51
|
Prasanna G, Saraswathi NT. Aspartic acid functions as carbonyl trapper to inhibit the formation of advanced glycation end products by chemical chaperone activity. J Biomol Struct Dyn 2015; 34:943-51. [PMID: 26325019 DOI: 10.1080/07391102.2015.1060160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Advanced glycation end products (AGEs) were implicated in pathology of numerous diseases. In this study, we present the bioactivity of aspartic acid (Asp) to inhibit the AGEs. Hemoglobin and bovine serum albumin (BSA) were glycated with glucose, fructose, and ribose in the presence and absence of Asp (100-200 μM). HbA1c inhibition was investigated using human blood and characterized by micro-column ion exchange chromatography. The effect of methyl glyoxal (MG) on hemoglobin and BSA was evaluated by fluorescence spectroscopy and gel electrophoresis. The effect of MG on red blood cells morphology was characterized by scanning electron micrographs. Molecular docking was performed on BSA with Asp. Asp is capable of inhibiting the formation of fluorescent AGEs by reacting with the reducing sugars. The presence of Asp as supplement in whole blood reduced the HbA1c% from 8.8 to 6.1. The presence of MG showed an increase in fluorescence and the presence of Asp inhibited the glycation thereby the fluorescence was quenched. MG also affected the electrophoretic mobility of hemoglobin and BSA by forming high molecular weight aggregates. Normal RBCs showed typical biconcave shape. MG modified RBCs showed twisted and elongated shape whereas the presence of ASP tends to protect RBC from twisting. Asp interacted with arginine residues of bovine serum albumin particularly ARG 194, ARG 198, and ARG 217 thereby stabilized the protein complex. We conclude that Asp has dual functions as a chemical chaperone to stabilize protein and as a dicarbonyl trapper, and thereby it can prevent the complications caused by glycation.
Collapse
Affiliation(s)
- Govindarajan Prasanna
- a Molecular Biophysics Laboratory, School of Chemical and Biotechnology , SASTRA University , Thanjavur 613401 , India
| | - N T Saraswathi
- a Molecular Biophysics Laboratory, School of Chemical and Biotechnology , SASTRA University , Thanjavur 613401 , India
| |
Collapse
|
52
|
Uribarri J, del Castillo MD, de la Maza MP, Filip R, Gugliucci A, Luevano-Contreras C, Macías-Cervantes MH, Markowicz Bastos DH, Medrano A, Menini T, Portero-Otin M, Rojas A, Sampaio GR, Wrobel K, Wrobel K, Garay-Sevilla ME. Dietary advanced glycation end products and their role in health and disease. Adv Nutr 2015; 6:461-73. [PMID: 26178030 PMCID: PMC4496742 DOI: 10.3945/an.115.008433] [Citation(s) in RCA: 244] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Over the past 2 decades there has been increasing evidence supporting an important contribution from food-derived advanced glycation end products (AGEs) to the body pool of AGEs and therefore increased oxidative stress and inflammation, processes that play a major role in the causation of chronic diseases. A 3-d symposium (1st Latin American Symposium of AGEs) to discuss this subject took place in Guanajuato, Mexico, on 1-3 October 2014 with the participation of researchers from several countries. This review is a summary of the different presentations and subjects discussed, and it is divided into 4 sections. The first section deals with current general knowledge about AGEs. The second section dwells on mechanisms of action of AGEs, with special emphasis on the receptor for advanced glycation end products and the potential role of AGEs in neurodegenerative diseases. The third section discusses different approaches to decrease the AGE burden. The last section discusses current methodologic problems with measurement of AGEs in different samples. The subject under discussion is complex and extensive and cannot be completely covered in a short review. Therefore, some areas of interest have been left out because of space. However, we hope this review illustrates currently known facts about dietary AGEs as well as pointing out areas that require further research.
Collapse
Affiliation(s)
- Jaime Uribarri
- Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY;
| | - María Dolores del Castillo
- Food Bioscience Group, Department of Food Analysis and Bioactivity, Institute of Food Science Research, Spanish National Research Council, Madrid, Spain
| | - María Pía de la Maza
- Institute of Nutrition and Food Technology Dr. Fernando Monckeberg Barros, University of Chile, Santiago, Chile
| | - Rosana Filip
- Department of Pharmacognosy, Institute of Drug Chemistry and Metabolism, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | - Alejandra Medrano
- Food Science and Technology Department, School of Chemistry, University of the Republic, Montevideo, Uruguay
| | - Teresita Menini
- College of Osteopathic Medicine, Touro University California, Vallejo, CA
| | - Manuel Portero-Otin
- Metabolic Pathophysiology Department, School of Medicine, Biomedical Research Institute of Lleida, University of Lleida, Lleida, Spain
| | - Armando Rojas
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca, Chile; and
| | | | - Kazimierz Wrobel
- Chemistry Department, University of Guanajuato, Guanajuato, Mexico
| | - Katarzyna Wrobel
- Chemistry Department, University of Guanajuato, Guanajuato, Mexico
| | | |
Collapse
|
53
|
Fernandez-Gomez B, Ullate M, Picariello G, Ferranti P, Mesa MD, del Castillo MD. New knowledge on the antiglycoxidative mechanism of chlorogenic acid. Food Funct 2015; 6:2081-90. [DOI: 10.1039/c5fo00194c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Binding of CGA to protein inhibits AGE formation and provides antioxidant properties.
Collapse
Affiliation(s)
- Beatriz Fernandez-Gomez
- Department of Food Analysis and Bioactivity
- Institute of Food Science Research (CIAL
- CSIC-UAM)
- 28049 Madrid
- Spain
| | - Monica Ullate
- Department of Food Analysis and Bioactivity
- Institute of Food Science Research (CIAL
- CSIC-UAM)
- 28049 Madrid
- Spain
| | | | - Pasquale Ferranti
- Istituto di Scienze dell'Alimentazione (ISA)
- CNR
- 83100 Avellino
- Italy
- Department of Agriculture
| | - Maria Dolores Mesa
- Institute of Nutrition and Food Technology “José Mataix”
- University of Granada
- 18100 Granada
- Spain
| | - Maria Dolores del Castillo
- Department of Food Analysis and Bioactivity
- Institute of Food Science Research (CIAL
- CSIC-UAM)
- 28049 Madrid
- Spain
| |
Collapse
|