51
|
Franco Ribeiro E, Carregari Polachini T, Dutra Alvim I, Quiles A, Hernando I, Nicoletti VR. Microencapsulation of roasted coffee oil Pickering emulsions using spray‐ and freeze‐drying: physical, structural and
in vitro
bioaccessibility studies. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Elisa Franco Ribeiro
- São Paulo State University (Unesp) Institute of Biosciences, Humanities and Exact Sciences (Ibilce) Campus São José do Rio Preto São Paulo 15054‐000 Brazil
- Food Microstructure and Chemistry Research Group Universitat Politècnica de València (UPV) Valencia 46022 Spain
| | - Tiago Carregari Polachini
- São Paulo State University (Unesp) Institute of Biosciences, Humanities and Exact Sciences (Ibilce) Campus São José do Rio Preto São Paulo 15054‐000 Brazil
| | - Izabela Dutra Alvim
- Cereal and Chocolate Technology Center Food Technology Institute (ITAL) Campinas São Paulo 13070‐178 Brazil
| | - Amparo Quiles
- Food Microstructure and Chemistry Research Group Universitat Politècnica de València (UPV) Valencia 46022 Spain
| | - Isabel Hernando
- Food Microstructure and Chemistry Research Group Universitat Politècnica de València (UPV) Valencia 46022 Spain
| | - Vania Regina Nicoletti
- São Paulo State University (Unesp) Institute of Biosciences, Humanities and Exact Sciences (Ibilce) Campus São José do Rio Preto São Paulo 15054‐000 Brazil
| |
Collapse
|
52
|
Yuan C, Cheng C, Cui B. Pickering Emulsions Stabilized by Cyclodextrin Nanoparticles: A Review. STARCH-STARKE 2021. [DOI: 10.1002/star.202100077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking Shandong Academy of Sciences Qilu University of Technology Jinan 250353 China
- School of Food Science and Engineering Shandong Academy of Sciences Qilu University of Technology Jinan 250353 China
| | - Caiyun Cheng
- State Key Laboratory of Biobased Material and Green Papermaking Shandong Academy of Sciences Qilu University of Technology Jinan 250353 China
- School of Food Science and Engineering Shandong Academy of Sciences Qilu University of Technology Jinan 250353 China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking Shandong Academy of Sciences Qilu University of Technology Jinan 250353 China
- School of Food Science and Engineering Shandong Academy of Sciences Qilu University of Technology Jinan 250353 China
| |
Collapse
|
53
|
Utilization of polysaccharide-based high internal phase emulsion for nutraceutical encapsulation: Enhancement of carotenoid loading capacity and stability. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104601] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
54
|
Exploration of the Microstructure and Rheological Properties of Sodium Alginate-Pectin-Whey Protein Isolate Stabilized Β-Carotene Emulsions: To Improve Stability and Achieve Gastrointestinal Sustained Release. Foods 2021; 10:foods10091991. [PMID: 34574098 PMCID: PMC8465917 DOI: 10.3390/foods10091991] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 01/04/2023] Open
Abstract
Sodium alginate (SA)-pectin (PEC)-whey protein isolate (WPI) complexes were used as an emulsifier to prepare β-carotene emulsions, and the encapsulation efficiency for β-carotene was up to 93.08%. The confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM) images showed that the SA-PEC-WPI emulsion had a compact network structure. The SA-PEC-WPI emulsion exhibited shear-thinning behavior and was in a semi-dilute or weak network state. The SA-PEC-WPI stabilized β-carotene emulsion had better thermal, physical and chemical stability. A small amount of β-carotene (19.46 ± 1.33%) was released from SA-PEC-WPI stabilized β-carotene emulsion in simulated gastric digestion, while a large amount of β-carotene (90.33 ± 1.58%) was released in simulated intestinal digestion. Fourier transform infrared (FTIR) experiments indicated that the formation of SA-PEC-WPI stabilized β-carotene emulsion was attributed to the electrostatic and hydrogen bonding interactions between WPI and SA or PEC, and the hydrophobic interactions between β-carotene and WPI. These results can facilitate the design of polysaccharide-protein stabilized emulsions with high encapsulation efficiency and stability for nutraceutical delivery in food and supplement products.
Collapse
|
55
|
Taboada ML, Heiden‐Hecht T, Brückner‐Gühmann M, Karbstein HP, Drusch S, Gaukel V. Spray drying of emulsions: Influence of the emulsifier system on changes in oil droplet size during the drying step. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Martha L. Taboada
- Institute of Process Engineering in Life Sciences, Chair of Food Process Engineering Karlsruhe Institute of Technology Karlsruhe Germany
| | - Theresia Heiden‐Hecht
- Institute of Food Technology and Food Chemistry, Department of Food Technology and Food Material Science Technische Universität Berlin Berlin Germany
| | - Monika Brückner‐Gühmann
- Institute of Food Technology and Food Chemistry, Department of Food Technology and Food Material Science Technische Universität Berlin Berlin Germany
| | - Heike P. Karbstein
- Institute of Process Engineering in Life Sciences, Chair of Food Process Engineering Karlsruhe Institute of Technology Karlsruhe Germany
| | - Stephan Drusch
- Institute of Food Technology and Food Chemistry, Department of Food Technology and Food Material Science Technische Universität Berlin Berlin Germany
| | - Volker Gaukel
- Institute of Process Engineering in Life Sciences, Chair of Food Process Engineering Karlsruhe Institute of Technology Karlsruhe Germany
| |
Collapse
|
56
|
Starch-based materials encapsulating food ingredients: Recent advances in fabrication methods and applications. Carbohydr Polym 2021; 270:118358. [PMID: 34364603 DOI: 10.1016/j.carbpol.2021.118358] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/28/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Encapsulation systems have gained significant interest in designing innovative foods, as they allow for the protection and delivery of food ingredients that have health benefits but are unstable during processing, storage and in the upper gastrointestinal tract. Starch is widely available, cheap, biodegradable, edible, and easy to be modified, thus highly suitable for the development of encapsulants. Much efforts have been made to fabricate various types of porous starch and starch particles using different techniques (e.g. enzymatic hydrolysis, aggregation, emulsification, electrohydrodynamic process, supercritical fluid process, and post-processing drying). Such starch-based systems can load, protect, and deliver various food ingredients (e.g. fatty acids, phenolic compounds, carotenoids, flavors, essential oils, irons, vitamins, probiotics, bacteriocins, co-enzymes, and caffeine), exhibiting great potentials in developing foods with tailored flavor, nutrition, sensory properties, and shelf-life. This review surveys recent advances in different aspects of starch-based encapsulation systems including their forms, manufacturing techniques, and applications in foods.
Collapse
|
57
|
Tang Y, Gao C, Zhang Y, Tang X. The microstructure and physiochemical stability of Pickering emulsions stabilized by chitosan particles coating with sodium alginate: Influence of the ratio between chitosan and sodium alginate. Int J Biol Macromol 2021; 183:1402-1409. [PMID: 34019920 DOI: 10.1016/j.ijbiomac.2021.05.098] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 01/21/2023]
Abstract
The purpose of this study was to further improve the physiochemical stability of the chitosan (CS) particle-stabilized Pickering emulsion by coating with sodium alginate (SA). The effect of different mass ratios of CS and SA (1:0.5-1:2) on the microstructure, rheology and the stability of the emulsions were comprehensively evaluated by various methods such as optical microscope, scanning electron microscope, rheometer, and low-field nuclear magnetism. The multilayer emulsion with low content of SA (CS:SA = 1:0.5) presented bridging flocculation. If SA concentration was high (CS:SA = 1:1-1:2), the surface of the Pickering emulsion droplets was completely covered by the SA. At this time, multilayer emulsion droplets became stable due to strong electrostatic and/or steric repulsion. Too high SA concentration (CS:GA = 1:2) might also promote the accumulation of moisture. In addition, the CS/SA multilayer emulsion showed higher coalescence stability under different environmental treatments but its creaming stability and flocculation stability were still sensitive to pH (2, 4 and 10), temperature (4 °C and 80 °C) and ionic strength (300-500 mM). In all, the addition of the proper level SA (CS:GA = 1:1-1:2) could increase the stability of CS particle-stabilized Pickering emulsion.
Collapse
Affiliation(s)
- Yang Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Chengcheng Gao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Yan Zhang
- Hebei Key Laboratory of Food Safety, Hebei Food Inspection and Research Institute, Shijiazhuang 050091, China
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
58
|
Tan C, McClements DJ. Application of Advanced Emulsion Technology in the Food Industry: A Review and Critical Evaluation. Foods 2021; 10:foods10040812. [PMID: 33918596 PMCID: PMC8068840 DOI: 10.3390/foods10040812] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
The food industry is one of the major users of emulsion technology, as many food products exist in an emulsified form, including many dressings, sauces, spreads, dips, creams, and beverages. Recently, there has been an interest in improving the healthiness, sustainability, and safety of foods in an attempt to address some of the negative effects associated with the modern food supply, such as rising chronic diseases, environmental damage, and food safety concerns. Advanced emulsion technologies can be used to address many of these concerns. In this review article, recent studies on the development and utilization of these advanced technologies are critically assessed, including nanoemulsions, high internal phase emulsions (HIPEs), Pickering emulsions, multilayer emulsions, solid lipid nanoparticles (SLNs), multiple emulsions, and emulgels. A brief description of each type of emulsion is given, then their formation and properties are described, and finally their potential applications in the food industry are presented. Special emphasis is given to the utilization of these advanced technologies for the delivery of bioactive compounds.
Collapse
Affiliation(s)
- Chen Tan
- China-Canada Joint Laboratory of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China;
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou 310018, China
- Correspondence: ; Tel.: +1-413-545-2275
| |
Collapse
|
59
|
Mo X, Peng X, Liang X, Fang S, Xie H, Chen J, Meng Y. Development of antifungal gelatin-based nanocomposite films functionalized with natamycin-loaded zein/casein nanoparticles. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106506] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
60
|
Investigation of interactions between zein and natamycin by fluorescence spectroscopy and molecular dynamics simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114873] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
61
|
Zhang J, Wang Y, Wang J, Yi T. A Novel Solid Nanocrystals Self-Stabilized Pickering Emulsion Prepared by Spray-Drying with Hydroxypropyl-β-cyclodextrin as Carriers. Molecules 2021; 26:molecules26061809. [PMID: 33806952 PMCID: PMC8004820 DOI: 10.3390/molecules26061809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 11/16/2022] Open
Abstract
A drug nanocrystals self-stabilized Pickering emulsion (NSSPE) with a unique composition and microstructure has been proven to significantly increase the bioavailability of poorly soluble drugs. This study aimed to develop a new solid NSSPE of puerarin preserving the original microstructure of NSSPE by spray-drying. A series of water-soluble solid carriers were compared and then Box-Behnken design was used to optimize the parameters of spray-drying. The drug release and stability of the optimized solid NSSPE in vitro were also investigated. The results showed that hydroxypropyl-β-cyclodextrin (HP-β-CD), rather than solid carriers commonly used in solidification of traditional Pickering emulsions, was suitable for the solid NSSPE to retain the original appearance and size of emulsion droplets after reconstitution. The amount of HP-β-CD had more influences on the solid NSSPE than the feed rate and the inlet air temperature. Fluorescence microscopy, confocal laser scanning microscopy and scanning electron microscopy showed that the reconstituted emulsion of the solid NSSPE prepared with HP-β-CD had the same core-shell structure with a core of oil and a shell of puerarin nanocrystals as the liquid NSSPE. The particle size of puerarin nanocrystal sand interfacial adsorption rate also did not change significantly. The cumulative amount of released puerarin from the solid NSSPE had no significant difference compared with the liquid NSSPE, which were both significantly higher than that of puerarin crude material. The solid NSSPE was stable for 3 months under the accelerated condition of 75% relative humidity and 40 °C. Thus, it is possible todevelop the solid NSSPE preserving the unique microstructure and the superior properties in vitro of the liquid NSSPE for poorly soluble drugs.
Collapse
Affiliation(s)
- Jifen Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China;
- Correspondence: (J.Z.); (T.Y.); Tel.: +816-23-68251225 (J.Z.); +853-85-99-3471 (T.Y.)
| | - Yanhua Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China;
| | - Jirui Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China;
| | - Tao Yi
- Macao Polytechnic Institute, School of Health Sciences and Sports, Macao 00853, China
- Correspondence: (J.Z.); (T.Y.); Tel.: +816-23-68251225 (J.Z.); +853-85-99-3471 (T.Y.)
| |
Collapse
|
62
|
Gao J, Mao Y, Xiang C, Cao M, Ren G, Wang K, Ma X, Wu D, Xie H. Preparation of β-lactoglobulin/gum arabic complex nanoparticles for encapsulation and controlled release of EGCG in simulated gastrointestinal digestion model. Food Chem 2021; 354:129516. [PMID: 33744663 DOI: 10.1016/j.foodchem.2021.129516] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/17/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022]
Abstract
In this work, the β-lactoglobulin/gum arabic (β-Lg-GA) complexes were prepared to encapsulate epigallocatechin gallate (EGCG), forming β-Lg-GA-EGCG complex nanoparticles with an average particle size of 133 nm. The β-Lg-GA complexes exhibited excellent encapsulation efficiency (84.5%), and the antioxidant performance of EGCG in vitro was improved after encapsulation. It was recorded that 86% of EGCG could be released in simulated intestinal fluid after 3 h of digestion, much faster than that in simulated gastric fluid, indicating that the β-Lg-GA complexes were effective in enhancing EGCG stability, which was confirmed using SDS-PAGE and SEM. Further spectrum results demonstrated that various intramolecular interactions including electrostatic, hydrophobic and hydrogen bonding interactions contribute to the formation of β-Lg-GA-EGCG complex nanoparticles. Also, XRDexperiments indicated that EGCG was successfully encapsulated by β-Lg-GA complexes. Therefore, the β-Lg-GA complexes hold great potentials in the protective delivery of sensitive bioactives.
Collapse
Affiliation(s)
- Jian Gao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Yuezhong Mao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Chuyue Xiang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Mengna Cao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Gerui Ren
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Kuiwu Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Xiangjuan Ma
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Di Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Hujun Xie
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
63
|
Influence of O/W emulsion interfacial ionic membranes on the encapsulation efficiency and storage stability of powder microencapsulated astaxanthin. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2020.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
64
|
Effect of Interfacial Ionic Layers on the Food-Grade O/W Emulsion Physical Stability and Astaxanthin Retention during Spray-Drying. Foods 2021; 10:foods10020312. [PMID: 33546371 PMCID: PMC7913560 DOI: 10.3390/foods10020312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 11/16/2022] Open
Abstract
The utilization of astaxanthin in food processing is considered to be narrow because of its substandard solubility in aqueous matrices and the instability of chemical compounds during the processing of food and the instability of chemical compounds during the processing of food. The investigation sought to evaluate multilayer emulsions stabilized by ionic interfacial layers of lupin protein isolate (LPI), ι-carrageenan (CA), and chitosan (CHI) on the physical stability of the emulsion as well as the retention of astaxanthin during the spray drying process. Primary emulsion (Pr-E) was prepared by adding LPI on oil droplet surfaces containing astaxanthin. The homogenization pressure and cycles to obtain the Pr-E were investigated. The secondary emulsion (Se-E) and tertiary emulsion (Te-E) were elaborated by mixing CA/Pr-E and CHI/Se-E, respectively. Emulsion stability was assessed under different environmental stresses (pH and NaCl). Astaxanthin retention of emulsions was determined immediately after finishing the spray-drying process. The results showed that Pr-E was stabilized with 1.0% (w/v) of LPI at 50 MPa and three cycles. Se-E and Te-E were obtained with CA/Pr-E and Se-E/CHI of 70/30 and 50/50% (w/w), respectively. The Se-E was the most stable compared to the Pr-E and Te-E when subjected to different pHs; nevertheless, once the NaCl concentration rose, no variations in the ζ-potential of all emulsions studied or destabilization were observed. The Se-E and Te-E derived provided higher astaxanthin retention (>95%) during the spray-drying process compared to Pr-E (around 88%). The results indicated that these astaxanthin multilayer emulsions show considerable potential as a functional ingredient in food products.
Collapse
|
65
|
Samborska K, Boostani S, Geranpour M, Hosseini H, Dima C, Khoshnoudi-Nia S, Rostamabadi H, Falsafi SR, Shaddel R, Akbari-Alavijeh S, Jafari SM. Green biopolymers from by-products as wall materials for spray drying microencapsulation of phytochemicals. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
66
|
Miskeen S, Hong JS, Choi HD, Kim JY. Fabrication of citric acid-modified starch nanoparticles to improve their thermal stability and hydrophobicity. Carbohydr Polym 2021; 253:117242. [DOI: 10.1016/j.carbpol.2020.117242] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/07/2020] [Accepted: 10/11/2020] [Indexed: 01/07/2023]
|
67
|
Ariahu C, Kamaldeen O, Yusufu M. Kinetic and thermodynamic studies on the degradation of carotene in carrot powder beads. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
68
|
Improvement of thermal and UV-light stability of β-carotene-loaded nanoemulsions by water-soluble chitosan coating. Int J Biol Macromol 2020; 165:1156-1163. [DOI: 10.1016/j.ijbiomac.2020.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 01/11/2023]
|
69
|
Versatile Types of Polysaccharide-Based Drug Delivery Systems: From Strategic Design to Cancer Therapy. Int J Mol Sci 2020; 21:ijms21239159. [PMID: 33271967 PMCID: PMC7729619 DOI: 10.3390/ijms21239159] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 02/08/2023] Open
Abstract
Chemotherapy is still the most direct and effective means of cancer therapy nowadays. The proposal of drug delivery systems (DDSs) has effectively improved many shortcomings of traditional chemotherapy drugs. The technical support of DDSs lies in their excellent material properties. Polysaccharides include a series of natural polymers, such as chitosan, hyaluronic acid, and alginic acid. These polysaccharides have good biocompatibility and degradability, and they are easily chemical modified. Therefore, polysaccharides are ideal candidate materials to construct DDSs, and their clinical application prospects have been favored by researchers. On the basis of versatile types of polysaccharides, this review elaborates their applications from strategic design to cancer therapy. The construction and modification methods of polysaccharide-based DDSs are specifically explained, and the latest research progress of polysaccharide-based DDSs in cancer therapy are also summarized. The purpose of this review is to provide a reference for the design and preparation of polysaccharide-based DDSs with excellent performance.
Collapse
|
70
|
Ramaswamy HS, Arora JK, Vatankhah H, Taherian AR, Rattan N. Stability of hydrocolloid enriched oil-in-water emulsions in beverages subjected to thermal and nonthermal processing. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1822177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
| | - Jaideep K. Arora
- Department of Food Science, McGill University, Montreal, Quebec, Canada
| | - Hamed Vatankhah
- Department of Food Science, McGill University, Montreal, Quebec, Canada
| | - Ali R. Taherian
- Department of Food Science, McGill University, Montreal, Quebec, Canada
| | - Navneet Rattan
- Department of Food Science, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
71
|
Xiang L, Lu S, Quek SY, Liu Z, Wang L, Zheng M, Tang W, Yang Y. Exploring the effect of OSA-esterified waxy corn starch on naringin solubility and the interactions in their self-assembled aggregates. Food Chem 2020; 342:128226. [PMID: 33067048 DOI: 10.1016/j.foodchem.2020.128226] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/18/2020] [Accepted: 09/24/2020] [Indexed: 12/26/2022]
Abstract
Octenyl succinic anhydride esterified waxy corn starches (OSAS) with five different molecular weights (MWs) were prepared by enzymatic hydrolysis and their effects on naringin solubility were studied. The MW of OSAS was found to significantly influence the amount of naringin embedded in the complex formed by self-aggregation. OSAS with medium MW (M-OSAS) formed complex with the highest naringin entrapment. This system showed an AL type water phase solubility curve (indicating a 1:1 stoichiometric inclusion complex) and an increase of 848.83 folds in naringin solubility. Further investigation on the interactions between M-OSAS and naringin using FTIR, XRD, DSC and NMR confirmed the encapsulation of naringin into the inner cavity of M-OSAS. TEM and particle size analysis indicated the complex was spherical in shape, having a mean particle size of 257.07 nm and size distribution of 10-1000 nm. This study has provided a basis for solubility enhancement of citrus flavonoids using OSAS.
Collapse
Affiliation(s)
- Lu Xiang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China; College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321000, China
| | - Shengmin Lu
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China; College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321000, China.
| | - Siew Young Quek
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; Riddet Institute, Centre of Research Excellence for Food Research, Palmerston North 4474, New Zealand
| | - Zhe Liu
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China
| | - Lu Wang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China
| | - Meiyu Zheng
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China
| | - Weimin Tang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China
| | - Ying Yang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China
| |
Collapse
|
72
|
Li M, McClements DJ, Liu X, Liu F. Design principles of oil‐in‐water emulsions with functionalized interfaces: Mixed, multilayer, and covalent complex structures. Compr Rev Food Sci Food Saf 2020; 19:3159-3190. [DOI: 10.1111/1541-4337.12622] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Moting Li
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi China
| | | | - Xuebo Liu
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi China
| | - Fuguo Liu
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi China
| |
Collapse
|
73
|
Xiang C, Gao J, Ye H, Ren G, Ma X, Xie H, Fang S, Lei Q, Fang W. Development of ovalbumin-pectin nanocomplexes for vitamin D3 encapsulation: Enhanced storage stability and sustained release in simulated gastrointestinal digestion. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105926] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
74
|
Natamycin-loaded zein nanoparticles stabilized by carboxymethyl chitosan: Evaluation of colloidal/chemical performance and application in postharvest treatments. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105871] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
75
|
Niu B, Shao P, Feng S, Qiu D, Sun P. Rheological aspects in fabricating pullulan-whey protein isolate emulsion suitable for electrospraying: Application in improving β-carotene stability. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109581] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
76
|
Recent developments in chitosan encapsulation of various active ingredients for multifunctional applications. Carbohydr Res 2020; 492:108004. [DOI: 10.1016/j.carres.2020.108004] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/16/2020] [Accepted: 04/03/2020] [Indexed: 01/08/2023]
|
77
|
Shao Z, Yang Y, Fang S, Li Y, Chen J, Meng Y. Mechanism of the antimicrobial activity of whey protein-ε-polylysine complexes against Escherichia coli and its application in sauced duck products. Int J Food Microbiol 2020; 328:108663. [PMID: 32454366 DOI: 10.1016/j.ijfoodmicro.2020.108663] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/12/2020] [Accepted: 05/16/2020] [Indexed: 10/24/2022]
Abstract
ε-Polylysine (ε-PL) is a natural and highly effective cationic antimicrobial, of which antibacterial activity is limited in food matrix because of ε-PL's charged amino groups that form complexes with food polyanions. Whey protein-ε-PL complexes delivery system was found to be able to solve the problem and keep the antibacterial activity. This study investigated the antibacterial activity of the complexes and its mechanism against Escherichia coli. The minimal inhibitory concentration of ε-PL was in the range 11.72-25.00 g/mL for the complexes containing different amount of ε-PL and was similar to that of free ε-PL. The results of scanning electron microscopy showed that the complexes could destroy the structure of E. coli cell membrane surface, leaving holes on the surface of the bacteria, leading to the death of the bacteria. The molecular dynamics simulation results showed that the mechanism of the antibacterial activity of the complexes was as follows: under electrostatic interaction, the complexes captured the phospholipid molecules of the bacterial membrane through the hydrogen bonds between the positively charged amino groups of ε-PL and the oxygen atom of the phosphate head groups of the membrane, which could create holes on the surface of the bacteria and lead to the death of the bacteria. The results of activity on real food systems showed that the complexes kept the number of E. coli within 5.8 log10 CFU/g after 7 d storage in sauced duck products, while the positive control (ε-PL) was 6.5 log10 CFU/g and negative control (sterile water) was 7.8 log10 CFU/g. Overall, this study confirmed the antibacterial activity of the complexes and provided fundamental knowledge of its antibacterial activity mechanism.
Collapse
Affiliation(s)
- Zhipeng Shao
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, People's Republic of China
| | - Yi Yang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, People's Republic of China
| | - Sheng Fang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, People's Republic of China
| | - Yanhua Li
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, People's Republic of China
| | - Jie Chen
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, People's Republic of China.
| | - Yuecheng Meng
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, People's Republic of China.
| |
Collapse
|
78
|
Chang S, Lai H. Starch‐Based Multilayer with pH‐Responsive Behavior Driven by Whey Protein Concentrate: The Effect of Starch Conformation. STARCH-STARKE 2020. [DOI: 10.1002/star.201900277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shing‐Yun Chang
- Department of Agricultural ChemistryNational Taiwan University No. 1, Sec. 4, Roosevelt Rd. Taipei 10617 Taiwan
| | - Hsi‐Mei Lai
- Department of Agricultural ChemistryNational Taiwan University No. 1, Sec. 4, Roosevelt Rd. Taipei 10617 Taiwan
| |
Collapse
|
79
|
Lu Y, Liang X, Cheng L, Fang S. Microencapsulation of Pigments by Directly Spray-Drying of Anthocyanins Extracts from Blueberry Pomace: Chemical Characterization and Extraction Modeling. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2020. [DOI: 10.1515/ijfe-2019-0247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
AbstractThe aim of this study was to develop an environmentally friendly process to extract anthocyanins from blueberry pomace using water as a solvent and directly microencapsulate anthocyanins by spray drying. The anthocyanins in water and ethanol extracts were characterized by high-performance liquid chromatography and mass spectrometry. The malvidin-3-O-galactoside and malvidin-3-O-glucoside were identified as the main anthocyanins in the blueberry pomace. The anthocyanins profiles of water extracts were similar to that by ethanol extraction. The effects of extraction parameters including solid-to-liquid ratio and temperature on the extraction efficiency and anthocyanins concentration were studied. The blueberry anthocyanins degraded at temperatures higher than 60 °C and all anthocyanins showed similar degradation tendency. The result showed that the artificial neural network (ANN) modeling could be well used to portray the effects of these parameters. Finally, the water extracts were successfully spray dried to produce microencapsulation of blueberry anthocyanins with maltodextrin (MD) as wall materials.
Collapse
Affiliation(s)
- Yushuang Lu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, HangzhouZhejiang, China
| | - Xianrui Liang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, HangzhouZhejiang, China
| | - Lishuang Cheng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, HangzhouZhejiang, China
| | - Sheng Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, HangzhouZhejiang, China
| |
Collapse
|
80
|
Rehman A, Tong Q, Jafari SM, Assadpour E, Shehzad Q, Aadil RM, Iqbal MW, Rashed MM, Mushtaq BS, Ashraf W. Carotenoid-loaded nanocarriers: A comprehensive review. Adv Colloid Interface Sci 2020; 275:102048. [PMID: 31757387 DOI: 10.1016/j.cis.2019.102048] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/03/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023]
Abstract
Carotenoids retain plenty of health benefits and attracting much attention recently, but they have less resistance to processing stresses, easily oxidized and chemically unstable. Additionally, their application in food and pharmaceuticals are restricted due to some limitations such as poor bioavailability, less solubility and quick release. Nanoencapsulation techniques can be used to protect the carotenoids and to uphold their original characteristics during processing, storage and digestion, improve their physiochemical properties and enhance their health promoting effects. The importance of nanocarriers in foods and pharmaceuticals cannot be denied. This review comprehensively covers recent advances in nanoencapsulation of carotenoids with biopolymeric nanocarriers (polysaccharides and proteins), and lipid-based nanocarriers, their functionalities, aptness and innovative developments in preparation strategies. Furthermore, the present state of the art encapsulation of different carotenoids via biopolymeric and lipid-based nanocarriers have been enclosed and tabulated well. Nanoencapsulation has a vast range of applications for protection of carotenoids. Polysaccharides in combination with different proteins can offer a great avenue to achieve the desired formulation for encapsulation of carotenoids by using different nanoencapsulation strategies. In terms of lipid based nanocarriers, solid lipid nanoparticles and nanostructure lipid carriers are proving as the encouraging candidates for entrapment of carotenoids. Additionally, nanoliposomes and nanoemulsion are also promising and novel-vehicles for the protection of carotenoids against challenging aspects as well as offering an effectual controlled release on the targeted sites. In the future, further studies could be conducted for exploring the application of nanoencapsulated systems in food and gastrointestinal tract (GIT) for industrial applications.
Collapse
|
81
|
Structural properties of lotus seed starch prepared by octenyl succinic anhydride esterification assisted by high hydrostatic pressure treatment. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108698] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
82
|
Yan C, McClements DJ, Zhu Y, Zou L, Zhou W, Liu W. Fabrication of OSA Starch/Chitosan Polysaccharide-Based High Internal Phase Emulsion via Altering Interfacial Behaviors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10937-10946. [PMID: 31508960 DOI: 10.1021/acs.jafc.9b04009] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This paper attempted to construct a high internal phase emulsion (HIPE) through altering interfacial behaviors using the electrostatic interaction between positive chitosan and negative octenyl succinic anhydride (OSA) starch. The partial polysaccharide complex of OSA starch/chitosan was used to stabilize HIPE, which was able to adsorb at the oil droplet interface and prevent the coalescence of oil droplets. The wettability of OSA starch was enhanced with the addition of positively charged chitosan, leading to the formation of partial complexes. The impact of pH and concentration of chitosan on the droplet size, surface charge, and interface behavior were investigated, and the formation of the polysaccharide complex was further confirmed by atomic force microscopy. The presence of the OSA starch/chitosan complex facilitated the formation of stable HIPE with a gel-like structure and satisfactory centrifugal and oxidative stability. These results are useful to provide information for fabricating polysaccharide-based HIPE delivery systems, which may help expand their application in the food industry.
Collapse
Affiliation(s)
- Chi Yan
- State Key Laboratory of Food Science and Technology , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , Jiangxi , China
| | - David Julian McClements
- Biopolymers & Colloids Research Laboratory, Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Yuqing Zhu
- State Key Laboratory of Food Science and Technology , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , Jiangxi , China
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , Jiangxi , China
| | - Wei Zhou
- State Key Laboratory of Food Science and Technology , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , Jiangxi , China
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute , Chinese Academy of Tropical Agricultural Sciences , Zhanjiang , Guangdong 524001 , China
| | - Wei Liu
- State Key Laboratory of Food Science and Technology , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , Jiangxi , China
| |
Collapse
|
83
|
Barclay TG, Day CM, Petrovsky N, Garg S. Review of polysaccharide particle-based functional drug delivery. Carbohydr Polym 2019; 221:94-112. [PMID: 31227171 PMCID: PMC6626612 DOI: 10.1016/j.carbpol.2019.05.067] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/26/2019] [Accepted: 05/22/2019] [Indexed: 01/06/2023]
Abstract
This review investigates the significant role polysaccharide particles play in functional drug delivery. The importance of these systems is due to the wide variety of polysaccharides and their natural source meaning that they can provide biocompatible and biodegradable systems with a range of both biological and chemical functionality valuable for drug delivery. This functionality includes protection and presentation of working therapeutics through avoidance of the reticuloendothelial system, stabilization of biomacromolecules and increasing the bioavailability of incorporated small molecule drugs. Transport of the therapeutic is also key to the utility of polysaccharide particles, moving drugs from the site of administration through mucosal binding and transport and using chemistry, size and receptor mediated drug targeting to specific tissues. This review also scrutinizes the methods of synthesizing and constructing functional polysaccharide particle drug delivery systems that maintain and extend the functionality of the natural polysaccharides.
Collapse
Affiliation(s)
- Thomas G Barclay
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA 5000, Australia.
| | - Candace Minhthu Day
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA 5000, Australia.
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, 1 Flinders Drive, Bedford Park, SA 5042, Australia; Department of Endocrinology, Flinders Medical Centre/Flinders University, Bedford Park, SA 5042, Australia.
| | - Sanjay Garg
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|