51
|
Ceciliani F, Audano M, Addis MF, Lecchi C, Ghaffari MH, Albertini M, Tangorra F, Piccinini R, Caruso D, Mitro N, Bronzo V. The untargeted lipidomic profile of quarter milk from dairy cows with subclinical intramammary infection by non-aureus staphylococci. J Dairy Sci 2021; 104:10268-10281. [PMID: 34147223 DOI: 10.3168/jds.2020-19975] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/06/2021] [Indexed: 11/19/2022]
Abstract
This observational study determined the lipidome of cow milk during subclinical intramammary infection (IMI) by non-aureus staphylococci (NAS), also defined as coagulase-negative staphylococci, using an untargeted approach. Among the pathogens causing bovine IMI, NAS have become the most frequently isolated bacteria from milk samples. Although the application of system biology approaches to mastitis has provided pivotal information by investigating the transcriptome, proteome, peptidome, and metabolome, the milk lipidome during mammary gland inflammation remains undisclosed. To cover this gap, we determined the milk lipidome of 17 dairy cows with IMI caused by NAS (NAS-IMI), and we compared the results with those of healthy quarter milk from 11 cows. The lipidome was determined following a liquid chromatography-quadrupole time-of-flight mass spectrometry approach. Sixteen subclasses of lipids were identified in both groups of animals. From 2,556 measured lipids, the abundance of 597 changed more than 10-fold in quarter milk with NAS-IMI compared with healthy quarters. The results demonstrate the influence of NAS-IMI on the milk lipidome, implying significant changes in lipid species belonging to the family of triacylglycerols and sphingomyelins, and contribute to the understanding of inflammatory processes in the bovine udder, highlighting potential novel biomarkers for improving mastitis diagnostics.
Collapse
Affiliation(s)
- F Ceciliani
- Department of Veterinary Medicine, Università degli Studi di Milano, 26900 Lodi, Italy.
| | - M Audano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - M F Addis
- Department of Veterinary Medicine, Università degli Studi di Milano, 26900 Lodi, Italy
| | - C Lecchi
- Department of Veterinary Medicine, Università degli Studi di Milano, 26900 Lodi, Italy
| | - M H Ghaffari
- Institute for Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - M Albertini
- Department of Veterinary Medicine, Università degli Studi di Milano, 26900 Lodi, Italy
| | - F Tangorra
- Department of Veterinary Science for Health, Animal Production and Food Safety, 26900 Lodi, Italy
| | - R Piccinini
- Department of Veterinary Medicine, Università degli Studi di Milano, 26900 Lodi, Italy
| | - D Caruso
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - N Mitro
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - V Bronzo
- Department of Veterinary Medicine, Università degli Studi di Milano, 26900 Lodi, Italy
| |
Collapse
|
52
|
Pham AC, Clulow AJ, Boyd BJ. Formation of Self-Assembled Mesophases During Lipid Digestion. Front Cell Dev Biol 2021; 9:657886. [PMID: 34178984 PMCID: PMC8231029 DOI: 10.3389/fcell.2021.657886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/05/2021] [Indexed: 11/27/2022] Open
Abstract
Lipids play an important role in regulating bodily functions and providing a source of energy. Lipids enter the body primarily in the form of triglycerides in our diet. The gastrointestinal digestion of certain types of lipids has been shown to promote the self-assembly of lipid digestion products into highly ordered colloidal structures. The formation of these ordered colloidal structures, which often possess well-recognized liquid crystalline morphologies (or “mesophases”), is currently understood to impact the way nutrients are transported in the gut and absorbed. The formation of these liquid crystalline structures has also been of interest within the field of drug delivery, as it enables the encapsulation or solubilization of poorly water-soluble drugs in the aqueous environment of the gut enabling a means of absorption. This review summarizes the evidence for structure formation during the digestion of different lipid systems associated with foods, the techniques used to characterize them and provides areas of focus for advancing our understanding of this emerging field.
Collapse
Affiliation(s)
- Anna C Pham
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Andrew J Clulow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| |
Collapse
|
53
|
Chen X, Wang J, Stevenson RJ, Ang X, Peng Y, Quek SY. Lipase-catalyzed modification of milk fat: A promising way to alter flavor notes of goat milk products. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111286] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
54
|
Jia W, Li R, Wu X, Liu S, Shi L. UHPLC-Q-Orbitrap HRMS-based quantitative lipidomics reveals the chemical changes of phospholipids during thermal processing methods of Tan sheep meat. Food Chem 2021; 360:130153. [PMID: 34034056 DOI: 10.1016/j.foodchem.2021.130153] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/14/2021] [Accepted: 05/15/2021] [Indexed: 11/20/2022]
Abstract
Thermal processing affects the lipid compositions of meat products. The study determined the effects of boiled, steamed and roasted processing methods on the lipidomics profiles of Tan sheep meat with a validated UPLC-Q-Orbitrap HRMS combined lipid screening strategy method. Combined with sphingolipid metabolism, the boiled approach was the suitable choice for atherosclerosis patients for more losses of sphingomyelin than ceramide in meat. The similarly less losses of phosphatidylcholine and lysophosphatidylcholine showed in glycerophospholipid metabolism implied that steamed Tan sheep meat was more suitable for the populations of elderly and infants. Furthermore, a total of 90 lipids with significant difference (VIP > 1) in 6 lipid subclasses (sphingomyelin, ceramide, lysophosphatidylcholine, phosphatidylcholine, phosphatidylethanolamines, triacylglycerol,) were quantified among raw and three types of thermal processed Tan sheep meat, further providing useful information for identification of meat products with different thermal processing methods (LOD with 0.14-0.31 μg kg-1, LOQ with 0.39-0.90 μg kg-1).
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Ruiting Li
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xixuan Wu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Shuxing Liu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
55
|
Peng KY, Salim M, Pelle J, Ramirez G, Boyd BJ. TAILOR-MS, a Python Package that Deciphers Complex Triacylglycerol Fatty Acyl Structures: Applications for Bovine Milk and Infant Formulas. Anal Chem 2021; 93:5684-5690. [PMID: 33797237 PMCID: PMC8047770 DOI: 10.1021/acs.analchem.0c04373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liquid chromatography tandem mass spectrometry (LC/MS) and other mass spectrometric technologies have been widely applied for triacylglycerol profiling. One challenge for targeted identification of fatty acyl moieties that constitute triacylglycerol species in biological samples is the numerous combinations of 3 fatty acyl groups that can form a triacylglycerol molecule. Manual determination of triacylglycerol structures based on peak intensities and retention time can be highly inefficient and error-prone. To resolve this, we have developed TAILOR-MS, a Python (programming language) package that aims at assisting: (1) the generation of targeted LC/MS methods for triacylglycerol detection and (2) automating triacylglycerol structural determination and prediction. To assess the performance of TAILOR-MS, we conducted LC/MS triacylglycerol profiling of bovine milk and two infant formulas. Our results confirmed dissimilarities between bovine milk and infant formula triacylglycerol composition. Furthermore, we identified 247 triacylglycerol species and predicted the possible existence of another 317 in the bovine milk sample, representing one of the most comprehensive reports on the triacylglycerol composition of bovine milk thus far. Likewise, we presented here a complete infant formula triacylglycerol profile and reported >200 triacylglycerol species. TAILOR-MS dramatically shortened the time required for triacylglycerol structural identification from hours to seconds and performed decent structural predictions in the absence of some triacylglycerol constituent peaks. Taken together, TAILOR-MS is a valuable tool that can greatly save time and improve accuracy for targeted LC/MS triacylglycerol profiling.
Collapse
Affiliation(s)
- Kang-Yu Peng
- Haematology Research Group, The Heart Research Institute, University of Sydney, Newtown, NSW 2042, Australia
| | - Malinda Salim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| | - Joseph Pelle
- Helen Macpherson Smith Trust laboratory at Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| | - Gisela Ramirez
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| |
Collapse
|
56
|
Jariyasopit N, Khamsaeng S, Panya A, Vinaisuratern P, Metem P, Asawalertpanich W, Visessanguan W, Sirivatanauksorn V, Khoomrung S. Quantitative analysis of nutrient metabolite compositions of retail cow’s milk and milk alternatives in Thailand using GC-MS. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
57
|
Zhang D, Duan X, Shang B, Hong Y, Sun H. Analysis of lipidomics profile of rice and changes during storage by UPLC-Q-extractive orbitrap mass spectrometry. Food Res Int 2021; 142:110214. [PMID: 33773692 DOI: 10.1016/j.foodres.2021.110214] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/17/2021] [Accepted: 02/02/2021] [Indexed: 11/18/2022]
Abstract
Rice is one of major staple food worldwide; however, lipid profile of rice and changes during storage remain unclear. Herein, an UPLC-Q-Exactive Orbitrap/MS method was applied for comprehensive lipidomics analysis of rice during storage. A total of 21 subclasses of 277 lipids including fatty acid (36 species), (O-acyl)-1-hydroxy fatty acid (6 species), diglyceride (16 species), triglyceride (89 species), lysophosphatidylcholine (4 species), phosphatidylcholine (14 species), phosphatidylethanolamine (28 species), phosphatidylglycerol (6 species), phosphatidylinositol (11species), cardiolipin (4 species), ceramide (8 species), hexosylceramide (20 species), dihexosylceramide (2 species), trihexosylceramide (1 species), sitosterol ester (1species), acyl hexosyl campesterol ester (5 species), acyl hexosyl sitosterol ester (6 species), digalactosyldiacylglycerol (6 species), monogalactosyldiacylglycerol (9 species), monogalactosylmonoacylglycerol (2 species), and sulfoquinovosyldiacylglycerol (3 species), were first identified in rice during storage. In addition, ceramide, fatty acid, (O-acyl)-1-hydroxy fatty acid, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, lysophosphatidylcholine, and diglyceride were quantified. Furthermore, statistical analysis of all lipids was performed based on MetaboAnalyst software. The results showed that 22 lipids were significantly different between fresh and stored (360 and 540 days storage) rice demonstrating that lipid composition changed during storage. These different lipids involved 11 metabolic pathways, of which linoleic acid metabolism, glycerophospholipid metabolism, and cutin, suberine and wax biosynthesis were the most relevant. Our study provides useful information for lipidomics profile of rice during storage.
Collapse
Affiliation(s)
- Dong Zhang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, PR China.
| | - Xiaoliang Duan
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, PR China
| | - Bo Shang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, PR China
| | - Yu Hong
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, PR China
| | - Hui Sun
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, PR China.
| |
Collapse
|
58
|
Han H, Choi JK, Park J, Im HC, Han JH, Huh MH, Lee YB. Recent innovations in processing technologies for improvement of nutritional quality of soymilk. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1893824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Hwana Han
- Central Research Institute, Dr. Chung’s Food Co. Ltd., Cheongju, Republic of Korea
| | - Jae Kwon Choi
- Central Research Institute, Dr. Chung’s Food Co. Ltd., Cheongju, Republic of Korea
| | - Joheun Park
- Central Research Institute, Dr. Chung’s Food Co. Ltd., Cheongju, Republic of Korea
| | - Hae Cheon Im
- Central Research Institute, Dr. Chung’s Food Co. Ltd., Cheongju, Republic of Korea
| | - Jae Heum Han
- Central Research Institute, Dr. Chung’s Food Co. Ltd., Cheongju, Republic of Korea
| | - Moon Haeng Huh
- Central Research Institute, Dr. Chung’s Food Co. Ltd., Cheongju, Republic of Korea
| | - Yoon-Bok Lee
- Central Research Institute, Dr. Chung’s Food Co. Ltd., Cheongju, Republic of Korea
| |
Collapse
|
59
|
Zhu D, Kebede B, McComb K, Hayman A, Chen G, Frew R. Milk biomarkers in relation to inherent and external factors based on metabolomics. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
60
|
Hu H, Lee-Fong Y, Peng J, Hu B, Li J, Li Y, Huang H. Comparative Research of Chemical Profiling in Different Parts of Fissistigma oldhamii by Ultra-High-Performance Liquid Chromatography Coupled with Hybrid Quadrupole-Orbitrap Mass Spectrometry. Molecules 2021; 26:960. [PMID: 33670350 PMCID: PMC7918369 DOI: 10.3390/molecules26040960] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 11/17/2022] Open
Abstract
The roots of Fissistigma oldhamii (FO) are widely used as medicine with the effect of dispelling wind and dampness, promoting blood circulation and relieving pains, and its fruits are considered delicious. However, Hakka people always utilize its above-ground parts as a famous folk medicine, Xiangteng, with significant differences from literatures. Studies of chemical composition showed there were multiple aristolactams that possessed high nephrotoxicity, pending evaluation research about their distribution in FO. In this study, a sensitive, selective, rapid and reliable method was established to comparatively perform qualitative and semi-quantitative analysis of the constituents in roots, stems, leaves, fruits and insect galls, using an Ultra-High-Performance Liquid Chromatography coupled with Hybrid Quadrupole Orbitrap Mass Spectrometry (UPLC-Q-Exactive Orbitrap MS, or Q-Exactive for short). To make more accurate identification and comparison of FO chemicals, all MS data were aligned and screened by XCMS, then their structures were elucidated according to MSn ion fragments between the detected and standards, published ones or these generated by MS fragmenter. A total of 79 compounds were identified, including 33 alkaloids, 29 flavonoids, 11 phenylpropanoids, etc. There were 54 common components in all five parts, while another 25 components were just detected in some parts. Six toxic aristolactams were detected in this experiment, including aristolactam AII, AIIIa, BII, BIII, FI and FII, of which the relative contents in above-ground stems were much higher than roots. Meanwhile, multivariate statistical analysis was performed and showed significant differences both in type and content of the ingredients within all FO parts. The results implied that above-ground FO parts should be carefully valued for oral administration and eating fruits. This study demonstrated that the high-resolution mass spectrometry coupled with multivariate statistical methods was a powerful tool in compound analysis of complicated herbal extracts, and the results provide the basis for its further application, scientific development of quality standard and utilization.
Collapse
Affiliation(s)
- Haibo Hu
- National Engineering Research Center for Modernization of Traditional Chinese Medicine—Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (H.H.); (J.P.); (B.H.); (J.L.)
- Department of Biology, Animal Physiology and Neurobiology Section, Katholieke Universiteit Leuven, Naamsestraat 59, Box 2465, 3000 Leuven, Belgium
| | - Yau Lee-Fong
- State Key Laboratory of Quality of Traditional Chinese Medicine, Macao University of Science and Technology, Macau 999078, China;
| | - Jinnian Peng
- National Engineering Research Center for Modernization of Traditional Chinese Medicine—Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (H.H.); (J.P.); (B.H.); (J.L.)
| | - Bin Hu
- National Engineering Research Center for Modernization of Traditional Chinese Medicine—Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (H.H.); (J.P.); (B.H.); (J.L.)
| | - Jialin Li
- National Engineering Research Center for Modernization of Traditional Chinese Medicine—Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (H.H.); (J.P.); (B.H.); (J.L.)
| | - Yaoli Li
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hao Huang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine—Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (H.H.); (J.P.); (B.H.); (J.L.)
- State Key Laboratory of Quality of Traditional Chinese Medicine, Macao University of Science and Technology, Macau 999078, China;
| |
Collapse
|
61
|
Zhang X, Liu L, Wang L, Pan Y, Hao X, Zhang G, Li X, Hussain M. Comparative Lipidomics Analysis of Human Milk and Infant Formulas Using UHPLC-Q-TOF-MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1146-1155. [PMID: 33464051 DOI: 10.1021/acs.jafc.0c06940] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The lipidome and fatty acid composition of human milk and different infant formulas with animal- and/or plant-based fat sources are analyzed and compared in this study. The results obtained using positive and negative ionization modes indicate that there are 48 and 71 lipid species, respectively, that are common between the human milk and infant formulas. Moreover, the fatty acid composition in infant formulas varies significantly, depending on the fat source. Human milk is rich in triacylglycerols that contain linoleic acid, α-linolenic acid, arachidonic acid, and docosahexaenoic acid. Meanwhile, the triacylglycerols in IFB comprise long-chain fatty acids at the sn-1,3 position. Compared to human milk, IFC has the same level of sphingomyelin species. Based on univariate and multivariate analyses, there are 37, 34, 31, and 36 lipid species that can be used to distinguish between human milk and infant formulas. Overall, the results reported herein are useful in designing new milk formulas that better mimic human milk.
Collapse
Affiliation(s)
- Xiuxiu Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Lu Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Lina Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Yue Pan
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Xinyue Hao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Gengxu Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Xiaodong Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Muhammad Hussain
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Dairy Science of Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
62
|
Lipidomics Strategy for the Identification of Ultra-High Temperature and Reconstituted Milk by UPLC-Q-Exactive Orbitrap Mass Spectrometry. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-020-01947-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
63
|
|
64
|
Wu B, Xie Y, Xu S, Lv X, Yin H, Xiang J, Chen H, Wei F. Comprehensive Lipidomics Analysis Reveals the Effects of Different Omega-3 Polyunsaturated Fatty Acid-Rich Diets on Egg Yolk Lipids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15048-15060. [PMID: 33267575 DOI: 10.1021/acs.jafc.0c05215] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dietary supplementation with omega-3 polyunsaturated fatty acids (n-3 PUFAs) for laying hens enriches eggs with these essential fatty acids. However, the enrichment patterns and changes to intact lipids in egg yolk have not been sufficiently revealed. Herein, egg yolk lipids from hens fed with diets supplemented with flaxseed, Schizochytrium sp. residue, or their mixture were comprehensively analyzed using ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). A total of 335 individual lipid species covering 23 (sub)classes were identified and quantified. Distinct n-3 PUFA-lipid profiles were revealed among different groups. Dietary α-linolenic acid (ALA) was mainly deposited in the TAG fraction, whereas synthesized or preformed docosahexaenoic acid (DHA) predominantly existed in the glycerophospholipid form. Furthermore, different lipid species were identified and related lipid pathways after dietary supplementation were analyzed. Collectively, these findings provide us with new knowledge for production, nutritional evaluation, authentication, and application of n-3 PUFA-enriched eggs.
Collapse
Affiliation(s)
- Bangfu Wu
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, P. R. China, and Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Xudong 2nd Road, Wuhan, Hubei 430062, P. R. China
| | - Ya Xie
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, P. R. China, and Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Xudong 2nd Road, Wuhan, Hubei 430062, P. R. China
| | - Shuling Xu
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, P. R. China, and Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Xudong 2nd Road, Wuhan, Hubei 430062, P. R. China
| | - Xin Lv
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, P. R. China, and Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Xudong 2nd Road, Wuhan, Hubei 430062, P. R. China
| | - Hongqing Yin
- Enshi Autonomous Prefecture Academy of Agricultural Sciences, Enshi, Hubei 445002, P. R. China
| | - Jiqian Xiang
- Enshi Autonomous Prefecture Academy of Agricultural Sciences, Enshi, Hubei 445002, P. R. China
| | - Hong Chen
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, P. R. China, and Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Xudong 2nd Road, Wuhan, Hubei 430062, P. R. China
| | - Fang Wei
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, P. R. China, and Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Xudong 2nd Road, Wuhan, Hubei 430062, P. R. China
| |
Collapse
|
65
|
Verma A, Meitei NS, Gajbhiye PU, Raftery MJ, Ambatipudi K. Comparative Analysis of Milk Triglycerides Profile between Jaffarabadi Buffalo and Holstein Friesian Cow. Metabolites 2020; 10:metabo10120507. [PMID: 33322613 PMCID: PMC7764747 DOI: 10.3390/metabo10120507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/25/2020] [Accepted: 12/06/2020] [Indexed: 12/03/2022] Open
Abstract
Milk lipids are known for a variety of biological functions, however; little is known about compositional variation across breeds, especially for Jaffarabadi buffalo, an indigenous Indian breed. Systematic profiling of extracted milk lipids was performed by mass spectrometry across summer and winter in Holstein Friesian cow and Jaffarabadi buffalo. Extensive MS/MS spectral analysis for the identification (ID) of probable lipid species using software followed by manual verification and grading of each assigned lipid species enabled ID based on (a) parent ion, (b) head group, and (c) partial/full acyl characteristic ions for comparative profiling of triacylglycerols between the breeds. Additionally, new triacylglycerol species with short-chain fatty acids were reported by manual interpretation of MS/MS spectra and comparison with curated repositories. Collectively, 1093 triacylglycerol species belonging to 141 unique sum compositions between the replicates of both the animal groups were identified. Relative quantitation at sum composition level followed by statistical analyses revealed changes in relative abundances of triacylglycerol species due to breed, season, and interaction effect of the two. Significant changes in triacylglycerols were observed between breeds (81%) and seasons (59%). When the interaction effect is statistically significant, a higher number of triacylglycerols species in Jaffarabadi has lesser seasonal variation than Holstein Friesian.
Collapse
Affiliation(s)
- Aparna Verma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ningombam Sanjib Meitei
- Luhup Private Limited, Indore 452001, India
- Ningombam Angouton Memorial Trust, Imphal East, Manipur 795008, India
| | - Prakash U Gajbhiye
- Cattle Breeding Farm, Junagadh Agricultural University, Junagadh 362001, India
| | - Mark J Raftery
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney 2052, Australia
| | - Kiran Ambatipudi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
66
|
Wu T, Guo H, Lu Z, Zhang T, Zhao R, Tao N, Wang X, Zhong J. Reliability of LipidSearch software identification and its application to assess the effect of dry salting on the long-chain free fatty acid profile of tilapia muscles. Food Res Int 2020; 138:109791. [PMID: 33288177 DOI: 10.1016/j.foodres.2020.109791] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 12/16/2022]
Abstract
Dry salting has important effects on food lipids. In this work, the reliability of LipidSearch software identification and its application to assess the effect of dry salting on the long-chain free fatty acid profile of tilapia muscles were studied by ultra-high-performance liquid chromatography-Q-Extractive Orbitrap mass spectrometry and LipidSearch software. Compared with the standard reference identification method, the LipidSearch software identification method was suggested to be a reliable identification method for long-chain free fatty acid identification. During the dry salting process, tilapia muscles with low muscle-to-salt mass ratios of 3-8 might have stable and similar free fatty acid profile changes, and the free fatty acid amounts decreased and then increased with time. This work could provide useful information to evaluate the development and application of LipidSearch software as well as a way to analyze the effect of dry salting on the free fatty acids change of aquatic products.
Collapse
Affiliation(s)
- Tingting Wu
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Hao Guo
- Chongqing Institute of Forensic Science, Chongqing 400021, China
| | - Zhiwen Lu
- Shanghai Gaojing Detection Technology Co., Ltd., Shanghai 200438, China
| | - Ting Zhang
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ruofei Zhao
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ningping Tao
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xichang Wang
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Zhong
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
67
|
Wang J, Xu Z, Zhang H, Wang Y, Liu X, Wang Q, Xue J, Zhao Y, Yang S. Meat differentiation between pasture-fed and concentrate-fed sheep/goats by liquid chromatography quadrupole time-of-flight mass spectrometry combined with metabolomic and lipidomic profiling. Meat Sci 2020; 173:108374. [PMID: 33229106 DOI: 10.1016/j.meatsci.2020.108374] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 01/16/2023]
Abstract
Animal feeding method is a crucial factor in influencing meat quality. Consumers would preferentially select meat obtained from pasture-fed animals. In this study, an untargeted metabolomic and lipidomic method based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) combined with chemometric analysis was utilized to investigate the differences between meat from free-range and intensively-fed sheep/goats. Distinct separation between these two kinds of sheep/goats meat obtained were identified by principal component analysis. Analysis of variance, fold change and orthogonal projection to latent structures discriminant analysis were then conducted to determine specific potential markers. A total of 46 potential markers were selected according to online chemical databases. The support vector machine (SVM) method was used to process the responses of the selected potential markers, and the results of metabolomics and lipidomics from an additional 59 samples revealed the discrimination rate of 89.3% and 98.3%. These findings provided a basis for differentiation of meat from sheep/goats fed in the two methods.
Collapse
Affiliation(s)
- Jishi Wang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhenzhen Xu
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongbo Zhang
- Inner Mongolia Food Safety and Inspection Testing Center, Hohhot, Inner Mongolia 010090, China
| | - Yanyun Wang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoxia Liu
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qian Wang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiali Xue
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Zhao
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Shuming Yang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
68
|
Bukowski MR, Picklo MJ. Simple, Rapid Lipidomic Analysis of Triacylglycerols in Bovine Milk by Infusion-Electrospray Mass Spectrometry. Lipids 2020; 56:243-255. [PMID: 33169389 DOI: 10.1002/lipd.12292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/08/2020] [Accepted: 10/26/2020] [Indexed: 11/11/2022]
Abstract
Bovine milk is a complex mixture of lipids, proteins, carbohydrates, and other factors of which lipids comprise 3-5% of the total mass. Rapid analysis and characterization of the triacylglycerols (TAG) that comprise about 95% of the total lipid is daunting given the numerous TAG species. In the attached methods paper, we demonstrate an improved method for identifying and quantifying TAG species by infusion-based "shotgun" lipidomics. Because of the broad range of TAG species in milk, a single internal standard was insufficient for the analysis and required sectioning the spectrum into three portions based upon mass range to provide accurate quantitation of TAG species. Isobaric phospholipid interferences were removed using a simple dispersive solid-phase extraction step. Using this method, > 100 TAG species were quantitated by acyl carbon number and desaturation level in a sample of commercially purchased bovine milk.
Collapse
Affiliation(s)
- Michael R Bukowski
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND, 58203, USA
| | - Matthew J Picklo
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND, 58203, USA
| |
Collapse
|
69
|
Tan D, Zhang X, Su M, Jia M, Zhu D, Kebede B, Wu H, Chen G. Establishing an untargeted-to-MRM liquid chromatography-mass spectrometry method for discriminating reconstituted milk from ultra-high temperature milk. Food Chem 2020; 337:127946. [PMID: 32927223 DOI: 10.1016/j.foodchem.2020.127946] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/15/2020] [Accepted: 08/24/2020] [Indexed: 01/20/2023]
Abstract
The counterfeit use of reconstituted milk to simulate fresh milk in some countries is largely driven by profiteering; hence, establishing a robust market-surveillance method is an important objective. In this study, an untargeted metabolomics approach that uses ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was established to discover biomarkers that can be used to classify UHT and reconstituted milk. Furthermore, 36 positive- and 24 negative-ionization mode features were selected as candidate markers to establish a UPLC-tandem mass spectrometry (UPLC-MS/MS) multiple reaction monitoring (MRM) method. The support vector machine (SVM) method was used to process the responses of the selected potential markers, and 100% classifiability was observed. The marker metabolites could be divided into three categories by hierarchical clustering analysis: peptides, lipids, and nucleic acids. The results suggest that the untargeted-to-MRM metabolomics method is an effective tool for distinguishing between UHT and reconstituted milk.
Collapse
Affiliation(s)
- Dongfei Tan
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Xia Zhang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Meicheng Su
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Man Jia
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Dan Zhu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; Department of Food Science, University of Otago, Dunedin 9016, New Zealand
| | - Biniam Kebede
- Department of Food Science, University of Otago, Dunedin 9016, New Zealand.
| | - Huaxing Wu
- New Hope Dairy Company Limited, Product Research and Development Center, Chengdu 610023, China; Dairy Nutrition and Function, Key Laboratory of Sichuan Province, Chengdu 610023, China.
| | - Gang Chen
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China.
| |
Collapse
|
70
|
Yang F, Zhou L, Zhang M, Liu J, Marchioni E. Exploration of natural phosphatidylcholine sources from six beans by UHPLC-Q-HRMS. J Food Sci 2020; 85:3202-3213. [PMID: 32856304 DOI: 10.1111/1750-3841.15393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/21/2020] [Accepted: 07/04/2020] [Indexed: 12/01/2022]
Abstract
Beans are a rich source of phosphatidylcholine (PC). This study aims to explore natural PC sources rich in polyunsaturated fatty acid (PUFA) with nutritional interest. PCs from six beans were purified (purity > 98.2%) by thin layer chromatography (TLC), and subsequently identified by ultra-high performance liquid chromatography-Quadrupole (Q)-high-resolution mass spectrometry (UHPLC-Q-HRMS). Results showed that the PC content of chickpea (Cicer arietinum) and soybean (Glycine max) was 50.0 and 34.0 mg/g, respectively, which was significantly higher than that of other beans (P < 0.05). Gas chromatographic analysis showed that soybean contained high proportion of PUFA (58.78%), and chickpea contained high proportion of docosahexaenoic acid (DHA) (2.73%). A total of 49 molecular species were identified by UHPLC-Q-HRMS. (18:2-18:2)PC was predominant in soybean, adzuki bean, runner bean, and common bean. (16:0-18:1)PC was the major species of chickpea PC, and many ether PC species and DHA-PC were identified. Discriminatory analysis by principal component analysis (PCA) indicated that the molecular profiles of chickpea PC were significantly different from other beans studied. The findings suggest that chickpea appears to be an interesting plant source of DHA and ether lipids for dietary supplement. PRACTICAL APPLICATION: In this study, we reported an UHPLC-Q-HRMS technique to identify PC molecular species of six beans. The diversity of PC molecular species in the different beans was classified using chemometrics. This analytical method not only provides comprehensive information to nutritionists about the PC distribution in different beans, but also can identify biomarkers for bean flour fraud identification in food supplementation. Furthermore, the approach gives fragmentation patterns of several PC species and could be further applied to determine the chemical structure of PC molecular species from many natural resources.
Collapse
Affiliation(s)
- Fu Yang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Univ. for Nationalities, Wuhan, 430074, P. R. China
| | - Li Zhou
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Univ. for Nationalities, Wuhan, 430074, P. R. China
| | - Minghao Zhang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Univ. for Nationalities, Wuhan, 430074, P. R. China
| | - Jikai Liu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Univ. for Nationalities, Wuhan, 430074, P. R. China
| | - Eric Marchioni
- Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognosie, Inst. Pluridisciplinaire Hubert Curien (UMR 7178, CNRS/UDS), 74 route du Rhin, Illkirch, 67400, France
| |
Collapse
|
71
|
Zhou L, Yang F, Zhao M, Zhang M, Liu J, Marchioni E. Determination and comparison of phospholipid profiles in eggs from seven different species using UHPLC-ESI-Triple TOF-MS. Food Chem 2020; 339:127856. [PMID: 32866698 DOI: 10.1016/j.foodchem.2020.127856] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/23/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023]
Abstract
Egg yolk phospholipids from seven different species were purified (purity > 96%) using SPE columns, and subsequently the phospholipid profiles were identified and quantified by ultra-high-performance liquid chromatography-electrospray ionization-triple time-of flight mass spectrometry (UHPLC-ESI-Triple TOF-MS). Eight phospholipid classes and 87 molecular species were characterized. Principal component analysis showed that the molecular species and concentration of phospholipids in pigeon and hen egg yolks had a significant difference with other eggs. Hierarchical cluster analysis indicated that the phospholipid profiles of pigeon egg yolks were closest to hen egg yolks, followed by quail, duck, ostrich, emu and goose egg yolks. Different relative quantities of certain molecular species were different among egg yolk types; for instance, phosphatidylcholine (16:0/16:1) in goose egg yolks and phosphatidylethanolamine (16:0/18:3) in ostrich egg yolks. This study provides a basis for a better understanding of the phospholipid profiles of egg yolks, and better evaluation of the nutritional value of eggs.
Collapse
Affiliation(s)
- Li Zhou
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, PR China.
| | - Fu Yang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Minjie Zhao
- Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognoise, Institut Pluridisciplinaire Hubert Curien (UMR 7178, CNRS/UDS), 74 route du Rhin, 67400 Illkirch, France
| | - Minghao Zhang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Jikai Liu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, PR China.
| | - Eric Marchioni
- Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognoise, Institut Pluridisciplinaire Hubert Curien (UMR 7178, CNRS/UDS), 74 route du Rhin, 67400 Illkirch, France
| |
Collapse
|
72
|
Sun T, Wang X, Cong P, Xu J, Xue C. Mass spectrometry-based lipidomics in food science and nutritional health: A comprehensive review. Compr Rev Food Sci Food Saf 2020; 19:2530-2558. [PMID: 33336980 DOI: 10.1111/1541-4337.12603] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/14/2020] [Accepted: 06/10/2020] [Indexed: 12/16/2022]
Abstract
With the advance in science and technology as well as the improvement of living standards, the function of food is no longer just to meet the needs of survival. Food science and its associated nutritional health issues have been increasingly debated. Lipids, as complex metabolites, play a key role both in food and human health. Taking advantages of mass spectrometry (MS) by combining its high sensitivity and accuracy with extensive selective determination of all lipid classes, MS-based lipidomics has been employed to resolve the conundrum of addressing both qualitative and quantitative aspects of high-abundance and low-abundance lipids in complex food matrices. In this review, we systematically summarize current applications of MS-based lipidomics in food field. First, common MS-based lipidomics procedures are described. Second, the applications of MS-based lipidomics in food science, including lipid composition characterization, adulteration, traceability, and other issues, are discussed. Third, the application of MS-based lipidomics for nutritional health covering the influence of food on health and disease is introduced. Finally, future research trends and challenges are proposed. MS-based lipidomics plays an important role in the field of food science, promoting continuous development of food science and integration of food knowledge with other disciplines. New methods of MS-based lipidomics have been developed to improve accuracy and sensitivity of lipid analysis in food samples. These developments offer the possibility to fully characterize lipids in food samples, identify novel functional lipids, and better understand the role of food in promoting healt.
Collapse
Affiliation(s)
- Tong Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xincen Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Qingdao National Laboratory for Marine Science and Technology, Laboratory of Marine Drugs & Biological Products, Qingdao, China
| |
Collapse
|
73
|
Milk fat globule size development in the mammary epithelial cell: a potential role for ether phosphatidylethanolamine. Sci Rep 2020; 10:12299. [PMID: 32704146 PMCID: PMC7378170 DOI: 10.1038/s41598-020-69036-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 07/01/2020] [Indexed: 11/12/2022] Open
Abstract
Milk fat globule (MFG) size is a milk production trait characteristic to the individual animal and has important effects on the functional and nutritional properties of milk. Although the regulation of MFG size in the mammary epithelial cell is not fully understood, lipid droplet (LD) fusion prior to secretion is believed to play a role. We selected cows that consistently produced milk with predominantly small or large MFGs to compare their lipidomic profiles, with focus on the polar lipid fraction. The polar lipid composition of the monolayer surrounding the LD is believed to either promote or prevent LD fusion. Using a targeted LC–MS/MS approach we studied the relative abundance of 301 detected species and found significant differences between the studied groups. Here we show that the lipidomic profile of milk from small MFG cows is characterised by higher phosphatidylcholine to phosphatidylethanolamine ratios. In contrast, the milk from large MFG cows contained more ether-phosphatidylethanolamine species. This is the first time that a potential role for ether-phosphatidylethanolamine in MFG size development has been suggested.
Collapse
|
74
|
Zhang Y, Zheng Z, Liu C, Liu Y. Lipid Profiling and Microstructure Characteristics of Goat Milk Fat from Different Stages of Lactation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7204-7213. [PMID: 32551578 DOI: 10.1021/acs.jafc.0c02234] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Goat milk at different lactations show varied lipids distributions, which are potentially dietary influencing factors for the health of human consumers. Herein, the effects of lactation stages (colostral, transitional, and mature stages) on lipid profiling and microstructure of goat milk fat (GMF) were investigated. A total of 359 species of triacylglycerols (TAGs), 27 species of diacylglycerols (DAGs), and 10 classes of phospholipids (PLs) were identified using high resolution tandem mass spectrometry (HR-MS/MS). Of importance, goat transitional milk presented the highest levels of MUFA (29.51%) and lyso-phospholipids (7.95% of total PLs) among these three different lactations. A lactation-dependent attenuation was found at the level of PUFA in goat milk, particularly long-chain PUFA ω-6. Similar behavior was observed in the total proportions of POO (16:0/18:1/18:1) and PSL (16:0/18:0/18:2), presenting a decrease from 3.70% to 3.23% as the proceeding period from colostrum to mature. The relative contents of sphingomyelin and cholesterol in goat colostrum were approximately twice and three times that in mature milk, respectively. Unlikely, both PMCy+MCaM (16:0/14:0/8:0 + 14:0/10:0/14:0) and BuPO (4:0/16:0/18:1) TAGs, the foremost saturated and monounsaturated TAGs in goat colostrum, respectively, showed upward trends over the period from colostrum to mature. Interestingly, no significant variation in milk fat globule morphology was monitored at different lactation periods. Therefore, all our results demonstrated that the main influences of lactation stages on GMF were the lipid profiling, providing a theoretical guidance for rational implement of lipids in goat milk.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhaojun Zheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| | - Chunhuan Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
75
|
Li M, Li Q, Kang S, Cao X, Zheng Y, Wu J, Wu R, Shao J, Yang M, Yue X. Characterization and comparison of lipids in bovine colostrum and mature milk based on UHPLC-QTOF-MS lipidomics. Food Res Int 2020; 136:109490. [PMID: 32846571 DOI: 10.1016/j.foodres.2020.109490] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 12/30/2022]
Abstract
Lipids in bovine milk have several biological activities, with implications for human health and the physical functionality of foods. However, alterations in the lipid profile of bovine milk during lactation are not well-studied. This study aimed to identify differences in lipids between bovine colostrum and mature milk, using a lipidomics approach. Using an advanced mass spectrometry-based quantitative lipidomics approach, 335 lipids assigned to 13 subclasses were characterized in bovine colostrum (BC) and mature milk (BM). In total, 63 significantly differential lipids (SDLs) were identified. Among the 63 SDLs, the levels of 21 lipids were significantly lower in BM than in BC, including 5 glycerophosphatidylethanolamines (PEs), 1 glycerophosphatidylglycerol (PG), and 15 triacylglycerols (TGs). The levels of the remaining 42 lipids increased in BM, including 1 cardiolipin (CL), 9 diacylglycerols (DGs), 9 dihexosylceramides (Hex2Cers), 3 hexosylceramides (HexCers), 3 glycerophosphatidic acids (PAs), 2 glycerophosphatidylcholines (PCs), 12 PEs, and 3 TGs. Furthermore, the correlations and related metabolic pathways of these 63 SDLs were analyzed to explore the mechanisms that alter bovine milk lipids during lactation. The seven most relevant pathways identified herein, ranked in accordance with their degree of influence on lactation, were glycerophospholipid metabolism, sphingolipid metabolism, glycerolipid metabolism, glycosylphosphatidylinositol-anchor biosynthesis, linoleic acid metabolism, alpha-linolenic acid metabolism, and arachidonic acid metabolism. Our results provide essential insights into mechanisms underlying alterations in bovine milk lipids during different lactation periods, along with practical information of specific nutrition and quality assessments for the dairy industry.
Collapse
Affiliation(s)
- Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Qilong Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Shimo Kang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Xueyan Cao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Yan Zheng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Junhua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Mei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning Province, China.
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning Province, China.
| |
Collapse
|
76
|
Liu Z, Li C, Pryce J, Rochfort S. Comprehensive Characterization of Bovine Milk Lipids: Phospholipids, Sphingolipids, Glycolipids, and Ceramides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6726-6738. [PMID: 32369354 DOI: 10.1021/acs.jafc.0c01604] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A comprehensive survey on phospholipids (PLs), sphingolipids, glycolipids, and ceramides (Cer) of bovine milk was conducted by liquid chromatography tandem-mass spectrometry. A total of 514 species belonging to 15 classes were identified by an automated search tool (LipidSearch) and a manual analysis of MS2 spectra. Over 60 species were detected for the classes of phosphatidylcholine (PC), phosphatidylinositol, phosphatidylserine, and sphingomyelin (SM), between 20 and 45 species for phosphatidylethanolamine (PE), phosphatidic acid (PA), and lactosylceramide (LacCer), and between 7 and 20 species for phosphatidylglycerol (PG), lyso-phosphatidylcholine, lyso-phosphatidylethanolamine, glucosylceramide (GluCer), PC-plasmalogen (PC-P), PE-plasmalogen, ganglioside, and Cer. The structural assignment for PL classes is straightforward based on class-specific product ion/neutral losses and fatty acid-related product ions. By contrast, structural determination of lipid classes containing a backbone of sphingoid bases (SM, GluCer, LacCer, ganglioside, and Cer) is much more challenging, and combining MS2/MS3 information acquired in both positive and negative modes is sometimes needed. The quantification of all 15 classes of lipids was performed at the species level. A large variation in abundance was observed across the lipid classes; PC, PE, and SM are the most abundant polar lipid classes, with concentrations reaching 120, 150, and 90 μmol/L, respectively, whereas PA, PG, and PC-P are present at very low levels (<1.5 μmol/L) and the remaining classes at an intermediate level (2-45 μmol/L). This is the first comprehensive characterization of minor lipid classes from bovine milk and the information provided can be used as a reference for studying milk lipids.
Collapse
Affiliation(s)
- Zhiqian Liu
- Agriculture Victoria Research, AgriBio, 5 Ring Road, Bundoora, Victoria 3083, Australia
| | - Cheng Li
- Agriculture Victoria Research, AgriBio, 5 Ring Road, Bundoora, Victoria 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Jennie Pryce
- Agriculture Victoria Research, AgriBio, 5 Ring Road, Bundoora, Victoria 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Simone Rochfort
- Agriculture Victoria Research, AgriBio, 5 Ring Road, Bundoora, Victoria 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
77
|
Liu Z, Li C, Pryce J, Rochfort S. Comprehensive Characterization of Bovine Milk Lipids: Triglycerides. ACS OMEGA 2020; 5:12573-12582. [PMID: 32548441 PMCID: PMC7271359 DOI: 10.1021/acsomega.0c01841] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
A comprehensive survey on triglycerides (TAGs) of bovine milk was conducted by a combination of exhaustive liquid chromatography (LC) separation, high-resolution mass spectrometry (MS) detection, and automated lipid molecular feature extraction. A total of 220 groups (a series of species having the same chemical formula and mass) and 3454 molecular species of TAGs were identified based on the accurate mass of the parent ion as well as MS2 information. Sixty-five different fatty acids (FAs) were found across these TAG species; C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, C16:0, C18:0, and C18:1 were the most frequent FAs, whereas C11:3, C11:4, C27:0, C27:1, C28:0, and C28:1 were rare FAs in TAG molecules. The number of species identified represents only a small portion of total TAG molecules that can be theoretically synthesized from 65 FAs. Each TAG group contains on average 15-16 isomeric species (species with different FA composition), but positional isomers do not seem to be widespread. As the isomeric species cannot be completely resolved chromatographically, quantification of TAG was conducted at the group level. The most abundant TAG groups in bovine milk include TAG 34:0, TAG 36:0, TAG 38:1, TAG 38:0, and TAG 40:1. This study provides the most comprehensive milk TAG inventory so far that can be used as a reference for studying milk lipids.
Collapse
Affiliation(s)
- Zhiqian Liu
- Agriculture
Victoria Research, AgriBio, 5 Ring Road, Bundoora, Victoria 3083, Australia
| | - Cheng Li
- Agriculture
Victoria Research, AgriBio, 5 Ring Road, Bundoora, Victoria 3083, Australia
- School
of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Jennie Pryce
- Agriculture
Victoria Research, AgriBio, 5 Ring Road, Bundoora, Victoria 3083, Australia
- School
of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Simone Rochfort
- Agriculture
Victoria Research, AgriBio, 5 Ring Road, Bundoora, Victoria 3083, Australia
- School
of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
78
|
Pham AC, Peng KY, Salim M, Ramirez G, Hawley A, Clulow AJ, Boyd BJ. Correlating Digestion-Driven Self-Assembly in Milk and Infant Formulas with Changes in Lipid Composition. ACS APPLIED BIO MATERIALS 2020; 3:3087-3098. [PMID: 32455340 PMCID: PMC7241073 DOI: 10.1021/acsabm.0c00131] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/16/2020] [Indexed: 11/29/2022]
Abstract
![]()
Lipids in mammalian
milks such as bovine milk and human breast
milk have been shown to self-assemble into various liquid crystalline
materials during digestion. In this study, the direct correlation
between the composition of the lipids from three types of mammalian
milk, three brands of infant formulas (IFs), and soy milk and the
liquid crystalline structures that form during their digestion was
investigated to link the material properties to the composition. The
self-assembly behavior was assessed using in vitro digestion coupled with in situ small-angle X-ray
scattering (SAXS). Lipid composition was determined during in vitro digestion using ex situ liquid
chromatography–mass spectrometry. All tested milks self-assembled
into ordered structures during digestion, with the majority of milks
displaying nonlamellar phases. Milks that released mostly long-chain
fatty acids (>95 mol % of the top 10 fatty acids released) with
more
than 47 mol % unsaturation predominantly formed a micellar cubic phase
during digestion. Other milks released relatively more medium-chain
fatty acids and medium-chain monoglycerides and produced a range of
ordered liquid crystalline structures including the micellar cubic
phase, the hexagonal phase, and the bicontinuous cubic phase. One
infant formula did not form liquid crystalline structures at all as
a consequence of differences in fatty acid distributions. The self-assembly
phenomenon provides a powerful discriminator between different classes
of nutrition and a roadmap for the design of human milklike systems
and is anticipated to have important implications for nutrient transport
and the delivery of bioactives.
Collapse
Affiliation(s)
- Anna C Pham
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| | - Kang-Yu Peng
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| | - Malinda Salim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| | - Gisela Ramirez
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| | - Adrian Hawley
- SAXS/WAXS Beamline, Australian Synchrotron, ANSTO, Clayton, VIC 3168, Australia
| | - Andrew J Clulow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| |
Collapse
|
79
|
Wang L, Li X, Liu L, da Zhang H, Zhang Y, Hao Chang Y, Zhu QP. Comparative lipidomics analysis of human, bovine and caprine milk by UHPLC-Q-TOF-MS. Food Chem 2020; 310:125865. [DOI: 10.1016/j.foodchem.2019.125865] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/28/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022]
|
80
|
Liu H, Guo X, Zhao Q, Qin Y, Zhang J. Lipidomics analysis for identifying the geographical origin and lactation stage of goat milk. Food Chem 2020; 309:125765. [DOI: 10.1016/j.foodchem.2019.125765] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 11/27/2022]
|
81
|
Xu QB, Zhang YD, Zheng N, Wang Q, Li S, Zhao SG, Wen F, Meng L, Wang JQ. Short communication: Decrease of lipid profiles in cow milk by ultra-high-temperature treatment but not by pasteurization. J Dairy Sci 2019; 103:1900-1907. [PMID: 31785883 DOI: 10.3168/jds.2019-17329] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/11/2019] [Indexed: 01/01/2023]
Abstract
Triglyceride (TG) and fatty acid profiles of raw (RM), pasteurized (PM, 85°C for 15 s), and indirect UHT-treated (UM, 135°C for 15 s) cow milk were investigated by a lipidomics approach. Ninety-four TG were identified and all were present at significantly lower concentrations in UM than in RM or PM, and free fatty acid contents were significantly higher in UM than in RM and PM, indicating that TG lipolysis occurred to a greater degree in UM than in RM and PM. In addition, UM contained significantly fewer unsaturated fatty acids (14 types) than those in RM and PM, including C14:1n-5, C15:1n-5, C16:1n-7, C17:1n-7, C18:1n9 cis, C18:2n-6 cis, C18:3n-3, C18:3n-6, C20:1, C20:2, C20:3n-6, C20:3n-3, C20:4n-6, and C20:5n-3. However, we detected no significant differences between RM and PM in these fatty acids. In conclusion, UHT treatment, but not pasteurization, caused loss of the nutritional quality and bioactivity of cow milk lipid profiles.
Collapse
Affiliation(s)
- Q B Xu
- Laboratory of Quality & Safety Risk Assessment for Dairy Products of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Y D Zhang
- Laboratory of Quality & Safety Risk Assessment for Dairy Products of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - N Zheng
- Laboratory of Quality & Safety Risk Assessment for Dairy Products of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Q Wang
- Laboratory of Quality & Safety Risk Assessment for Dairy Products of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - S Li
- Laboratory of Quality & Safety Risk Assessment for Dairy Products of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - S G Zhao
- Laboratory of Quality & Safety Risk Assessment for Dairy Products of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - F Wen
- Laboratory of Quality & Safety Risk Assessment for Dairy Products of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - L Meng
- Laboratory of Quality & Safety Risk Assessment for Dairy Products of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - J Q Wang
- Laboratory of Quality & Safety Risk Assessment for Dairy Products of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
82
|
Shi C, Guo H, Wu T, Tao N, Wang X, Zhong J. Effect of three types of thermal processing methods on the lipidomics profile of tilapia fillets by UPLC-Q-Extractive Orbitrap mass spectrometry. Food Chem 2019; 298:125029. [DOI: 10.1016/j.foodchem.2019.125029] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/13/2019] [Accepted: 06/16/2019] [Indexed: 10/26/2022]
|
83
|
Lu S, Liu H, Jin C, Li Q, Guo L. An efficient and comprehensive plant glycerolipids analysis approach based on high-performance liquid chromatography-quadrupole time-of-flight mass spectrometer. PLANT DIRECT 2019; 3:e00183. [PMID: 31832598 PMCID: PMC6858605 DOI: 10.1002/pld3.183] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 05/14/2023]
Abstract
In past two decades, numerous lipidomics approaches based on mass spectrometry with or without liquid chromatography separation have been established for identification and quantification of lipids in plants. In this study, we developed an efficient and comprehensive lipidomics approach based on UPLC with an Acquity UPLCTM BEH C18 column coupled to TripleTOF using ESI in positive ion mode and MS/MSALL scan for data collection. Lipid extract was prepared to 2 mg/ml solution according to dry tissue weight and mixed with 13 kinds of internal standards including PA, PC, PE, and PG. Each analysis required single injection of 5-10 μl lipid solvent and completed in 32 min. A target method dataset was generated using the LipidView software for prediction of the accurate mass of target lipid species. The dataset was uploaded into the PeakView to create processing datasets to search target lipid species, which achieved batch data processing of multiple samples for lipid species-specific identification and quantification. As proof of concept, we profiled the lipids of different tissues of rapeseed. Thirteen lipid classes including 218 glycerolipids were identified including 46 TAGs, 15 DAGs, 20 PCs, 24 PEs, 13 PGs, 14 PIs, 26 PSs, 12 PAs, 16 MGDGs, 16 DGDGs, 6 LysoPCs, 5 LysoPEs, and 5 LysoPGs. Together, our approach permits the analysis of glycerolipids in plant tissues with simplicity in sample analysis and data processing using UPLC-TripleTOF.
Collapse
Affiliation(s)
- Shaoping Lu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Cheng Jin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Qing Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Liang Guo
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
84
|
Wang X, Zhang H, Song Y, Cong P, Li Z, Xu J, Xue C. Comparative Lipid Profile Analysis of Four Fish Species by Ultraperformance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9423-9431. [PMID: 31329442 DOI: 10.1021/acs.jafc.9b03303] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A high-throughput lipid analysis method was established to comprehensively investigate the lipid profiles of three marine (Scomberomorus niphonius, Scophthalmus maximus, and Oncorhynchus keta) and one freshwater (Ctenopharyngodon idellus) fish species using ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Over 700 molecular species from 12 major lipid subclasses were identified. Glycerolipids (73.7-85.6%) and phospholipids (PLs, 13.7-25.6%) were dominant components in total lipids. Polyunsaturated fatty acid PLs, such as phosphatidylethanolamine (PE, 16:0-22:6), PE (18:1-22:6), and phosphatidylcholine (16:0-22:6), were the major molecular species in PLs. The lipid composition of three marine fish (mainly C22:5) was significantly different from that in C. idellus (mainly C20:4 and C20:5). A unique long-chain base of sphingolipids was found in fish (mainly d19:3). These bioactive lipids were proposed to be potential biomarkers for distinguishing different fish species and evaluating nutritional values.
Collapse
Affiliation(s)
- Xuesong Wang
- College of Food Science and Engineering , Ocean University of China , Qingdao , Shandong 266003 , People's Republic of China
| | - Hongwei Zhang
- Technical Center of Entry-Exit Inspection and Quarantine , Shandong Entry-Exit Inspection and Quarantine Bureau , Qingdao , Shandong 266002 , People's Republic of China
| | - Yu Song
- College of Food Science and Engineering , Ocean University of China , Qingdao , Shandong 266003 , People's Republic of China
| | - Peixu Cong
- College of Food Science and Engineering , Ocean University of China , Qingdao , Shandong 266003 , People's Republic of China
| | - Zhaojie Li
- College of Food Science and Engineering , Ocean University of China , Qingdao , Shandong 266003 , People's Republic of China
| | - Jie Xu
- College of Food Science and Engineering , Ocean University of China , Qingdao , Shandong 266003 , People's Republic of China
| | - Changhu Xue
- College of Food Science and Engineering , Ocean University of China , Qingdao , Shandong 266003 , People's Republic of China
- Qingdao National Laboratory for Marine Science and Technology , Qingdao , Shandong 266235 , People's Republic of China
| |
Collapse
|
85
|
Liang S, Wang Z, Yuan J, Zhang J, Dai X, Qin F, Zhang J, Sun Y. Rapid Identification of Tanshinone IIA Metabolites in an Amyloid-β 1-42 Induced Alzherimer's Disease Rat Model using UHPLC-Q-Exactive Qrbitrap Mass Spectrometry. Molecules 2019; 24:molecules24142584. [PMID: 31315255 PMCID: PMC6680413 DOI: 10.3390/molecules24142584] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 01/21/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder that damages health and welfare of the elderly, and there has been no effective therapy for AD until now. It has been proved that tanshinone IIA (tan IIA) could alleviate pathological symptoms of AD via improving non-amyloidogenic cleavage of amyloid precursor protein, decreasing the accumulations of p-tau and amyloid-β1–42 (Aβ1–42), and so forth. However, the further biochemical mechanisms of tan IIA are not clear. The experiment was undertaken to explore metabolites of tan IIA in AD rats induced by microinjecting Aβ1-42 in the CA1 region of hippocampus. AD rats were orally administrated with tan IIA at 100 mg/kg weight, and plasma, urine, faeces, kidney, liver and brain were then collected for metabolites analysis by UHPLC-Q-Exactive Qrbitrap mass spectrometry. Consequently, a total of 37 metabolites were positively or putatively identified on the basis of mass fragmentation behavior, accurate mass measurements and retention times. As a result, methylation, hydroxylation, dehydration, decarbonylation, reduction reaction, glucuronidation, glycine linking and their composite reactions were characterized to illuminate metabolic pathways of tan IIA in vivo. Several metabolites presented differences in the distribution of tan IIA between the sham control and the AD model group. Overall, these results provided valuable references for research on metabolites of tan IIA in vivo and its probable active structure for exerting neuroprotection.
Collapse
Affiliation(s)
- Shuang Liang
- College of Biochemical Engineering, Beijing Union University, Beijing 100191, China
| | - Zijian Wang
- Beijing University of Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing 100191, China
| | - Jiaqi Yuan
- College of Biochemical Engineering, Beijing Union University, Beijing 100191, China
| | - Jing Zhang
- College of Biochemical Engineering, Beijing Union University, Beijing 100191, China
| | - Xueling Dai
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China
| | - Fei Qin
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China
| | - Jiayu Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yaxuan Sun
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China.
| |
Collapse
|
86
|
Cossignani L, Pollini L, Blasi F. Invited review: Authentication of milk by direct and indirect analysis of triacylglycerol molecular species. J Dairy Sci 2019; 102:5871-5882. [DOI: 10.3168/jds.2019-16318] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/11/2019] [Indexed: 01/06/2023]
|
87
|
Ranadheera CS, Evans CA, Baines SK, Balthazar CF, Cruz AG, Esmerino EA, Freitas MQ, Pimentel TC, Wittwer AE, Naumovski N, Graça JS, Sant'Ana AS, Ajlouni S, Vasiljevic T. Probiotics in Goat Milk Products: Delivery Capacity and Ability to Improve Sensory Attributes. Compr Rev Food Sci Food Saf 2019; 18:867-882. [PMID: 33337004 DOI: 10.1111/1541-4337.12447] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/08/2019] [Accepted: 03/19/2019] [Indexed: 01/10/2023]
Abstract
Dairy foods, particularly those of bovine origin, are the predominant vehicles for delivery of probiotic bacteria. Caprine (goat) milk also possesses potential for successful delivery of probiotics, and despite its less appealing flavor in some products, the use of goat milk as a probiotic carrier has rapidly increased over the last decade. This review reports on the diversity, applicability, and potential of using probiotics to enhance the sensory properties of goat milk and goat milk-based products. A brief conceptual introduction to probiotic microorganisms is followed by an account of the unique physicochemical, nutritive, and beneficial aspects of goat milk, emphasizing its advantages as a probiotic carrier. The sensory properties of probiotic-enriched goat milk products are also discussed. The maintenance of probiotic viability and desirable physicochemical characteristics in goat milk products over shelf life is possible. However, the unpleasant sensory features of some goat milk products remain a major disadvantage that hinder its wider utilization. Nevertheless, certain measures such as fortification with selected probiotic strains, inclusion of fruit pulps and popular flavor compounds, and production of commonly consumed tailor-made goat milk-based products have potential to overcome this limitation. In particular, certain probiotic bacteria release volatile compounds as a result of their metabolism, which are known to play a major role in the aroma profile and sensory aspects of the final products.
Collapse
Affiliation(s)
- C S Ranadheera
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The Univ. of Melbourne, Melbourne, VIC, 3010, Australia
| | - C A Evans
- School of Environmental and Life Sciences, Univ. of Newcastle, NSW, 2308, Australia
| | - S K Baines
- School of Health Sciences, Univ. of Newcastle, NSW, 2308, Australia
| | - Celso F Balthazar
- Dept. of Food Science and Technology, School of Veterinary, Federal Fluminense Univ., 24230-340, Niterói, RJ, Brazil
| | - Adriano G Cruz
- Dept. of Food, Federal Inst. of Rio de Janeiro, 20270-021, Rio de Janeiro, RJ, Brazil
| | - Erick A Esmerino
- Dept. of Food Science and Technology, School of Veterinary, Federal Fluminense Univ., 24230-340, Niterói, RJ, Brazil
| | - Mônica Q Freitas
- Dept. of Food Science and Technology, School of Veterinary, Federal Fluminense Univ., 24230-340, Niterói, RJ, Brazil
| | | | - A E Wittwer
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The Univ. of Melbourne, Melbourne, VIC, 3010, Australia
| | - N Naumovski
- Discipline of Nutrition and Dietetics, Faculty of Health, Univ. of Canberra, Canberra, ACT, 2601, Australia.,Collaborative Research in Bioactives and Biomarkers (CRIBB) Group, Canberra, ACT, 2601, Australia
| | - Juliana S Graça
- Dept. of Food Science, Faculty of Food Engineering, Univ. of Campinas, Campinas, São Paulo, Brazil
| | - Anderson S Sant'Ana
- Dept. of Food Science, Faculty of Food Engineering, Univ. of Campinas, Campinas, São Paulo, Brazil
| | - S Ajlouni
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The Univ. of Melbourne, Melbourne, VIC, 3010, Australia
| | - T Vasiljevic
- Advanced Food Systems Research Unit, College of Health and Biomedicine, Victoria Univ., Werribee, Victoria, 3030, Australia
| |
Collapse
|
88
|
Enhanced identification of the in vivo metabolites of Ecliptae Herba in rat plasma by integrating untargeted data-dependent MS2 and predictive multiple reaction monitoring-information dependent acquisition-enhanced product ion scan. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1109:99-111. [DOI: 10.1016/j.jchromb.2019.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/04/2023]
|
89
|
Khan IT, Bule M, Ullah R, Nadeem M, Asif S, Niaz K. The antioxidant components of milk and their role in processing, ripening, and storage: Functional food. Vet World 2019; 12:12-33. [PMID: 30936650 PMCID: PMC6431809 DOI: 10.14202/vetworld.2019.12-33] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/05/2018] [Indexed: 01/09/2023] Open
Abstract
The current rate of population growth is so fast that, to feed this massive population, a 2-fold increase in land is required for the production of quality food. Improved dietary products such as milk and its products with antioxidant properties and functional foods of animal origin have been utilized to prevent chronic diseases. The designer milk contains low fat and less lactose, more protein, modified level of fatty acids, and desired amino acid profiles. The importance of milk and its products is due to the presence of protein, bioactive peptides, conjugated linoleic acid, omega-3 fatty acid, Vitamin D, selenium, and calcium. These constituents are present in milk product, play a key role in the physiological activities in human bodies, and act as anti-inflammatory, anti-tumor, antioxidant, hypocholesterolemic, immune boosting, and antimicrobial activities. Consumer awareness regarding benefits of designer foods such as milk and its products is almost non-existent worldwide and needs to be established to reach the benefits of designer food technologies in the near future. The main objective of this review was to collect data on the antioxidant properties of milk and its constituents which keep milk-derived products safe and preserved.
Collapse
Affiliation(s)
- Imran Taj Khan
- Department of Dairy Technology, University of Veterinary and Animal Sciences, Ravi Campus, Pattoki, Lahore-54000, Pakistan
| | - Mohammed Bule
- Department of Pharmacy, College of Medicine and Health Sciences, Ambo University, Ambo, Ethiopia
| | - Rahman Ullah
- Department of Dairy Technology, University of Veterinary and Animal Sciences, Ravi Campus, Pattoki, Lahore-54000, Pakistan
| | - Muhammad Nadeem
- Department of Dairy Technology, University of Veterinary and Animal Sciences, Ravi Campus, Pattoki, Lahore-54000, Pakistan
| | - Shafaq Asif
- Faculty of Veterinary Medicine, University of Teramo, Campus Coste Sant’Agostino, Renato Balzarini Street, 1, 64100 Teramo, Italy
| | - Kamal Niaz
- Department of Pharmacology and Toxicology, Cholistan University of Veterinary and Animal Sciences (CUVAS)-Bahawalpur-63100 Pakistan
| |
Collapse
|
90
|
An Integrated LC-MS-Based Strategy for the Quality Assessment and Discrimination of Three Panax Species. Molecules 2018; 23:molecules23112988. [PMID: 30445785 PMCID: PMC6278395 DOI: 10.3390/molecules23112988] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 11/30/2022] Open
Abstract
The quality assessment and discrimination of Panax herbs are very challenging to perform due to the complexity and variability of their chemical compositions. An integrated strategy was established using UHPLC-Q-Exactive/HRMS and HPLC-ESI-MS/MS to achieve an accurate, rapid, and comprehensive qualitative and quantitative analysis of Panax japonicas (PJ), Panax japonicus var. major (PM), and Panax zingiberensis (PZ). Additionally, discrimination among the three species was explored with partial least squares–discriminant analysis (PLS-DA) and orthogonal partial least squares–discriminant analysis (OPLS-DA) score plots. A total of 101 compounds were plausibly or unambiguously identified, including 82 from PJ, 78 from PM, and 67 from PZ. Among them, 16 representative ginsenosides were further quantified in three herbs. A clear discrimination between the three species was observed through a multivariate statistical analysis on the quantitative data. Nine compounds that allowed for discrimination between PJ, PM, and PZ were discovered. Notably, ginsenoside Rf (G-Rf), ginsenoside F3 (G-F3), and chikusetsu saponin IV (CS-IV) were the three most important differential compounds. The research indicated that the integrated LC-MS-based strategy can be applied for the quality assessment and discrimination of the three Panax herbs.
Collapse
|
91
|
Afshari R, Pillidge CJ, Dias DA, Osborn AM, Gill H. Cheesomics: the future pathway to understanding cheese flavour and quality. Crit Rev Food Sci Nutr 2018; 60:33-47. [DOI: 10.1080/10408398.2018.1512471] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Roya Afshari
- School of Science, RMIT University, Bundoora, Victoria, Australia
| | | | - Daniel A. Dias
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - A. Mark Osborn
- School of Science, RMIT University, Bundoora, Victoria, Australia
| | - Harsharn Gill
- School of Science, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
92
|
Liu Z, Rochfort S, Cocks B. Milk lipidomics: What we know and what we don't. Prog Lipid Res 2018; 71:70-85. [DOI: 10.1016/j.plipres.2018.06.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 02/07/2023]
|
93
|
Bernard L, Bonnet M, Delavaud C, Delosière M, Ferlay A, Fougère H, Graulet B. Milk Fat Globule in Ruminant: Major and Minor Compounds, Nutritional Regulation and Differences Among Species. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700039] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Laurence Bernard
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores; F-63122 Saint-Genès-Champanelle France
| | - Muriel Bonnet
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores; F-63122 Saint-Genès-Champanelle France
| | - Carole Delavaud
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores; F-63122 Saint-Genès-Champanelle France
| | - Mylène Delosière
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores; F-63122 Saint-Genès-Champanelle France
| | - Anne Ferlay
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores; F-63122 Saint-Genès-Champanelle France
| | - Hélène Fougère
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores; F-63122 Saint-Genès-Champanelle France
| | - Benoît Graulet
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores; F-63122 Saint-Genès-Champanelle France
| |
Collapse
|
94
|
Ali AH, Wei W, Abed SM, Korma SA, Mousa AH, Hassan HM, Jin Q, Wang X. Impact of technological processes on buffalo and bovine milk fat crystallization behavior and milk fat globule membrane phospholipids profile. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.12.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
95
|
Xu L, Wang X, Jiao Y, Liu X. Assessment of potential false positives via orbitrap-based untargeted lipidomics from rat tissues. Talanta 2018; 178:287-293. [DOI: 10.1016/j.talanta.2017.09.046] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/12/2017] [Accepted: 09/16/2017] [Indexed: 12/16/2022]
|
96
|
Jia W, Shi L, Chu X. Untargeted screening of sulfonamides and their metabolites in salmon using liquid chromatography coupled to quadrupole Orbitrap mass spectrometry. Food Chem 2018; 239:427-433. [DOI: 10.1016/j.foodchem.2017.06.143] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 01/11/2023]
|
97
|
Profiling of phospholipids molecular species from different mammalian milk powders by using ultra-performance liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2017.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
98
|
Li Q, Liang X, Zhao L, Zhang Z, Xue X, Wang K, Wu L. UPLC-Q-Exactive Orbitrap/MS-Based Lipidomics Approach To Characterize Lipid Extracts from Bee Pollen and Their in Vitro Anti-Inflammatory Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6848-6860. [PMID: 28737913 DOI: 10.1021/acs.jafc.7b02285] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Bee pollen (BP) is collected by honeybees from flower pollen mixed with nectar and its secretions with extensive nutritional and therapeutic properties. Lipids are known to be critical contributors for the therapeutic effects of BP and vary depending on different plant sources; however, lipid profiles of BP are not available. Here, an UPLC-Q-Exactive Orbitrap/MS method was established for comprehensive lipidomics analysis of BP derived from three major nectar plants (Brassica campestris L., Camellia sinensis L., and Nelumbo nucifera Gaertn.). A total of nine lipid classes, including phosphatidylcholine (41 species), phosphatidylethanolamine (43 species), phosphatidylglycerol (9 species), phosphatidylserine (10 species), lysophosphatidylcholine (12 species), ceramide (8 species), diglyceride (27 species), triglyceride (137 species), and fatty acids (47 species), were first identified and quantified in the three BPs. In vitro anti-inflammatory activity was also discovered in the lipid extracts of three BPs, which has potential relevance to the abundance of phospholipids and unsaturated fatty acids in BP. Our comprehensive lipidomics profiling and in vitro anti-inflammatory properties of BP provide evidence for its future application.
Collapse
Affiliation(s)
- Qiangqiang Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences , Beijing 100093, China
- Risk Assessment Laboratory for Bee Products Quality and Safety of Ministry of Agriculture , Beijing 100093, China
- Bee Product Quality Supervision and Testing Center, Ministry of Agriculture , Beijing 100093, China
| | - Xinwen Liang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences , Beijing 100093, China
- Risk Assessment Laboratory for Bee Products Quality and Safety of Ministry of Agriculture , Beijing 100093, China
- Bee Product Quality Supervision and Testing Center, Ministry of Agriculture , Beijing 100093, China
| | - Liang Zhao
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University , Beijing 100083, China
| | - Zhongyin Zhang
- Henan Institute of Science and Technology , Xinxiang 453003, China
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences , Beijing 100093, China
- Risk Assessment Laboratory for Bee Products Quality and Safety of Ministry of Agriculture , Beijing 100093, China
- Bee Product Quality Supervision and Testing Center, Ministry of Agriculture , Beijing 100093, China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences , Beijing 100093, China
- Risk Assessment Laboratory for Bee Products Quality and Safety of Ministry of Agriculture , Beijing 100093, China
- Bee Product Quality Supervision and Testing Center, Ministry of Agriculture , Beijing 100093, China
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences , Beijing 100093, China
- Risk Assessment Laboratory for Bee Products Quality and Safety of Ministry of Agriculture , Beijing 100093, China
| |
Collapse
|
99
|
|
100
|
Common cases of improper lipid annotation using high-resolution tandem mass spectrometry data and corresponding limitations in biological interpretation. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:766-770. [PMID: 28263877 DOI: 10.1016/j.bbalip.2017.02.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/25/2017] [Accepted: 02/26/2017] [Indexed: 12/30/2022]
|