51
|
Exploring hidden diversity in Southeast Asia's Dermogenys spp. (Beloniformes: Zenarchopteridae) through DNA barcoding. Sci Rep 2018; 8:10787. [PMID: 30018357 PMCID: PMC6050249 DOI: 10.1038/s41598-018-29049-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/26/2018] [Indexed: 11/15/2022] Open
Abstract
Members of the freshwater halfbeak genus Dermogenys are hard to identify to the species level, despite several previous attempts to isolate fixed meristic, morphometric and colour pattern differences. This has led to ongoing confusion in scientific literature, records of species occurrence, and entries in museum collections. Here, a DNA barcoding study was conducted on the genus to gain further understanding of its taxonomic status across the Southeast Asian region. Fish were collected from 33 localities, spanning freshwater and brackish habitats in Malaysia, Western Indonesia, Thailand and Vietnam. In total, 290 samples of Dermogenys spp. were amplified for a 651 base pair fragment of the mitochondrial cytochrome oxidase c subunit I (COI) gene. Analysis was able to successfully differentiate the three species: D. collettei, D. siamensis, D. sumatrana; reveal the presence of a new putative species, Dermogenys sp., that was sampled in sympatry with D. collettei at three locations; as well as uncovering two genetic lineages of a fifth species, D. bispina, that display non-overlapping geographical distributions in drainages of northern Borneo; Kudat and Sandakan. This study expands the barcode library for Zenarchopteridae, demonstrates the efficacy of DNA barcoding techniques for differentiating Dermogenys species, and the potential thereof in species discovery.
Collapse
|
52
|
Xiong X, Yao L, Ying X, Lu L, Guardone L, Armani A, Guidi A, Xiong X. Multiple fish species identified from China's roasted Xue Yu fillet products using DNA and mini-DNA barcoding: Implications on human health and marine sustainability. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.12.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
55
|
Pollack SJ, Kawalek MD, Williams-Hill DM, Hellberg RS. Evaluation of DNA barcoding methodologies for the identification of fish species in cooked products. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.08.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
56
|
Zhang H, Liu X, Liu M, Gao T, Huang Y, Liu Y, Zeng W. Gene detection: An essential process to precision medicine. Biosens Bioelectron 2018; 99:625-636. [DOI: 10.1016/j.bios.2017.08.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/12/2017] [Indexed: 01/08/2023]
|
58
|
Universal mini COI barcode for the identification of fish species in processed products. Food Res Int 2017; 105:19-28. [PMID: 29433207 DOI: 10.1016/j.foodres.2017.10.065] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 12/15/2022]
Abstract
Species substitution, the use of a low value fish in place of a high value fish, is the biggest problem in international trade and the leading cause of fraud in the fisheries arena sector. Current DNA barcoding systems have partly solved this problem but also failed in many instances to amplify PCR targets from highly processed products because of the degradation of a longer barcode marker (~650bp). In the present study, a novel mini barcode marker (295bp) was developed to discriminate fish species in raw and processed states forms. The barcode primers were cross-tested against 33 fish species and 15 other animal species and found to be universal for all the tested fish varieties. When 20 commercial fish products of five different categories were screened, all commercial fish sample yielded positive bands for the novel fish barcode. PCR product was sequenced to retrieve the species IDs that reflected 55% (11/20) of Malaysian fish products were mislabeled.
Collapse
|
60
|
Black C, Chevallier OP, Haughey SA, Balog J, Stead S, Pringle SD, Riina MV, Martucci F, Acutis PL, Morris M, Nikolopoulos DS, Takats Z, Elliott CT. A real time metabolomic profiling approach to detecting fish fraud using rapid evaporative ionisation mass spectrometry. Metabolomics 2017; 13:153. [PMID: 29151824 PMCID: PMC5668337 DOI: 10.1007/s11306-017-1291-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/25/2017] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Fish fraud detection is mainly carried out using a genomic profiling approach requiring long and complex sample preparations and assay running times. Rapid evaporative ionisation mass spectrometry (REIMS) can circumvent these issues without sacrificing a loss in the quality of results. OBJECTIVES To demonstrate that REIMS can be used as a fast profiling technique capable of achieving accurate species identification without the need for any sample preparation. Additionally, we wanted to demonstrate that other aspects of fish fraud other than speciation are detectable using REIMS. METHODS 478 samples of five different white fish species were subjected to REIMS analysis using an electrosurgical knife. Each sample was cut 8-12 times with each one lasting 3-5 s and chemometric models were generated based on the mass range m/z 600-950 of each sample. RESULTS The identification of 99 validation samples provided a 98.99% correct classification in which species identification was obtained near-instantaneously (≈ 2 s) unlike any other form of food fraud analysis. Significant time comparisons between REIMS and polymerase chain reaction (PCR) were observed when analysing 6 mislabelled samples demonstrating how REIMS can be used as a complimentary technique to detect fish fraud. Additionally, we have demonstrated that the catch method of fish products is capable of detection using REIMS, a concept never previously reported. CONCLUSIONS REIMS has been proven to be an innovative technique to help aid the detection of fish fraud and has the potential to be utilised by fisheries to conduct their own quality control (QC) checks for fast accurate results.
Collapse
Affiliation(s)
- Connor Black
- 0000 0004 0374 7521grid.4777.3Institute for Global Food Security, Advanced ASSET Centre, School of Biological Sciences, Queen’s University Belfast, 18-30 Malone Road, Belfast, BT9 5BN Northern Ireland, UK
| | - Olivier P. Chevallier
- 0000 0004 0374 7521grid.4777.3Institute for Global Food Security, Advanced ASSET Centre, School of Biological Sciences, Queen’s University Belfast, 18-30 Malone Road, Belfast, BT9 5BN Northern Ireland, UK
| | - Simon A. Haughey
- 0000 0004 0374 7521grid.4777.3Institute for Global Food Security, Advanced ASSET Centre, School of Biological Sciences, Queen’s University Belfast, 18-30 Malone Road, Belfast, BT9 5BN Northern Ireland, UK
| | - Julia Balog
- Waters Research Centre, 7 Zahony Street, Budapest, 1031 Hungary
- 0000 0001 2113 8111grid.7445.2Imperial College London, South Kensington Campus, Sir Alexander Fleming Building, London, SW7 2AZ UK
| | - Sara Stead
- Waters Corporation, Altrincham Road, Wilmslow, SK9 4AX UK
| | | | - Maria V. Riina
- 0000 0004 1759 3180grid.425427.2Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy
| | - Francesca Martucci
- 0000 0004 1759 3180grid.425427.2Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy
| | - Pier L. Acutis
- 0000 0004 1759 3180grid.425427.2Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy
| | - Mike Morris
- Waters Corporation, Altrincham Road, Wilmslow, SK9 4AX UK
| | - Dimitrios S. Nikolopoulos
- 0000 0004 0374 7521grid.4777.3School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, Belfast, UK
| | - Zoltan Takats
- 0000 0001 2113 8111grid.7445.2Imperial College London, South Kensington Campus, Sir Alexander Fleming Building, London, SW7 2AZ UK
| | - Christopher T. Elliott
- 0000 0004 0374 7521grid.4777.3Institute for Global Food Security, Advanced ASSET Centre, School of Biological Sciences, Queen’s University Belfast, 18-30 Malone Road, Belfast, BT9 5BN Northern Ireland, UK
| |
Collapse
|