K4 is imported rapidly into the nucleus, where it is acetylated, possibly irreversibly.
Collapse
Affiliation(s)
- T Nicolai Siegel
- Laboratory of Molecular Parasitology, The Rockefeller University, New York, USA
| | | | | | | | | | | |
Collapse
|
66
|
Lopez-Rubio JJ, Riviere L, Scherf A. Shared epigenetic mechanisms control virulence factors in protozoan parasites. Curr Opin Microbiol 2007; 10:560-8. [PMID: 18024150 DOI: 10.1016/j.mib.2007.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 10/04/2007] [Accepted: 10/04/2007] [Indexed: 11/19/2022]
Abstract
Protozoan pathogens have evolved countermeasures to avoid immune clearance and prolong the period of infection in their vertebrate hosts. The type and degree of immune escape strategies depends on the in vivo 'lifestyle' the pathogen has adopted. Here we describe how parasites use different strategies to coordinate their expression of phenotypic variation, which is used in many cases to fool the immune system, or to successfully invade new host cells. Recent insights using modern molecular biology techniques show that this is achieved via a coordinated manner of action of different epigenetic factors such as histone marks, subnuclear localization, or novel unknown mechanism(s). This emerging field may have an enormous impact on disease therapy.
Collapse
Affiliation(s)
- Jose Juan Lopez-Rubio
- Unité de Biologie des Interactions Hôte-Parasite, CNRS-URA 2581, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
67
|
|
68
|
Bergmüller E, Gehrig PM, Gruissem W. Characterization of post-translational modifications of histone H2B-variants isolated from Arabidopsis thaliana. J Proteome Res 2007; 6:3655-68. [PMID: 17691833 DOI: 10.1021/pr0702159] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Eukaryotic DNA is structurally packed into chromatin by the basic histone proteins H2A, H2B, H3, and H4. There is increasing evidence that incorporation and post-translational modifications of histone variants have a fundamental role in gene regulation. While modifications of H3 and H4 histones are now well-established, considerably less is known about H2B modifications. Here, we present the first detailed characterization of H2B-variants isolated from the model plant Arabidopsis thaliana. We combined reversed-phase chromatography with tandem mass spectrometry to identify post-translational modifications of the H2B-variants HTB1, HTB2, HTB4, HTB9, and HTB11, isolated from total chromatin and euchromatin-enriched fractions. The HTB9-variant has acetylation sites at lysines 6, 11, 27, 32, 38, and 39, while Lys-145 can be ubiquitinated. Analogous modifications and an additional methylation of Lys-3 were identified for HTB11. HTB2 shows similar acetylation and ubiquitination sites and an additional methylation at Lys-11. Furthermore, the N-terminal alanine residues of HTB9 and HTB11 were found to be mono-, di-, or trimethylated or unmodified. No methylation of arginine residues was detected. The data suggest that most of these modification sites are only partially occupied. Our study significantly expands the map of covalent Arabidopsis histone modifications and is the first step to unraveling the histone code in higher plants.
Collapse
Affiliation(s)
- Eveline Bergmüller
- Institute of Plant Sciences, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | | | | |
Collapse
|
69
|
Mandava V, Fernandez JP, Deng H, Janzen CJ, Hake SB, Cross GAM. Histone modifications in Trypanosoma brucei. Mol Biochem Parasitol 2007; 156:41-50. [PMID: 17714803 PMCID: PMC2012948 DOI: 10.1016/j.molbiopara.2007.07.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Revised: 07/11/2007] [Accepted: 07/11/2007] [Indexed: 10/23/2022]
Abstract
Several biological processes in Trypanosoma brucei are affected by chromatin structure, including gene expression, cell cycle regulation, and life-cycle stage differentiation. In Saccharomyces cerevisiae and other organisms, chromatin structure is dependent upon posttranslational modifications of histones, which have been mapped in detail. The tails of the four core histones of T. brucei are highly diverged from those of mammals and yeasts, so sites of potential modification cannot be reliably inferred, and no cross-species antibodies are available to map the modifications. We therefore undertook an extensive survey to identify posttranslational modifications by Edman degradation and mass spectrometry. Edman analysis showed that the N-terminal alanine of H2A, H2B, and H4 could be monomethylated. We found that the histone H4 N-terminus is heavily modified, while, in contrast to other organisms, the histone H2A and H2B N-termini have relatively few modifications. Histone H3 appears to have a number of modifications at the N-terminus, but we were unable to assign many of these to a specific amino acid. Therefore, we focused our efforts on uncovering modification states of H4. We discuss the potential relevance of these modifications.
Collapse
Affiliation(s)
- Veena Mandava
- Laboratory of Molecular Parasitology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Joseph P. Fernandez
- Proteomics Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Haiteng Deng
- Proteomics Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Christian J. Janzen
- Laboratory of Molecular Parasitology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Sandra B. Hake
- Laboratory of Chromatin Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - George A. M. Cross
- Laboratory of Molecular Parasitology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
- * Corresponding author. Tel.: +1 212-327-7577; Fax.: +1 212-327-7845, E-mail address:
| |
Collapse
|
70
|
Pasternack DA, Sayegh J, Clarke S, Read LK. Evolutionarily divergent type II protein arginine methyltransferase in Trypanosoma brucei. EUKARYOTIC CELL 2007; 6:1665-81. [PMID: 17601874 PMCID: PMC2043365 DOI: 10.1128/ec.00133-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Protein arginine methylation is a posttranslational modification that impacts cellular functions, such as RNA processing, transcription, DNA repair, and signal transduction. The majority of our knowledge regarding arginine methylation derives from studies of yeast and mammals. Here, we describe a protein arginine N-methyltransferase (PRMT), TbPRMT5, from the early-branching eukaryote Trypanosoma brucei. TbPRMT5 shares the greatest sequence similarity with PRMT5 and Skb1 type II enzymes from humans and Schizosaccharomyces pombe, respectively, although it is significantly divergent at the amino acid level from its mammalian and yeast counterparts. Recombinant TbPRMT5 displays broad substrate specificity in vitro, including methylation of a mitochondrial-gene-regulatory protein, RBP16. TbPRMT5 catalyzes the formation of omega-N(G)-monomethylarginine and symmetric omega-N(G),N(G')-dimethylarginine and does not require trypanosome cofactors for this activity. These data establish that type II PRMTs evolved early in the eukaryotic lineage. In vivo, TbPRMT5 is constitutively expressed in the bloodstream form and procyclic-form (insect host) life stages of the parasite and localizes to the cytoplasm. Genetic disruption via RNA interference in procyclic-form trypanosomes indicates that TbPRMT5 is not essential for growth in this life cycle stage. TbPRMT5-TAP ectopically expressed in procyclic-form trypanosomes is present in high-molecular-weight complexes and associates with an RG domain-containing DEAD box protein related to yeast Ded1 and two kinetoplastid-specific proteins. Thus, TbPRMT5 is likely to be involved in novel methylation-regulated functions in trypanosomes, some of which may include RNA processing and/or translation.
Collapse
Affiliation(s)
- Deborah A Pasternack
- Department of Microbiology and Immunology and Witebsky Center for Microbial Pathogenesis and Immunology, State University of New York School of Medicine, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
71
|
Horn D. Introducing histone modification in trypanosomes. Trends Parasitol 2007; 23:239-42. [PMID: 17433777 PMCID: PMC3828116 DOI: 10.1016/j.pt.2007.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 02/26/2007] [Accepted: 03/28/2007] [Indexed: 01/14/2023]
Abstract
Nuclear DNA is wrapped around histones. Vigorous research over the past decade has established a central role for histone post-translational modification in controlling the DNA-protein interactions that are required for successful growth and propagation. Recent work now provides a description of acetylated and methylated residues in the divergent trypanosome core histones. Future studies should provide insights into the genomic distribution of each modification and their roles in growth and pathogenesis.
Collapse
Affiliation(s)
- David Horn
- London School of Hygiene & Tropical Medicine, Keppel Street, London, UK.
| |
Collapse
|
72
|
Schenkman S, da Cunha JPC. Response to Horn: Introducing histone modifications in trypanosomes. Trends Parasitol 2007; 23:242-3. [PMID: 17459774 DOI: 10.1016/j.pt.2007.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 02/21/2007] [Accepted: 04/10/2007] [Indexed: 11/29/2022]
Affiliation(s)
- Sergio Schenkman
- Universidade Federal de São Paulo, Rua Botucatu, 04023-062 São Paulo, Brazil.
| | | |
Collapse
|
73
|
Navarro M, Peñate X, Landeira D. Nuclear architecture underlying gene expression in Trypanosoma brucei. Trends Microbiol 2007; 15:263-70. [PMID: 17481901 DOI: 10.1016/j.tim.2007.04.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 03/26/2007] [Accepted: 04/16/2007] [Indexed: 11/24/2022]
Abstract
The influence of nuclear architecture on the regulation of developmental gene expression has recently become evident in many organisms ranging from yeast to humans. During interphase, chromosomes and nuclear structures are in constant motion; therefore, correct temporal association is needed to meet the requirements of gene expression. Trypanosoma brucei is an excellent model system in which to analyze nuclear spatial implications in the regulation of gene expression because the two main surface-protein genes (procyclin and VSG) are transcribed by the highly compartmentalized RNA polymerase I and undergo distinct transcriptional activation or downregulation during developmental differentiation. Furthermore, the infective bloodstream form of the parasite undergoes antigenic variation, displaying sequentially different types of VSG by allelic exclusion. Here, we discuss recent advances in understanding the role of chromosomal nuclear positioning in the regulation of gene expression in T. brucei.
Collapse
Affiliation(s)
- Miguel Navarro
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (Spanish National Research Council), Avda. del Conocimiento s/n, 18100 Granada, Spain.
| | | | | |
Collapse
|
74
|
Alsford S, Kawahara T, Isamah C, Horn D. A sirtuin in the African trypanosome is involved in both DNA repair and telomeric gene silencing but is not required for antigenic variation. Mol Microbiol 2007; 63:724-36. [PMID: 17214740 DOI: 10.1111/j.1365-2958.2006.05553.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Silent information regulator 2 (Sir2)-related proteins or sirtuins function as NAD(+)-dependent deacetylases or ADP ribosylases that target a range of substrates, thereby influencing chromatin structure and a diverse range of other biological functions. Genes encoding three Sir2-related proteins (SIR2rp1-3) have been identified in the parasitic trypanosomatids, early branching protozoa with no previously reported transcriptional silencing machinery. Here we show that, in the mammalian-infective bloodstream-stage of the African trypanosome, Trypanosoma brucei, SIR2rp1 localizes to the nucleus while SIR2rp2 and SIR2rp3 are both mitochondrial proteins. The nuclear protein, SIR2rp1, controls DNA repair and repression of RNA polymerase I-mediated expression immediately adjacent to telomeres. Antigenic variation, however, which involves the silencing and Pol I-mediated transcriptional switching of subtelomeric variant surface glycoprotein genes, continues to operate independent of SIR2rp1.
Collapse
Affiliation(s)
- Sam Alsford
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | | | | | | |
Collapse
|
75
|
Abstract
In recent years, the sequencing and annotation of complete genomes, together with the development of genetic and proteomic techniques to study previously intractable eukaryotic microbes, has revealed interesting new themes in the control of virulence gene expression. Families of variantly expressed genes are found adjacent to telomeres in the genomes of both pathogenic and non-pathogenic organisms. This subtelomeric DNA is normally heterochromatic and higher-order chromatin structure has now come to be recognized as an important factor controlling both the evolution and expression dynamics of these multigene families. In eukaryotic cells, higher-order chromatin structure plays a central role in many DNA processes including the control of chromosome integrity and recombination, DNA partitioning during cell division, and transcriptional control. DNA can be packaged in two distinct forms: euchromatin is relatively accessible to DNA binding proteins and generally contains active genes, while heterochromatin is densely packaged, relatively inaccessible and usually transcriptionally silent. These features of chromatin are epigenetically inherited from cell cycle to cell cycle. This review will focus on the epigenetic mechanisms used to control expression of virulence genes in medically important microbial pathogens. Examples of such control have now been reported in several evolutionarily distant species, revealing what may be a common strategy used to regulate many very different families of genes.
Collapse
Affiliation(s)
- Catherine J Merrick
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 665 Huntington Ave, Building I, Rm 706, Boston, MA 02115, USA
| | | |
Collapse
|
76
|
da Cunha JPC, Nakayasu ES, de Almeida IC, Schenkman S. Post-translational modifications of Trypanosoma cruzi histone H4. Mol Biochem Parasitol 2006; 150:268-77. [PMID: 17010453 DOI: 10.1016/j.molbiopara.2006.08.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2006] [Revised: 08/02/2006] [Accepted: 08/28/2006] [Indexed: 11/15/2022]
Abstract
Histone tails provide sites for a variety of post-translational modifications implicated in the control of gene expression and chromatin assembly. As both histones and control of gene expression in trypanosomes are highly divergent compared to most eukaryotes, post-translational modifications of Trypanosoma cruzi histones were investigated. After in vivo incubation of live parasites with radiolabeled precursors, histone H4 mainly incorporates [(3)H]-acetyl, and to a lesser extent [(3)H]-methyl residues. In contrast, histone H3 preferentially incorporates [(3)H]-methyl residues. The modifications of histone H4 were further characterized by mass spectrometry. MALDI-TOF-TOF-MS analysis revealed that peptides from histone H4 amino-terminus, obtained by either endoproteinase Glu-C or endoproteinase Arg-C digestion, contain isoforms with 14 and 42Da additions, suggesting the presence of simultaneous acetylations and/or methylations. Tandem mass spectrometry analysis demonstrated that the N-terminal alanine is methylated, and lysine residues at positions 4, 10, 14 and 57 are acetylated; lysine at position 18 is mono-methylated, while arginine at position 53 is dimethylated. Immunoblotting analyses using specific antibodies raised against synthetic and acetylated peptides of T. cruzi histone H4 indicate that lysine 4 is acetylated in the majority of histone H4, while other acetylations at the N-terminus portion of histone H4 are less abundant.
Collapse
Affiliation(s)
- Julia Pinheiro Chagas da Cunha
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, R. Botucatu 862 8(a), 04023-062 São Paulo, Brazil
| | | | | | | |
Collapse
|
77
|
Abstract
Protozoan parasites are early branching eukaryotes causing significant morbidity and mortality in humans and livestock. Single-celled parasites have evolved complex life cycles, which may involve multiple host organisms, and strategies to evade host immune responses. Consequently, two key aspects of virulence that underlie pathogenesis are parasite differentiation and antigenic variation, both of which require changes in the expressed genome. Complicating these requisite alterations in the parasite transcriptome is chromatin, which serves as a formidable barrier to DNA processes including transcription, repair, replication and recombination. Considerable progress has been made in the study of chromatin dynamics in other eukaryotes, and there is much to be gained in extending these analyses to protozoan parasites. Much of the work completed to date has focused on histone acetylation and methylation in the apicomplexans and trypanosomatids. As we describe in this review, such studies provide a unique vantage point of the evolutionary picture of eukaryotic cell development, and reveal unique phenomena that could be exploited pharmacologically to treat protozoal diseases.
Collapse
Affiliation(s)
- William J Sullivan
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | | | | |
Collapse
|
78
|
Janzen CJ, Hake SB, Lowell JE, Cross GAM. Selective di- or trimethylation of histone H3 lysine 76 by two DOT1 homologs is important for cell cycle regulation in Trypanosoma brucei. Mol Cell 2006; 23:497-507. [PMID: 16916638 DOI: 10.1016/j.molcel.2006.06.027] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 05/16/2006] [Accepted: 06/27/2006] [Indexed: 01/15/2023]
Abstract
DOT1 is an evolutionarily conserved histone H3 lysine 79 (H3K79) methyltransferase. K79 methylation is associated with transcriptional activation, meiotic checkpoint control, and DNA double-strand break (DSB) responses. Trypanosoma brucei has two homologs, DOT1A and DOT1B, which are responsible for dimethylation and trimethylation of H3K76, respectively (K76 in T. brucei is synonymous to K79 in other organisms). K76 dimethylation is only detectable during mitosis, whereas trimethylation occurs throughout the cell cycle. Deletion of DOT1B resulted in dimethylation of K76 throughout the cell cycle and caused subtle defects in cell cycle regulation and impaired differentiation. RNAi-mediated depletion of DOT1A appears to disrupt a mitotic checkpoint, resulting in premature progression through mitosis without DNA replication, generating a high proportion of cells with a haploid DNA content, an unprecedented state for trypanosomes. We propose that DOT1A and DOT1B influence the trypanosome cell cycle by regulating the degree of H3K76 methylation.
Collapse
Affiliation(s)
- Christian J Janzen
- Laboratory of Molecular Parasitology, The Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|