51
|
Coello KE, Frias J, Martínez-Villaluenga C, Cartea ME, Abilleira R, Peñas E. Potential of Germination in Selected Conditions to Improve the Nutritional and Bioactive Properties of Moringa ( Moringa oleifera L.). Foods 2020; 9:E1639. [PMID: 33182814 PMCID: PMC7696275 DOI: 10.3390/foods9111639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/27/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Moringa oleifera L. is greatly appreciated for its high content of phytochemicals. Although most parts of moringa tree have been widely studied, seeds remained scarcely explored. The first goal of this study was to investigate the effectiveness of germination to improve the nutritional composition (proximate composition and levels of vitamins B1 and B2), content of bioactive compounds (glucosinolates, phenolics and γ-aminobutyric acid, GABA) and antioxidant activity of moringa seed. Germination improved protein, fat, fiber, riboflavin, phenolics, some individual glucosinolates (GLS) and GABA contents, as well as the antioxidant potential in moringa sprouts, but the extent of the improvement depended on germination conditions. The second objective of this work was to identify the optimal germination conditions to maximize nutritional and bioactive quality of moringa by applying multi-response optimization (response surface methodology, RSM). RSM models indicated that 28 °C and 24 h were the optimal conditions to enhance the accumulation of riboflavin, phenolics and antioxidant activity of sprouts, while the highest GABA and total GLS contents were observed at 36 °C for 96 h and thiamine achieved the maximum content at 36 °C for 24 h. These results show that moringa sprouts are promising functional foods that might be also used as ingredients for the elaboration of novel foodstuffs.
Collapse
Affiliation(s)
- Karín E. Coello
- Escuela Superior Politécnica del Litoral, ESPOL Polytechnic University, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863 Guayaquil, Ecuador;
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (J.F.); (C.M.-V.)
| | - Juana Frias
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (J.F.); (C.M.-V.)
| | - Cristina Martínez-Villaluenga
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (J.F.); (C.M.-V.)
| | - María Elena Cartea
- Group of Genetics, Breeding and Biochemistry of Brassicas, Biological Mission of Galicia (CSIC), P.O. Box 28, E-36080 Pontevedra, Spain; (M.E.C.); (R.A.)
| | - Rosaura Abilleira
- Group of Genetics, Breeding and Biochemistry of Brassicas, Biological Mission of Galicia (CSIC), P.O. Box 28, E-36080 Pontevedra, Spain; (M.E.C.); (R.A.)
| | - Elena Peñas
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (J.F.); (C.M.-V.)
| |
Collapse
|
52
|
Negu A, Zegeye A, Astatkie T. Development and quality evaluation of wheat based cookies enriched with fenugreek and oat flours. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:3573-3580. [PMID: 32903977 PMCID: PMC7447712 DOI: 10.1007/s13197-020-04389-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/14/2020] [Accepted: 04/01/2020] [Indexed: 10/24/2022]
Abstract
Cookies are one of the best-known quick snack products. However, the main ingredients used in many countries are wheat and a few cereal seeds. This study was conducted to evaluate the nutritional (chemical composition, physical properties, mineral, and phytochemical) and sensory attributes of cookies produced from wheat alone, and three blends of wheat, fenugreek and oat generated after running a d-optimal design mixture experiment (85:5:10%, 70:10:20%, and 55:15:30%), and when baked at three different temperatures (150, 175, and 200 °C). The results indicated that the cookies made from wheat flour supplemented with fenugreek and oat flours had significantly higher protein, fat, crude fiber and energy contents, but lower carbohydrate content. The anti-nutrient contents (phytic acid and condensed tannin) of fenugreek and oat supplemented cookies increased moderately. The mineral content (Ca, Mg, Fe and Zn) of cookies enriched with fenugreek and oat was also improved. The effect of baking temperature on the different response variables varied, and all in all, 175 °C was an acceptable compromise. The study showed that cookies made from 70% wheat, 10% fenugreek, and 20% oat and baked at 175 °C have the best nutritional content and acceptable sensory attributes.
Collapse
Affiliation(s)
- Abiyot Negu
- College of Engineering and Technology, Wolkite University, Wolkite, Ethiopia
| | - Adamu Zegeye
- School of Chemical and Bio Engineering, Addis Ababa Institute of Technology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tessema Astatkie
- Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS B2N 5E3 Canada
| |
Collapse
|
53
|
Giaconia MA, Ramos SDP, Pereira CF, Lemes AC, De Rosso VV, Braga ARC. Overcoming restrictions of bioactive compounds biological effects in food using nanometer-sized structures. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105939] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
54
|
The Effect of Light on Antioxidant Properties and Metabolic Profile of Chia Microgreens. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10175731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chia (Salvia hispanica L.) is a one-year plant known as a source of nutrients that can be consumed in the diet in the form of seeds or sprouts. The purpose of this study is to investigate the effect of illumination for 24 and 48 h on dark-grown chia microgreens. Total antioxidant capacity was measured using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric-reducing antioxidant power (FRAP) assays, along with the total phenolics, ascorbic acid and cellulose content, and chlorophyll and carotenoid concentrations. Fourier transform infrared spectroscopy (FTIR) was used to evaluate the biochemical composition and elucidate the changes in compound structures between dark-grown and illuminated chia microgreens. Analysis of the results showed that illumination significantly increased the content of all measured bioactive compounds as well as antioxidative capacity, especially 48 h after exposure to light. FTIR analyses supported structural and molecular changes in chia microgreens grown under different light regimes. Our results suggest that illumination has a positive effect on the antioxidant potential of chia microgreens, which may present a valuable addition to the human diet.
Collapse
|
55
|
Yan Z, Li M, Xie L, Luo X, Yang W, Yuan Y, Zhang Y, Niu L. A systematic comparison of 17 cultivated herbaceous peony seed based on phytochemicals and antioxidant activity. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03544-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
56
|
Rasera GB, Hilkner MH, de Castro RJS. Free and insoluble-bound phenolics: How does the variation of these compounds affect the antioxidant properties of mustard grains during germination? Food Res Int 2020; 133:109115. [PMID: 32466905 DOI: 10.1016/j.foodres.2020.109115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/08/2020] [Accepted: 02/18/2020] [Indexed: 01/20/2023]
Abstract
This work aimed to investigate how the variation of free and insoluble-bound phenolics affected the antioxidant properties of mustard grains from two varieties (black - Brassica nigra and white - Sinapsis alba) during different germination parameters. The germination conditions selected for each mustard variety to improve their antioxidant properties were different, as follows: (a) for white mustard - 72 h of germination at 25 °C in the dark and (b) for black mustard - 48 h of germination at 25 °C alternating dark and light periods. At these conditions, increases of 49, 72, 80, 68, 42, 66 and 45% were detected for total phenolic compounds (TPC), total flavonoids, condensed tannins, FRAP, DPPH, ABTS, and ORAC, respectively, for soluble extracts of white mustard compared to the non-germinated white mustard. The soluble extracts from black mustard, in turn, presented increases of 44, 18, 55, 29, 3, 160 and 42% for TPC, total flavonoids, condensed tannins, FRAP, DPPH, ABTS, and ORAC, respectively, compared to the non-germinated sample. Gallic acid, 3,4-di-hydroxybenzoic acid, sinapic acid, ferulic acid, coumaric acid, and rutin were identified by UPLC-MS/MS and were the main compounds detected in mustard extracts. Given the results obtained, germinated mustard grains have the potential for application as a functional and nutraceutical food.
Collapse
Affiliation(s)
- Gabriela Boscariol Rasera
- Department of Food Science, School of Food Engineering, University of Campinas, 80 Rua Monteiro Lobato, Campinas, SP, Brazil.
| | - Marina Hermenegildo Hilkner
- Department of Food Science, School of Food Engineering, University of Campinas, 80 Rua Monteiro Lobato, Campinas, SP, Brazil
| | - Ruann Janser Soares de Castro
- Department of Food Science, School of Food Engineering, University of Campinas, 80 Rua Monteiro Lobato, Campinas, SP, Brazil
| |
Collapse
|
57
|
Priyadarshini S, Brar JK. Biofortification of chromium in fenugreek seeds. J Trace Elem Med Biol 2020; 61:126521. [PMID: 32330855 DOI: 10.1016/j.jtemb.2020.126521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 02/11/2020] [Accepted: 02/20/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Fenugreek and chromium are known to have anti-diabetic properties and this has been well demonstrated by multiple studies. Researches have been undertaken to study thebiofortification of chromium (Cr3+) in fenugreek. Some of the researchers have studied the biofortification from the soil irrigated with tannery waste water or from soil amended by tannery-sludge, with a view of enhancing the anti-diabetic effect of fenugreek plants. The present research work was also undertaken to increase the chromium content of fenugreek seeds, but through direct treatment of chromium picolinate solution to fenugreek seeds. METHODS Fenugreek seeds were procured and divided in four groups having three batches of 10 g seeds- treatment1, treatment2, control1 and control2. Control1 group was kept raw and was given no treatment and control2 group was germinated using double distilled water. Treatment1 and treatment2, on the other hand, were given treatment of 0.02 g and 0.04 g chromium picolinate solution, on first day and 0.01 g and 0.02 g chromium picolinate solution on second day, respectively. The germinated samples were then completely dried, powdered, digested with di-acid mixture and assayed using Inductively Coupled Plasma optical emission spectrometry method for chromium content. The treatment1 sample was selected for further nutritional analysis along with control1 and control2 group to compare the nutritional composition of raw, germinated and chromium treated fenugreek seed flour. Fifteen sprouts from treatment1 group (treatment1A group) and fifteen sprouts from control2 group (control3 group) were sown in earthen pots for the analysis of chromium content in seeds of new plants. RESULTS The fenugreek seeds treated with two different concentrations of chromium picolinate viz. treatment1 and treatment2 group attained 55 and 80 times higher chromium content as compared to control2 group, respectively. All the estimated minerals and bioactive compounds were significantly high (p ≤ 0.01) in germinated fenugreek seed flour and chromium treated fenugreek seed flour compared to raw fenugreek seed flour. Germinated fenugreek seed flour and chromium treated fenugreek seed flour were statistically comparable to each other in respect of all the parameters analysed. Hence, it was evident that enriching fenugreek seeds with chromium, did not affect the nutritional content of fenugreek seed by any mean. Also, there was no significant difference between the chromium content in seeds of control3 group and T1A group. CONCLUSIONS Treatment of fenugreek seeds with chromium solution seems to be an efficient and safe method for increasing their chromium concentration as compared to application of chromium to the soil for biofortification with minimal to no chance of chromium accumulation and inheritance in next generation plants. However, there is a need of more research to see how reliable these observations would be when different chromium salts and/or varied chromium concentration are used.
Collapse
Affiliation(s)
- Shweta Priyadarshini
- Department of Food and Nutrition, College of Community Science, Punjab Agricultural University, Ludhiana 141004, Punjab, India.
| | - Jaswinder Kaur Brar
- Department of Food and Nutrition, College of Community Science, Punjab Agricultural University, Ludhiana 141004, Punjab, India.
| |
Collapse
|
58
|
Impact of Processing and Intestinal Conditions on in Vitro Digestion of Chia ( Salvia hispanica) Seeds and Derivatives. Foods 2020; 9:foods9030290. [PMID: 32150813 PMCID: PMC7143566 DOI: 10.3390/foods9030290] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/24/2020] [Accepted: 03/01/2020] [Indexed: 02/07/2023] Open
Abstract
Chia seeds present with an excellent nutrient profile, including polyunsaturated fat, protein, fibre and bioactive compounds, which make them a potential food or ingredient to bring beneficial health effects. However, their tough structure could mean that these seeds remain hardly disrupted during digestion, thus preventing the release and digestibility of nutrients. In the present study, different chia products (seeds, whole flour, partially defatted flour and sprouts) were assessed in terms of proteolysis, lipolysis, calcium and polyphenols bioaccessibility and antioxidant activity. In vitro digestions were performed supporting standard intestinal (pH 7, bile salts concentration 10 mM) and altered (pH 6, bile salts concentration 1 mM) conditions. The altered conditions significantly reduced lipolysis, but not proteolysis. Regarding the food matrix, compared to the chia seeds, whole and partially defatted flour increased the hydrolysis of lipids and protein, relating to reduced particle size. Sprouting had an enhancing effect on proteolysis but prevented lipolysis. Calcium bioaccessibility dropped in all the samples in the two intestinal conditions. The digestion process led to increased polyphenols bioaccessibility in all the structures, but reduced antioxidant activity except in the milled structures. In conclusion, milling should be applied to chia seeds prior to consumption in cases where enhancing the potential uptake of macro and micronutrients is targeted, and sprouting is suitable to enhance protein digestibility and reduce lipolysis.
Collapse
|
59
|
Kraevska S, Yeshchenko O, Stetsenko N. OPTIMIZATION OF THE TECHNOLOGICAL PROCESS OF FLAX SEED GERMINATION. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.15673/fst.v13i3.1453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the world, demand for flax seeds and its processed volumes are increasing. Flax seeds are classified as natural functional food products. This is confirmed by the Ministry of Health of many countries, in particular Canada and the United States of America. Flax germination makes flax seed components biologically available. Each type of plant has its own set of germination requirements consisting of both internal and external factors. This research was aimed at studying the effect of various external factors (temperature, humidity.etc.) affecting flax seed germination energy. The temperature varied in the range 16°C to 30°C, in increments of 2°C, as further increasing the temperature requires additional equipment and, consequently, additional energy consumption. The ambient humidity was maintained at 40, 60, 70, and 95%. The flax seeds were germinated for 36 hours till seedlings, up to 3 mm long, appeared. The germination energy was determined for each combination of the controlled factors. A mathematical model of the flaxseed germination process was constructed using the regression and correlation analysis methods. The model obtained determines the optimum germination modes. In the course of the experimental research, we applied experimental design techniques and mathematical processing of the experimental data. Using the computer programmes MathCad and Microsoft Excel optimized the flax seed germination and set its optimum modes. The constructed mathematical model makes it clear that the maximum germination energy 99.64% is achieved at the temperature 27.5°C and humidity 95%. The experimental and statistical models of germination of flax seeds have been obtained, describing the process with the correlation coefficient R = 0.96–0.99. The data obtained can be used to predict the quality parameters of flax seedlings and the energy consumption to obtain them.
Collapse
|
60
|
Wang Z, Shen S, Cui Z, Nie H, Han D, Yan H. Screening and Isolating Major Aldose Reductase Inhibitors from the Seeds of Evening Primrose ( Oenothera biennis). Molecules 2019; 24:E2709. [PMID: 31349647 PMCID: PMC6695788 DOI: 10.3390/molecules24152709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023] Open
Abstract
Aldose reductase (AR) is a drug target for therapies to treat complications caused by diabetes mellitus, and the development of effective AR inhibitors (ARIs) of natural origin is considered to be an attractive option for reducing these complications. In this research, the rat lens AR (RLAR) inhibitory activity of evening primrose (Oenothera biennis) seeds was investigated for the first time. In our results, the 50% (v/v) methanol extract of evening primrose seeds exhibits excellent RLAR inhibitory activity (IC50 value of 7.53 μg/mL). Moreover, after enrichment of its bioactive components, the ARIs are more likely to be present in the ethyl acetate fraction of 50% (v/v) methanol extract (EME) of evening primrose seeds, which exhibits superior RLAR inhibitory activity (IC50 value of 3.08 µg/mL). Finally, gallic acid (1), procyanidin B3 (2), catechin (3), and methyl gallate (4) were identified as the major ARIs from the EME by affinity-based ultrafiltration-high-performance liquid chromatography and were isolated by high speed countercurrent chromatography, with gallic acid (11.46 µmol/L) and catechin (14.78 µmol/L) being the more potent inhibitors of the four ARIs identified. The results demonstrated that evening primrose seeds may be a potent ingredient of ARIs.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education & College of Public Health, Hebei University, Baoding 071002, China
| | - Shigang Shen
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Ze Cui
- Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang 050021, China
| | - Hailiang Nie
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education & College of Public Health, Hebei University, Baoding 071002, China
| | - Dandan Han
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education & College of Public Health, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education & College of Public Health, Hebei University, Baoding 071002, China.
| |
Collapse
|
61
|
Konan KV, Le TC, Mateescu MA. Precompression of dry vegetal bioactive agents to optimize density and compactness: Case of Peschiera fuchsiaefolia powdered materials. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
62
|
Gao MR, Xu QD, He Q, Sun Q, Zeng WC. A theoretical and experimental study: the influence of different standards on the determination of total phenol content in the Folin–Ciocalteu assay. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00050-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
63
|
Li X, Li J, Dong S, Li Y, Wei L, Zhao C, Li J, Liu X, Wang Y. Effects of germination on tocopherol, secoisolarlciresinol diglucoside, cyanogenic glycosides and antioxidant activities in flaxseed ( Linum usitatissimumL.). Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14098] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Xiang Li
- College of Food Science and Engineering Northwest A&F University Yangling Shanxi China
| | - Jingyan Li
- College of Food Science and Engineering Northwest A&F University Yangling Shanxi China
| | - Shan Dong
- Shenzhen Academy of Metrology and Quality Inspection National Nutrition Food Testing Center (Guangdong) Shenzhen China
| | - Yufei Li
- College of Food Science and Engineering Northwest A&F University Yangling Shanxi China
| | - Liping Wei
- College of Food Science and Engineering Northwest A&F University Yangling Shanxi China
| | - Caicai Zhao
- College of Food Science and Engineering Northwest A&F University Yangling Shanxi China
| | - Junyi Li
- College of Food Science and Engineering Northwest A&F University Yangling Shanxi China
| | - Xuebo Liu
- College of Food Science and Engineering Northwest A&F University Yangling Shanxi China
| | - Yutang Wang
- College of Food Science and Engineering Northwest A&F University Yangling Shanxi China
| |
Collapse
|
64
|
de Lamo B, Gómez M. Bread Enrichment with Oilseeds. A Review. Foods 2018; 7:E191. [PMID: 30463385 PMCID: PMC6262637 DOI: 10.3390/foods7110191] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/09/2018] [Accepted: 11/19/2018] [Indexed: 01/16/2023] Open
Abstract
The use of oilseeds in bakery products has gained popularity in recent years, both for their organoleptic and nutritional characteristics. The aim of this work is to provide an overview of the studies centered on the use of oilseeds (flaxseed, chia, sunflower, pumpkin, sesame and poppyseed) in breads and other bakery products. This review highlights the effect of oilseeds on the mechanical and physical properties of bread according to the enrichment level, origin and way of addition (whole, crushed, oil or mucilage). In general, the incorporation of oilseeds improves the nutritional profile of bakery products with and without gluten, and provides several health benefits. Mucilages of oilseeds can also act as a fat replacer thanks to their properties. The incorporation of oilseeds modifies the rheology of the doughs, the volume of the products and their texture, affecting their organoleptic characteristics and their acceptability. Nevertheless, these changes will depend on the type of seed used, as well as on the method of addition.
Collapse
Affiliation(s)
- Beatriz de Lamo
- Food Technology Area, College of Agricultural Engineering, University of Valladolid, 34004 Palencia, Spain.
| | - Manuel Gómez
- Food Technology Area, College of Agricultural Engineering, University of Valladolid, 34004 Palencia, Spain.
| |
Collapse
|