51
|
Li Y, Li B, Qi Y, Zhang Z, Cong S, She Y, Cao X. Synthesis of metal-organic framework @molecularly imprinted polymer adsorbents for solid phase extraction of organophosphorus pesticides from agricultural products. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1188:123081. [PMID: 34911000 DOI: 10.1016/j.jchromb.2021.123081] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
The novel core-shell structural zeolitic imidazolate framework-8 @molecularly imprinted polymers were successfully synthesized by surface imprinting technique and used as adsorbents for solid-phase extraction of organophosphorus pesticides. The obtained hybrid composites were characterized by scanning electron microscopy, transmission electron microscopy and Fourier-transform infrared, and their adsorbing and recognition performance were evaluated by binding experiments. The results showed that zeolitic imidazolate framework-8 @molecularly imprinted polymers presented a typically core-shell structure with molecularly imprinted shell (about 50 nm) homogeneously polymerized on the surface of zeolitic imidazolate framework-8 core, and exhibited specific recognition towards organophosphorus pesticides with fast adsorption capacity. The adsorption and desorption conditions including sample loading solvent, sample pH, washing and elution solvent were optimized. Under optimum conditions, the solid-phase extraction based on zeolitic imidazolate framework-8 @molecularly imprinted polymers combined with high liquid chromatography-tandem mass spectrometry method for determining organophosphorus pesticides was established and exhibited good linearity (R2 ≥ 0.9927) in the range of 1-200 µg/L. With spiked at three different concentration levels in agricultural products (cauliflower, radish, pear, muskmelon), the recoveries ranged from 82.5% to 123.0% with relative standard deviations lower than 8.24%. The developed method was sensitive, convenient and efficient. More importantly, this study could provide a promising strategy for designing new adsorbents with extremely fast mass transfer rate for other potential trace contaminants.
Collapse
Affiliation(s)
- Yang Li
- College of Life Science, Yantai University, Yantai 264005, PR China
| | - Bingzhi Li
- College of Life Science, Yantai University, Yantai 264005, PR China
| | - Yan Qi
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Ziping Zhang
- College of Life Science, Yantai University, Yantai 264005, PR China
| | - Shuang Cong
- College of Life Science, Yantai University, Yantai 264005, PR China.
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture of China, Beijing 100081, PR China
| | - Xiaolin Cao
- College of Life Science, Yantai University, Yantai 264005, PR China.
| |
Collapse
|
52
|
Lin S, Zhao Z, Lv YK, Shen S, Liang SX. Recent advances in porous organic frameworks for sample pretreatment of pesticide and veterinary drug residues: a review. Analyst 2021; 146:7394-7417. [PMID: 34783327 DOI: 10.1039/d1an00988e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Rapid and accurate detection of pesticide and veterinary drug residues is a continuing challenge because of the complex matrix effects. Thus, appropriate sample pretreatment is a crucial step for the effective extraction of the analytes and removal of the interferences. Recently, the development of nanomaterial adsorbents has greatly promoted the innovation of food sample pretreatment approaches. Porous organic frameworks (POFs), including polymers of intrinsic microporosity, covalent organic frameworks, hyper crosslinked polymers, conjugated microporous polymers, and porous aromatic frameworks, have been widely utilized due to their tailorable skeletons and pores as well as fascinating features. This review summarizes the recent advances for POFs to be utilized in adsorption and sample preparation of pesticide and veterinary drug residues. In addition, future prospects and challenges are discussed, hoping to offer a reference for further study on POFs in sample pretreatment.
Collapse
Affiliation(s)
- Shumin Lin
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding, 071002, PR China. .,Analysis and Testing Center, Inner Mongolia University of Science and Technology, Baotou, 014010, PR China
| | - Zhe Zhao
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding, 071002, PR China.
| | - Yun-Kai Lv
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding, 071002, PR China.
| | - Shigang Shen
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding, 071002, PR China.
| | - Shu-Xuan Liang
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding, 071002, PR China.
| |
Collapse
|
53
|
Lu ZH, Lv DZ, Zhou DD, Yang ZH, Wang MY, Abdelhai Senosy I, Liu X, Chen M, Zhuang LY. Enhanced removal efficiency towards azole fungicides from environmental water using a metal organic framework functionalized magnetic lignosulfonate. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
54
|
Ma Y, Zhao Y, Xu X, Ding S, Li Y. Magnetic covalent organic framework immobilized gold nanoparticles with high-efficiency catalytic performance for chemiluminescent detection of pesticide triazophos. Talanta 2021; 235:122798. [PMID: 34517656 DOI: 10.1016/j.talanta.2021.122798] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
Covalent organic frameworks (COFs) are considered to be a promising support material for catalyst due to their highly ordered porous structure. Here, a core-shell structured Fe3O4 magnetic covalent organic framework (Fe3O4@COF) was synthesized and employed to provide basic sites for immobilization of gold nanoparticles (AuNPs). The AuNPs was in-situ immobilized on the shell of Fe3O4@COF via a citrate reducing method. The Fe3O4@COF-AuNP had convenient magnetic separability and exhibited excellent mimicking peroxidase-like activity in catalyzing chemiluminescence (CL) reaction of luminol with hydrogen peroxide (H2O2). With acetylcholine chloride (ACh) as substrate of acetylcholinesterase (AChE), a CL method was exploited for sensitive detection of organophosphorus pesticide triazophos due to its irreversible inhibiting effect on the AChE activity and subsequently influences the production of H2O2 under the condition of choline oxidase (ChOx). This method gave a good linearity for triazophos in the range of 5.0-300.0 nmol L-1, and a limit of detection (LOD) of 1 nmol L-1 was acquired. The applicability of this method was verified by the determination of triazophos in different spiked vegetable samples.
Collapse
Affiliation(s)
- Yuyu Ma
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yaxin Zhao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaotong Xu
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shujiang Ding
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yinhuan Li
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
55
|
Facile preparation of core-shell magnetic organic covalent framework via self-polymerization of two-in-one strategy as a magnetic solid-phase extraction adsorbent for determination of Rhodamine B in food samples. J Chromatogr A 2021; 1657:462566. [PMID: 34601259 DOI: 10.1016/j.chroma.2021.462566] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 01/03/2023]
Abstract
The monomer of two-in-one molecular design strategy (i.e., A2B2 type monomer) 1,6-bis(4-formylphenyl)-3,8-bis((4-aminophenyl) ethynyl)) pyrene (BFBAEPy) was self-polymerized and coated on the modified Fe3O4 surface to synthesize a magnetic covalent organic framework (Fe3O4@COF) nanocomposite with a core-shell structure. Before high-performance liquid chromatography with ultraviolet detection (HPLC-UV) determination, Fe3O4@COF was used as a magnetic solid-phase extraction (MSPE) adsorbent to enrich Rhodamine B (RhB) illegally added to Chili powder and Chinese prickly ash. It had a large specific surface area and suitable pore size, which promoted the efficient adsorption of RhB dye and eliminated the interference of the matrix. Several key parameters affecting the extraction recovery rate were investigated, including adsorption capacity, adsorption time, pH, ionic strength, elution solvent, elution volume and elution time. Under the best optimized conditions, within the linear detection range of 0.05-5 µg/mL for RhB with the limit of detection (LOD) was 0.0038 µg/mL, excellent linearity (correlation coefficient R2=0.9997), and good repeatability (relative standard deviations RSD%< 3.8%), satisfactory extraction recovery rate (91.7%-97.5%). Therefore, the application of the established method to the detection of RhB in food samples has bright prospects.
Collapse
|
56
|
Yang Y, Li Y, Huang Z, Tian Y, Qian C, Duan Y. Trace detection of organophosphorus pesticides in vegetables via enrichment by magnetic zirconia and temperature-assisted ambient micro-fabricated glow discharge plasma desorption ionization mass spectrometry. Analyst 2021; 146:6944-6954. [PMID: 34647931 DOI: 10.1039/d1an01600h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this study, an innovative rapid detection technology for quickly screening and quantifying organophosphorus pesticides (OPPs) in vegetables was developed based on ambient micro-fabricated glow discharge plasma desorption/ionization mass spectrometry (MFGDP-MS), where Fe3O4/ZrO2 synthesized by a one-step coprecipitation was used for enrichment. It can not only effectively enrich OPPs, but can be separated by an external magnetic field, thereby simplifying the traditional steps of centrifugation and cleanup in sample preparation. The introduction of a temperature control system (TCS) can tackle the problem of the low ionization efficiency in MFGDP and expand its application range. Under optimized experimental conditions, the limits of detection (LODs) of the standard solution as low as 0.0068-0.7500 μg L-1 mm-2 were achieved, with relative standard deviations (RSDs) being less than 17.8%. Moreover, vegetable extracts were spiked to evaluate the accuracy of the method, and good recoveries (76.9-123.5%) were obtained. Remarkably, it took no more than 7 minutes from sample preparation to testing, resulting in significantly improved ability of the quantitative detection of plentiful samples.
Collapse
Affiliation(s)
- Yuhan Yang
- Research Center of Analytical Instrumentation, Northwest University, Xi'an 710069, Shaanxi, China. .,Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Yuting Li
- Research Center of Analytical Instrumentation, Northwest University, Xi'an 710069, Shaanxi, China. .,Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Zhijun Huang
- Research Center of Analytical Instrumentation, Northwest University, Xi'an 710069, Shaanxi, China. .,Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Yonghui Tian
- Research Center of Analytical Instrumentation, Northwest University, Xi'an 710069, Shaanxi, China. .,Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Cheng Qian
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, Shaanxi, China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Northwest University, Xi'an 710069, Shaanxi, China. .,Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, Shaanxi, China
| |
Collapse
|
57
|
Bagheri AR, Aramesh N, Haddad PR. Applications of covalent organic frameworks and their composites in the extraction of pesticides from different samples. J Chromatogr A 2021; 1661:462612. [PMID: 34844738 DOI: 10.1016/j.chroma.2021.462612] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 12/07/2022]
Abstract
Pesticides are used extensively in a wide range of applications and due to their high rate of consumption, they are ubiquitous in the different media and samples like environment, water sources, air, soil, biological materials, wastes (liquids, solids or sludges), vegetables and fruits, where they can persist for long periods. Pesticides often have hazardous side effects and can cause a range of harmful diseases like Parkinson, Alzheimer, asthma, depression and anxiety, cancer, etc, even at low concentrations. To this end, extraction, pre-concentration and determination of pesticides from various samples presents significant challenges caused by sample complexity and the low concentrations of them in many samples. Often, direct extraction and determination of pesticides are impossible due to their low concentrations and the complexity of samples. The main goals of sample preparation are removing interfering species, pre-concentrating target analyte/s and converting the analytes into more stable forms (when needed). The most popular approach is solid-phase extraction due to its simplicity, efficiency, ease of operation and low cost. This method is based on using a wide variety of materials, among which covalent organic frameworks (COFs) can be identified as an emerging class of highly versatile materials exhibiting advantageous properties, such as a porous and crystalline structure, pre-designable structure, high physical and chemical stability, ease of modification, high surface area and high adsorption capacity. The present review will cover recent developments in synthesis and applications of COFs and their composites for extraction of pesticides, different synthesis approaches of COFs, possible mechanisms for interaction of COFs-based adsorbents with pesticides and finally, future prospects and challenges in the fabrication and utilization of COFs and their composites for extraction of pesticides.
Collapse
Affiliation(s)
| | - Nahal Aramesh
- Chemistry Department, Isfahan University, Isfahan 81746-73441, Iran.
| | - Paul R Haddad
- Australian Center for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia.
| |
Collapse
|
58
|
Moinfar S, Khodayari A, Abdulrahman SS, Aghaei A, Sohrabnezhad S, Jamil LA. Development of a SPE/GC-MS method for the determination of organophosphorus pesticides in food samples using syringe filters packed by GNP/MIL-101(Cr) nanocomposite. Food Chem 2021; 371:130997. [PMID: 34537611 DOI: 10.1016/j.foodchem.2021.130997] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/06/2021] [Accepted: 08/29/2021] [Indexed: 02/06/2023]
Abstract
In this study, we report the synthesis and application of a nanocomposite comprising metal-organic framework MIL-101(Cr) and graphene nanopowder (GNP) as a promising sorbent for the extraction of organophosphorus pesticides (OPPs) in juices, water, vegetables and honey samples. A syringe filter, for the first time, was used to host the synthesized nanocomposite and extract the OPPs followed by GC-MS analysis. Different characterization methods including XRD, FTIR, TGA, BET and SEM were employed to confirm the formation of studied nanocomposite. The results indicated that the GNP/MIL-101(Cr) could provide higher capacity for adsorption of OPPs and lower detection limit compared to pristine MIL-101(Cr). The detection limits were 0.005 to 15.0 µg/Kg and the linear range found between 0.05 and 400 µg/Kg. The proposed method showed very good repeatability with the RSD values ranging from 2.9% to 7.1%. The recoveries were between 84% -110% with the spiked levels of 2.0-100.0 µg/Kg.
Collapse
Affiliation(s)
| | - Ali Khodayari
- Department of Chemistry, Faculty of Science, University of Guilan, P.O. Box 1914, Rasht, Iran; Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, 56199-11367 Ardabil, Iran
| | | | - Ali Aghaei
- Department of Chemistry, Faculty of Science, University of Zakho, Zakho, Iraq
| | - Shabnam Sohrabnezhad
- Department of Chemistry, Faculty of Science, University of Guilan, P.O. Box 1914, Rasht, Iran
| | - Lazgin Abdi Jamil
- Department of Chemistry, Faculty of Science, University of Zakho, Zakho, Iraq
| |
Collapse
|
59
|
Wu X, Cao Y, Sun B, Chen H, Dang X, Liu X, Ai Y. Magnetic Fe 3O 4@SiO 2@β-cyclodextrin for solid phase extraction of methyl parathion and fenthion in lettuce samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2974-2980. [PMID: 34114573 DOI: 10.1039/d1ay00681a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, magnetic Fe3O4@SiO2@β-cyclodextrin copolymerized microparticles were synthesized and applied for the extraction of methyl parathion and fenthion in lettuce samples followed by HPLC-UV detection. The magnetic β-cyclodextrin copolymerized microparticles were prepared by dispersion polymerization with acryloyl β-cyclodextrin as the functional monomer and ethylene glycol dimethyacrylate as the crosslinker. The composite magnetic microparticles were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, magnetic measurement, and thermogravimetric analysis, and used as the adsorbent of magnetic solid-phase extraction (MSPE) for methyl parathion and fenthion. The extraction conditions including sample pH and ionic strength, desorption solvent type and volume, and adsorption and desorption times were optimized. Under the optimal extraction conditions, an MSPE-HPLC-UV method was developed for the detection of methyl parathion and fenthion in lettuce. Wide linear ranges of 1.0-200 μg kg-1 (R2 = 0.9998) for methyl parathion and 1.5-200 μg kg-1 (R2 = 0.9978) for fenthion were obtained and the limits of detection were 0.3 μg kg-1 for methyl parathion and 0.5 μg kg-1 for fenthion in lettuce, respectively. The proposed method was applied for the determination of methyl parathion and fenthion in lettuce with satisfactory recoveries between 89.2-101.2%, and relative standard deviations were less than 9.1%. Thus, the MSPE-HPLC-UV method has high accuracy and sensitivity for the analysis of methyl parathion and fenthion in lettuce samples.
Collapse
Affiliation(s)
- Xinze Wu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Yifei Cao
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Bin Sun
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Huaixia Chen
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Xueping Dang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Xiaolan Liu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Youhong Ai
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
60
|
Sun X, Wang R, Li L, Wang X, Ji W. Online extraction based on ionic covalent organic framework for sensitive determination of trace per- and polyfluorinated alkyl substances in seafoods by UHPLC-MS/MS. Food Chem 2021; 362:130214. [PMID: 34082293 DOI: 10.1016/j.foodchem.2021.130214] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/23/2021] [Accepted: 05/24/2021] [Indexed: 01/12/2023]
Abstract
The ionic covalent organic framework (TPB-BFBIm-iCOF) was facilely synthetized by the size-controllable confinement method and chosen as the online solid phase extraction (SPE) adsorbent. This adsorbent showed fast adsorption equilibrium (5 min) and high adsorption capacity (87.7-140.8 mg g-1) for the per- and polyfluorinated alkyl substances (PFASs). The TPB-BFBIm-iCOF microsphere revealed the satisfactory enrichment performance for PFASs by means of the electrostatic interaction, hydrophobic effect and ordered channel structure. After extraction, the loaded TPB-BFBIm-iCOF-online SPE column was eluted and applied to the ultrahigh performance liquid chromatography tandem mass spectrometry analysis. Under the optimum conditions, the method displayed satisfactory linearity (R2 ≥ 0.9910) and low limits of detection (≤0.0017 ng g-1) for five seafoods. The relative recoveries of PFASs were 85.3%-109.4% with the relative standard deviation ≤ 9.9%. The method exhibited potential value in monitoring the toxicokinetics and environmental behaviors of PFASs.
Collapse
Affiliation(s)
- Xiaowei Sun
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Rongyu Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Lili Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Wenhua Ji
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| |
Collapse
|
61
|
Mallakpour S, Azadi E, Hussain CM. Emerging new-generation hybrids based on covalent organic frameworks for industrial applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj00609f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review highlights the advancement of COF hybrid-based materials for diverse industrial applications.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | - Elham Azadi
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | | |
Collapse
|
62
|
Aquino A, Conte-Junior CA. A Systematic Review of Food Allergy: Nanobiosensor and Food Allergen Detection. BIOSENSORS-BASEL 2020; 10:bios10120194. [PMID: 33260424 PMCID: PMC7760337 DOI: 10.3390/bios10120194] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022]
Abstract
Several individuals will experience accidental exposure to an allergen. In this sense, the industry has invested in the processes of removing allergenic compounds in food. However, accidental exposure to allergenic proteins can result from allergenic substances not specified on labels. Analysis of allergenic foods is involved in methods based on immunological, genetic, and mass spectrometry. The traditional methods have some limitations, such as high cost. In recent years, biosensor and nanoparticles combined have emerged as sensitive, selective, low-cost, and time-consuming techniques that can replace classic techniques. Nevertheless, each nanomaterial has shown a different potential to specific allergens or classes. This review used Preferred Reporting Items for Systematic Reviews and the Meta-Analysis guidelines (PRISMA) to approach these issues. A total of 104 articles were retrieved from a standardized search on three databases (PubMed, Scopus and Web of Science). The systematic review article is organized by the category of allergen detection and nanoparticle detection. This review addresses the relevant biosensors and nanoparticles as gold, carbon, graphene, quantum dots to allergen protein detection. Among the selected articles it was possible to notice a greater potential application on the allergic proteins Ah, in peanuts and gold nanoparticle-base as a biosensor. We envision that in our review, the association between biosensor and nanoparticles has shown promise in the analysis of allergenic proteins present in different food samples.
Collapse
Affiliation(s)
- Adriano Aquino
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil;
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ 21941-909, Brazil
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil;
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ 21941-909, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ 24230-340, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
- Correspondence: ; Tel.: +55-(21)-3938-7825
| |
Collapse
|
63
|
Sun DW, Huang L, Pu H, Ma J. Introducing reticular chemistry into agrochemistry. Chem Soc Rev 2020; 50:1070-1110. [PMID: 33236735 DOI: 10.1039/c9cs00829b] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
For survival and quality of life, human society has sought more productive, precise, and sustainable agriculture. Agrochemistry, which solves farming issues in a chemical manner, is the core engine that drives the evolution of modern agriculture. To date, agrochemistry has utilized chemical technologies in the form of pesticides, fertilizers, veterinary drugs and various functional materials to meet fundamental demands from human society, while increasing the socio-ecological consequences due to inefficient use. Thus, more useful, precise, and designable scaffolding materials are required to support sustainable agrochemistry. Reticular chemistry, which weaves molecular units into frameworks, has been applied in many fields based on two cutting-edge porous framework materials, namely metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs). With flexibility in composition, structure, and pore chemistry, MOFs and COFs have shown increasing functionalities associated with agrochemistry in the last decade, potentially introducing reticular chemistry as a highly accessible chemical toolbox into agrochemical technologies. In this critical review, we will demonstrate how reticular chemistry shapes the future of agrochemistry in the fields of farm sensing, agro-ecological preservation and reutilization, agrochemical formulations, smart indoor farming, agrobiotechnology, and beyond.
Collapse
Affiliation(s)
- Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | | | | | | |
Collapse
|