51
|
Park SK, Jo DM, Kang MG, Khan F, Hong SD, Kim CY, Kim YM, Ryu UC. Bactericidal effect of ultraviolet C light-emitting diodes: Optimization of efficacy toward foodborne pathogens in water. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 222:112277. [PMID: 34364078 DOI: 10.1016/j.jphotobiol.2021.112277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 06/22/2021] [Accepted: 07/27/2021] [Indexed: 11/26/2022]
Abstract
The elimination of bacterial pathogens from water using ultraviolet C light-emitting diodes (UVC-LEDs) is a critical technology in terms of hygiene and sanitation. This technology has several advantages, such as low energy consumption, no heating requirements, and high effectiveness. Although several studies have reported the bactericidal effect of UVC-LEDs, little information is available on their bactericidal effect on water reservoirs contaminated with microorganisms. Therefore, the aim of this study was to optimize the bactericidal effects of UVC-LED irradiation, particularly at a wavelength of 278 nm, against major foodborne gram-positive and gram-negative pathogenic bacteria, such as Escherichia coli, Staphylococcus aureus, Bacillus cereus, Salmonella Typhimurium, and Listeria monocytogenes. The efficiency of the bactericidal effect of UVC-LED irradiation was determined based on three variables: exposure time (A, 0-60 min), stirring speed (B, 0-100 rpm), and volume of water (C, 400-1200 mL). To optimize the conditions, the operation of the designed model and results analysis were carried out using Box-Behnken design (BBD) and response surface method (RSM). The final conditions optimized for an effective bactericidal activity included a 60 min exposure time, a 100 rpm stirring speed, and 400 mL of liquid volume. Furthermore, the validation of the optimized model using the predicted values was calculated by the program, which was conducted by matching the actual values within standard deviations. The present study revealed that the optimization of a UVC-LED irradiation model is a promising approach for effectively controlling the contamination of water reservoirs by bacterial pathogens.
Collapse
Affiliation(s)
- Seul-Ki Park
- Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Du-Min Jo
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Min-Gyun Kang
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Sung Doo Hong
- ESN company, 405 Tongmyong Industry-Cooperation Bldg, Busan 48520, Republic of Korea
| | - Chang Youl Kim
- ESN company, 405 Tongmyong Industry-Cooperation Bldg, Busan 48520, Republic of Korea
| | - Young-Mog Kim
- Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea; Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Uh-Chan Ryu
- Interdisciplinary Program of LED and Solid-State Lighting Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
52
|
Liu X, Li Y, Wang S, Huangfu L, Zhang M, Xiang Q. Synergistic antimicrobial activity of plasma-activated water and propylparaben: Mechanism and applications for fresh produce sanitation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
53
|
Lu Y, Yang B, Zhang H, Lai ACK. Inactivation of foodborne pathogenic and spoilage bacteria by single and dual wavelength UV-LEDs: Synergistic effect and pulsed operation. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
54
|
Ye ZT, Cheng YH, Hung LW, Hsu KH, Hu YC. Light Guide Layer Thickness Optimization for Enhancement of the Light Extraction Efficiency of Ultraviolet Light-Emitting Diodes. NANOSCALE RESEARCH LETTERS 2021; 16:106. [PMID: 34121151 PMCID: PMC8200281 DOI: 10.1186/s11671-021-03563-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/08/2021] [Indexed: 06/01/2023]
Abstract
Consider material machinability and lattice mismatch sapphire as substrates for the ultraviolet-C light-emitting diodes (UV-C LEDs) are commonly used, but their high refractive index can result in the total internal reflection (TIR) of light whereby some light is absorbed, therefore caused reducing light extraction efficiency (LEE). In this study, we propose a method to optimize the thickness of a sapphire substrate light guide layer through first-order optical design which used the optical simulation software Ansys SPEOS to simulate and evaluate the light extraction efficiency. AlGaN UV-C LEDs wafers with a light guide layer thickness of 150-700 μm were used. The simulation proceeded under a center wavelength of 275 nm to determine the optimal thickness design of the light guide layer. Finally, the experimental results demonstrated that the initial light guide layer thickness of 150 μm the reference output power of 13.53 mW, and an increased thickness of 600 um resulted in output power of 20.58 mW. The LEE can be increased by 1.52 times through light guide layer thickness optimization. We propose a method to optimize the thickness of a sapphire substrate light guide layer through first-order optical design. AlGaN UV-C LEDs wafers with a light guide layer thickness of 150-700 μm were used. Finally, the experimental results demonstrated that the LEE can be increased by 1.52 times through light guide layer thickness optimization.
Collapse
Affiliation(s)
- Zhi Ting Ye
- Department of Mechanical Engineering, Advanced Institute of Manufacturing With High-Tech Innovations, National Chung Cheng University, 168, University Rd., Min-Hsiung, Chia-Yi, 62102, Taiwan.
| | - Yuan-Heng Cheng
- Department of Mechanical Engineering, Advanced Institute of Manufacturing With High-Tech Innovations, National Chung Cheng University, 168, University Rd., Min-Hsiung, Chia-Yi, 62102, Taiwan
| | - Li-Wei Hung
- Department of Process Development Division, EPILEDS TECHNOLOGIES, No. 7, Kanxi Rd., Xinshi Dist., Tainan City, 744092, Taiwan
| | - Kung-Hsieh Hsu
- Department of Process Development Division, EPILEDS TECHNOLOGIES, No. 7, Kanxi Rd., Xinshi Dist., Tainan City, 744092, Taiwan
| | - Yu Chang Hu
- Department of R&D Division, Harvatek Corporation, No. 18, Ln. 522, Sec. 5, Zhonghua Rd., Xiangshan Dist., Hsinchu City, 300066, Taiwan
| |
Collapse
|
55
|
Yang K, Dai X, Fan M, Zhang G. Influences of acid and ethanol stresses on Oenococcus oeni SD-2a and its proteomic and transcriptional responses. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2892-2900. [PMID: 33159330 DOI: 10.1002/jsfa.10921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/26/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND During winemaking, malolactic fermentation (MLF) is usually induced by Oenococcus oeni owing to its high resistance to wine stress factors. To ensure a controlled and efficient MLF process, starter cultures are inoculated in wine. In previous studies, O. oeni strains with sub-lethal acid or ethanol stresses showed higher freeze-drying vitality and better MLF performance. To explore the mechanisms involved, influences of acid and ethanol stresses on O. oeni SD-2a were investigated in this study to gain a better understanding of the cross-protection responses. RESULTS The results showed that acid and ethanol stresses both caused damage to cell membranes and decreased cellular adenosine triphosphate concentration. At the same time, acid stress increased the uptake of glutathione, while ethanol stress led to cell depolarization. The results of comparative proteomic analysis highlighted that heat shock protein was induced with almost all acid and ethanol stresses. In addition, the expression of stress-relevant genes (hsp20, clpP, trxA, ctsR, recO, usp) increased greatly with ethanol and acid stress treatments. Finally, the viability of O. oeni was improved with acid and ethanol pretreatments after freeze-drying. CONCLUSIONS This study demonstrated that acid and ethanol stresses had mixed influences on O. oeni SD-2a. Some physiological and molecular changes would contribute to a more stress-tolerant state of O. oeni, thereby improving the viability of lyophilized cells. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kun Yang
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, China
- College of Food Science and Engineering, Northwest A & F University, Yangling, China
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xianjun Dai
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Mingtao Fan
- College of Food Science and Engineering, Northwest A & F University, Yangling, China
| | - Guoqiang Zhang
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, China
| |
Collapse
|
56
|
Nyhan L, Przyjalgowski M, Lewis L, Begley M, Callanan M. Investigating the Use of Ultraviolet Light Emitting Diodes (UV-LEDs) for the Inactivation of Bacteria in Powdered Food Ingredients. Foods 2021; 10:797. [PMID: 33917815 PMCID: PMC8068219 DOI: 10.3390/foods10040797] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 11/16/2022] Open
Abstract
The addition of contaminated powdered spices and seasonings to finished products which do not undergo further processing represents a significant concern for food manufacturers. To reduce the incidence of bacterial contamination, seasoning ingredients should be subjected to a decontamination process. Ultraviolet light emitting diodes (UV-LEDs) have been suggested as an alternative to UV lamps for reducing the microbial load of foods, due to their increasing efficiency, robustness and decreasing cost. In this study, we investigated the efficacy of UV-LED devices for the inactivation of four bacteria (Listeria monocytogenes, Escherichia coli, Bacillus subtilis and Salmonella Typhimurium) on a plastic surface and in four powdered seasoning ingredients (onion powder, garlic powder, cheese and onion powder and chilli powder). Surface inactivation experiments with UV mercury lamps, UVC-LEDs and UVA-LEDs emitting at wavelengths of 254 nm, 270 nm and 365 nm, respectively, revealed that treatment with UVC-LEDs were comparable to, or better than those observed using the mercury lamp. Bacterial reductions in the seasoning powders with UVC-LEDs were less than in the surface inactivation experiments, but significant reductions of 0.75-3 log10 colony forming units (CFU) were obtained following longer (40 s) UVC-LED exposure times. Inactivation kinetics were generally nonlinear, and a comparison of the predictive models highlighted that microbial inactivation was dependent on the combination of powder and microorganism. This study is the first to report on the efficacy of UV-LEDs for the inactivation of several different bacterial species in a variety of powdered ingredients, highlighting the potential of the technology as an alternative to the traditional UV lamps used in the food industry.
Collapse
Affiliation(s)
- Laura Nyhan
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (L.N.); (M.B.)
| | - Milosz Przyjalgowski
- Centre for Advanced Photonics and Process Analysis, Munster Technological University, T12 P928 Cork, Ireland; (M.P.); (L.L.)
| | - Liam Lewis
- Centre for Advanced Photonics and Process Analysis, Munster Technological University, T12 P928 Cork, Ireland; (M.P.); (L.L.)
| | - Máire Begley
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (L.N.); (M.B.)
| | - Michael Callanan
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (L.N.); (M.B.)
| |
Collapse
|
57
|
Kim DK, Kang DH. Efficacy of light-emitting diodes emitting 395, 405, 415, and 425 nm blue light for bacterial inactivation and the microbicidal mechanism. Food Res Int 2021; 141:110105. [PMID: 33641972 DOI: 10.1016/j.foodres.2021.110105] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/15/2020] [Accepted: 01/02/2021] [Indexed: 11/18/2022]
Abstract
We investigated the bactericidal effects against Escherichia coli O157:H7 of light-emitting diodes (LEDs) emitting blue light of four different peak wavelengths ranging from 395 to 425 nm in water. Furthermore, we investigated inactivation in the presence of reactive oxygen species (ROS) scavengers to elucidate the contribution of bacterial inactivation. An aluminum chamber was constructed and coated in carbon to block exterior light, and a single blue light LED with a rear heat sink was attached to the chamber lid. Effective inactivation of the pathogen was observed for all blue light LED irradiation at 305, 405, 415, and 425 nm. The log-linear with shoulder and tail model and log-linear model described the survival of the bacteria after blue light LED treatments. Not just the effects of ROS but also photophysical effects were shown with the addition of mannitol, a ROS scavenger. The integrity of the cell membrane was damaged regardless of the presence of ROS, which indicates that photophysical effects were sufficient to induce damage to the cell membrane. In addition, activity of succinate-coenzyme Q reductase, which participates in respiratory metabolism to generate energy, decreased in the absence of ROS and decreased further in the presence of ROS.
Collapse
Affiliation(s)
- Do-Kyun Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Republic of Korea.
| |
Collapse
|
58
|
Effects of UVC light‐emitting diodes on inactivation of Escherichia coli O157:H7 and quality attributes of fresh‐cut white pitaya. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00816-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
59
|
Fukuda S, Ito S, Nishikawa J, Takagi T, Kubota N, Otsuyama KI, Tsuneoka H, Nojima J, Harada K, Mishima K, Suehiro Y, Yamasaki T, Sakaida I. Deep Ultraviolet Light-Emitting Diode Light Therapy for Fusobacterium nucleatum. Microorganisms 2021; 9:microorganisms9020430. [PMID: 33669771 PMCID: PMC7922187 DOI: 10.3390/microorganisms9020430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Fusobacterium nucleatum, which is associated with periodontitis and gingivitis, has been detected in colorectal cancer (CRC). Methods: We evaluated the bactericidal effect of deep ultraviolet (DUV) light-emitting diode (LED) light therapy on F. nucleatum both qualitatively and quantitatively. Two DUV-LEDs with peak wavelengths of 265 and 280-nm were used. DNA damage to F. nucleatum was evaluated by the production of cyclobutane pyrimidine dimers (CPD) and pyrimidine (6–4) pyrimidone photoproducts (6–4PP). Results: DUV-LEDs showed a bactericidal effect on F. nucleatum. No colony growth was observed after 3 min of either 265 nm or 280 nm DUV-LED irradiation. The survival rates of F. nucleatum under 265 nm DUV-LED light irradiation dropped to 0.0014% for 10 s and to 0% for 20 s irradiation. Similarly, the survival rate of F. nucleatum under 280 nm DUV-LED light irradiation dropped to 0.00044% for 10 s and 0% for 20 s irradiation. The irradiance at the distance of 35 mm from the DUV-LED was 0.265 mW/cm2 for the 265 nm LED and 0.415 mW/cm2 for the 280 nm LED. Thus, the radiant energy for lethality was 5.3 mJ/cm2 for the 265 nm LED and 8.3 mJ/cm2 for the 280 nm LED. Amounts of CPD and 6–4PP in F. nucleatum irradiated with 265 nm DUV-LED light were 6.548 ng/µg and 1.333 ng/µg, respectively. Conclusions: DUV-LED light exerted a bactericidal effect on F. nucleatum by causing the formation of pyrimidine dimers indicative of DNA damage. Thus, DUV-LED light therapy may have the potential to prevent CRC.
Collapse
Affiliation(s)
- Soichiro Fukuda
- Department of Laboratory Science, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (S.F.); (T.T.); (N.K.); (K.-i.O.); (H.T.); (J.N.)
| | - Shunsuke Ito
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (S.I.); (I.S.)
| | - Jun Nishikawa
- Department of Laboratory Science, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (S.F.); (T.T.); (N.K.); (K.-i.O.); (H.T.); (J.N.)
- Correspondence: ; Tel.: +81-836-22-2835
| | - Tatsuya Takagi
- Department of Laboratory Science, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (S.F.); (T.T.); (N.K.); (K.-i.O.); (H.T.); (J.N.)
| | - Naoto Kubota
- Department of Laboratory Science, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (S.F.); (T.T.); (N.K.); (K.-i.O.); (H.T.); (J.N.)
| | - Ken-ichiro Otsuyama
- Department of Laboratory Science, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (S.F.); (T.T.); (N.K.); (K.-i.O.); (H.T.); (J.N.)
| | - Hidehiro Tsuneoka
- Department of Laboratory Science, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (S.F.); (T.T.); (N.K.); (K.-i.O.); (H.T.); (J.N.)
| | - Junzo Nojima
- Department of Laboratory Science, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (S.F.); (T.T.); (N.K.); (K.-i.O.); (H.T.); (J.N.)
| | - Koji Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (K.H.); (K.M.)
| | - Katsuaki Mishima
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (K.H.); (K.M.)
| | - Yutaka Suehiro
- Department of Oncology and Laboratory Medicine, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (Y.S.); (T.Y.)
| | - Takahiro Yamasaki
- Department of Oncology and Laboratory Medicine, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (Y.S.); (T.Y.)
| | - Isao Sakaida
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (S.I.); (I.S.)
| |
Collapse
|
60
|
Kim DK, Kang DH. Investigation of a new UVC LEDs array continuous type water disinfection system for inactivating Escherichia coli O157:H7 according to flow rate and electrical energy efficiency analysis. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
61
|
Niu L, Wu Z, Yang L, Wang Y, Xiang Q, Bai Y. Antimicrobial Effect of UVC Light-Emitting Diodes against Saccharomyces cerevisiae and Their Application in Orange Juice Decontamination. J Food Prot 2021; 84:139-146. [PMID: 32916700 DOI: 10.4315/jfp-20-200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022]
Abstract
ABSTRACT UVC light-emitting diodes (UVC-LEDs) are a novel eco-friendly alternative source of UV light. This study evaluated the inactivation and membrane damage of spoilage yeast Saccharomyces cerevisiae by UVC-LEDs and their application in orange juice pasteurization. The results demonstrated that the antimicrobial effect of UVC-LED treatment against S. cerevisiae was enhanced by increased radiation dose. When the dose of UVC-LED radiation was 1,420 mJ/cm2, the population of S. cerevisiae in yeast extract peptone dextrose broth was reduced by 4.86 log CFU/mL. Through scanning electron microscopy and fluorescent staining, the structure and function of plasma membrane was observed to be severely damaged by UVC-LED treatment. The inactivation efficacy of UVC-LEDs against S. cerevisiae in orange juice also increased with increasing radiation dose. Radiation at 1,420 mJ/cm2 greatly reduced S. cerevisiae in orange juice by 4.44 log CFU/mL and did not induce remarkable changes in pH, total soluble solids, titratable acidity, and color parameters. However, the total phenolic content in orange juice was found to be significantly decreased by UVC-LEDs. These findings contribute to a better comprehension of UVC-LED inactivation and provide theoretical support for its potential application in fruit and vegetable juice processing. HIGHLIGHTS
Collapse
Affiliation(s)
- Liyuan Niu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China.,(ORCID: https://orcid.org/0000-0003-2334-4001 [L.N.].,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, People's Republic of China
| | - Zihao Wu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China
| | - Lanrui Yang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China
| | - Yanqiu Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China
| | - Qisen Xiang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China.,https://orcid.org/0000-0002-3052-0969 [Q.X.].,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, People's Republic of China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China.,https://orcid.org/0000-0002-2074-0351 [Y.B.]).,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
62
|
Characterizing the Performance of a Continuous-Flow UV-LED System for Treatment of Juices and Beverages Using Multiple Wavelengths. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09266-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
63
|
Kebbi Y, Muhammad AI, Sant'Ana AS, do Prado‐Silva L, Liu D, Ding T. Recent advances on the application of UV‐LED technology for microbial inactivation: Progress and mechanism. Compr Rev Food Sci Food Saf 2020; 19:3501-3527. [DOI: 10.1111/1541-4337.12645] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/29/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Yasmine Kebbi
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang University Hangzhou China
| | - Aliyu Idris Muhammad
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang University Hangzhou China
- Department of Agricultural and Environmental Engineering Faculty of Engineering Bayero University Kano Nigeria
| | - Anderson S. Sant'Ana
- Department of Food Science Faculty of Food Engineering University of Campinas Campinas SP Brazil
| | | | - Donghong Liu
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| | - Tian Ding
- College of Biosystems Engineering and Food Science National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang University Hangzhou China
- Ningbo Research Institute Zhejiang University Ningbo China
| |
Collapse
|
64
|
New insights into thermo-acidophilic properties of Alicyclobacillus acidoterrestris after acid adaptation. Food Microbiol 2020; 94:103657. [PMID: 33279082 DOI: 10.1016/j.fm.2020.103657] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/25/2020] [Accepted: 10/01/2020] [Indexed: 12/31/2022]
Abstract
Alicyclobacillus acidoterrestris has unique thermo-acidophilic properties and is the main cause of fruit juice deterioration. Given the acidic environment and thermal treatment during juice processing, the effects of acid adaptation (pH 3.5, 3.2, and 3.0) on the resistance of A. acidoterrestris to heat (65 °C, 5 min) and acid (pH = 2.2, 1 h) stresses were investigated for the first time. The results showed that acid adaptation induced cross-protection against heat stress of A. acidoterrestris and acid tolerance response, and the extent of induced tolerance was increased with the decrease of adaptive pH values. Acid adaptation treatments did not disrupt the membrane potential stability and intracellular pH homeostasis, but reduced intracellular ATP concentration, increased cyclic fatty acids content, and changed the acquired Fourier transform infrared spectra. Transcription levels of stress-inducible (dnaK, grpE, clpP, ctsR) genes and genes related to spore formation (spo0A, ctoX) were up-regulated after acid adaptation, and spore formation was observed by scanning electron microscopy. This study revealed that the intracellular microenvironment homeostasis, expression of chaperones and proteases, and spore formation played a coordinated role in acid stress adaptive responses, with implications for applications in fruit juice processing.
Collapse
|
65
|
Zhai Y, Tian J, Ping R, Xiu H, Xiang Q, Shen R, Wang Z. Effects of ultraviolet-C light-emitting diodes at 275 nm on inactivation of Alicyclobacillusacidoterrestris vegetative cells and its spores as well as the quality attributes of orange juice. FOOD SCI TECHNOL INT 2020; 27:334-343. [PMID: 32954800 DOI: 10.1177/1082013220957529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alicyclobacillus acidoterrestris is a thermoacidophilic, spore-forming bacillus. A. acidoterrestris and its spores can survive in pasteurized juices and cause microbial spoilage. In this work, the effects of ultraviolet-C light-emitting diodes at 275 nm on the inactivation of A. acidoterrestris vegetative cells and its spores in commercial pasteurized orange juice were studied. Meanwhile, the effects of ultraviolet-C light-emitting diodes on the quality attributes of the orange juice were also investigated. The quantities of A. acidoterrestris vegetative cells and its spores inoculated in orange juice were reduced by 6.04 and 2.49 log10 CFU/mL after ultraviolet-C light-emitting diode treatment at 220 mJ/cm2, respectively. The Weibull and Weibull plus tail models were satisfactorily fitted to estimate the reductions of A. acidoterrestris vegetative cells and its spores in orange juice, respectively. Physicochemical properties (pH, titratable acidity, total soluble solids, and clarity) of orange juice did not change significantly after exposure to ultraviolet-C light-emitting diodes. However, the total phenolic content of orange juice decreased with increasing fluence. In addition, ultraviolet-C light-emitting diode treatment at a higher fluence led to a noticeable color difference. These results indicate that ultraviolet-C light-emitting diode treatment has a potential application in the juice processing industry.
Collapse
Affiliation(s)
- Yafei Zhai
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, PR China.,Henan Collaborative Innovation Center of Food Production and Safety, Zhengzhou, PR China
| | - Jiali Tian
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR China
| | - Ruonan Ping
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR China
| | - Hongxia Xiu
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR China
| | - Qisen Xiang
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, PR China.,Henan Collaborative Innovation Center of Food Production and Safety, Zhengzhou, PR China
| | - Ruiling Shen
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, PR China.,Henan Collaborative Innovation Center of Food Production and Safety, Zhengzhou, PR China
| | - Zhangcun Wang
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, PR China.,Henan Collaborative Innovation Center of Food Production and Safety, Zhengzhou, PR China
| |
Collapse
|
66
|
Takagi T, Nishikawa J, Yanagihara M, Fukuda S, Kubota N, Kobayashi Y, Otsuyama KI, Nojima J, Tsuneoka H, Sakai K, Suehiro Y, Yamasaki T, Sakurai K, Itatani K, Sakaida I. Microbicidal effect of deep ultraviolet light-emitting diode irradiation. Lasers Med Sci 2020; 36:927-931. [PMID: 32902820 DOI: 10.1007/s10103-020-03143-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/04/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Tatsuya Takagi
- Faculty of Laboratory Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, 755-8505, Japan
| | - Jun Nishikawa
- Faculty of Laboratory Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, 755-8505, Japan.
| | - Masashi Yanagihara
- Department of Surgery and Clinical Science, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Soichiro Fukuda
- Faculty of Laboratory Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, 755-8505, Japan
| | - Naoto Kubota
- Faculty of Laboratory Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, 755-8505, Japan
| | - Yuki Kobayashi
- Faculty of Laboratory Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, 755-8505, Japan
| | - Ken-Ichiro Otsuyama
- Faculty of Laboratory Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, 755-8505, Japan
| | - Junzo Nojima
- Faculty of Laboratory Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, 755-8505, Japan
| | - Hidehiro Tsuneoka
- Faculty of Laboratory Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, 755-8505, Japan
| | - Kohei Sakai
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yutaka Suehiro
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Takahiro Yamasaki
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Kenji Sakurai
- R&D Department, Research and Technology Development Unit, CCS Inc., Kyoto, Japan
| | - Kazuki Itatani
- Device Technology and Product Development Department, Research and Technology Development Unit, CCS Inc., Kyoto, Japan
| | - Isao Sakaida
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|
67
|
Combined treatment with a 222-nm krypton-chlorine excilamp and a 280-nm LED-UVC for inactivation of Salmonella Typhimurium and Listeria monocytogenes. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
68
|
de Souza Pedrosa GT, de Souza EL, de Melo ANF, da Cruz Almeida ET, de Sousa Guedes JP, de Carvalho RJ, Pagán R, Magnani M. Physiological alterations involved in inactivation of autochthonous spoilage bacteria in orange juice caused by Citrus essential oils and mild heat. Int J Food Microbiol 2020; 334:108837. [PMID: 32890943 DOI: 10.1016/j.ijfoodmicro.2020.108837] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/21/2020] [Accepted: 08/19/2020] [Indexed: 12/29/2022]
Abstract
This study investigated physiological alterations involved in the inactivation of Levilactobacillus (L.) brevis and Leuconostoc (Lc.) mesenteroides in orange juice caused by Citrus lemon essential oil (CLEO) and C. reticulata essential oil (CREO) alone and combined with mild heat treatment (MHT). Damage in DNA, membrane integrity, membrane potential, metabolic and efflux activity of bacterial cells were measured after exposure (6 and 12 min) to CLEO or CREO (0.5 μL/mL) and/or MHT (54 °C) using flow cytometry. Limonene was the major constituent in CLEO (66.4%) and CREO (89.4%). The size of the damaged cell subpopulations increased (p < 0.05) after longer exposure time and varied with the tested essential oil and/or bacterial isolate. After exposure to CLEO and CREO alone, the cell subpopulations with damage in measured physiological functions were in a range of 19.6-66.8% and 23.8-75.9%, respectively. Exposure to CREO resulted in larger Lc. mesenteroides cell subpopulations (35.4-68.7%) with damaged DNA, permeabilized and depolarized membrane and compromised metabolic or efflux activity compared to L. brevis (23.8-58.0%). In contrast, exposure to CLEO led to higher damaged L. brevis cell subpopulations (35.1-77%) compared to Lc. mesenteroides (25.3-36.6%). Exposure to combined treatments (CLEO or CREO and MHT) affected the measured physiological functions in almost the entire L. brevis and Lc. mesenteroides cell population (up to 99%), although the damage extension on each isolate varied with tested essential oil. Results show that inactivation of L. brevis and Lc. mesenteroides cells caused by CLEO and CREO alone and combined with MHT in orange juice involves a multi-target action, which causes DNA damage, altered permeability and depolarization of membrane and compromised metabolic and efflux activities.
Collapse
Affiliation(s)
- Geany Targino de Souza Pedrosa
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Adma Nadja Ferreira de Melo
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Erika Tayse da Cruz Almeida
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Jossana Pereira de Sousa Guedes
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Rayssa Julliane de Carvalho
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Rafael Pagán
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil.
| |
Collapse
|
69
|
Moreno-Andrés J, Rueda-Márquez JJ, Homola T, Vielma J, Moríñigo MÁ, Mikola A, Sillanpää M, Acevedo-Merino A, Nebot E, Levchuk I. A comparison of photolytic, photochemical and photocatalytic processes for disinfection of recirculation aquaculture systems (RAS) streams. WATER RESEARCH 2020; 181:115928. [PMID: 32504908 DOI: 10.1016/j.watres.2020.115928] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
The development of technologically advanced recirculation aquaculture systems (RAS) implies the reuse of water in a high recirculation rate (>90%). One of the most important phases for water management in RAS involves water disinfection in order to avoid proliferation of potential pathogens and related fish diseases. Accordingly, different approaches have been assessed in this study by performing a comparison of photolytic (UV-LEDs) at different wavelengths (λ = 262, 268 and 262 + 268 nm), photochemical (UV-LEDs/H2O2, UV-LEDs/HSO5- and UV-LEDs/S2O82-) and photocatalytic (TiO2/SiO2/UV-LEDs and ZnO/SiO2/UV-LEDs) processes for the disinfection of water in RAS streams. Different laboratory tests were performed in batch scale with real RAS stream water and naturally occurring bacteria (Aeromonas hydrophyla and Citrobacter gillenii) as target microorganisms. Regarding photolytic processes, higher inactivation rates were obtained by combining λ262+268 in front of single wavelengths. Photochemical processes showed higher efficiencies by comparison with a single UV-C process, especially at 10 mg L-1 of initial oxidant dose. The inactivation kinetic rate constant was improved in the range of 15-38%, with major efficiency for UV/H2O2 ∼ UV/HSO5- > UV/S2O82-. According to photocatalytic tests, higher efficiencies were obtained by improving the inactivation kinetic rate constant up to 55% in comparison with a single UV-C process. Preliminary cost estimation was conducted for all tested disinfection methods. Those results suggest the potential application of UV-LEDs as promoter of different photochemical and photocatalytic processes, which are able to enhance disinfection in particular cases, such as the aquaculture industry.
Collapse
Affiliation(s)
- Javier Moreno-Andrés
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, INMAR-Marine Research Institute, CEIMAR- International Campus of Excellence of the Sea, University of Cadiz, Spain; Grupo de Procesos de Oxidación Avanzada, Departamento de Ingeniería Textil y Papelera, Universitat Politècnica de València, Campus de Alcoy, Alcoy, Spain.
| | - Juan José Rueda-Márquez
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology LUT, Sammonkatu 12, 50130 Mikkeli, Finland
| | - Tomáš Homola
- R&D Center for Low-Cost Plasma and Nanotechnology Surface Modifications (CEPLANT), Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37, Brno, Czech Republic
| | - Jouni Vielma
- Natural Resources Institute Finland, Survontie 9A, 40500, Jyväskylä, Finland
| | | | - Anna Mikola
- Water and Wastewater Engineering Research Group, School of Engineering, Aalto University, PO Box 15200, FI-00076, Aalto, Finland
| | - Mika Sillanpää
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350 QLD, Australia; Institute of Research and Development, Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam
| | - Asunción Acevedo-Merino
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, INMAR-Marine Research Institute, CEIMAR- International Campus of Excellence of the Sea, University of Cadiz, Spain
| | - Enrique Nebot
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, INMAR-Marine Research Institute, CEIMAR- International Campus of Excellence of the Sea, University of Cadiz, Spain
| | - Irina Levchuk
- Water and Wastewater Engineering Research Group, School of Engineering, Aalto University, PO Box 15200, FI-00076, Aalto, Finland
| |
Collapse
|
70
|
Delorme MM, Guimarães JT, Coutinho NM, Balthazar CF, Rocha RS, Silva R, Margalho LP, Pimentel TC, Silva MC, Freitas MQ, Granato D, Sant’Ana AS, Duart MCK, Cruz AG. Ultraviolet radiation: An interesting technology to preserve quality and safety of milk and dairy foods. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.06.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
71
|
Hinds LM, Charoux CM, Akhter M, O'Donnell CP, Tiwari BK. Effectiveness of a novel UV light emitting diode based technology for the microbial inactivation of Bacillus subtilis in model food systems. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106910] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
72
|
Kim DK, Kang DH. Inactivation efficacy of a sixteen UVC LED module to control foodborne pathogens on selective media and sliced deli meat and spinach surfaces. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
73
|
Irradiation by a Combination of Different Peak-Wavelength Ultraviolet-Light Emitting Diodes Enhances the Inactivation of Influenza A Viruses. Microorganisms 2020; 8:microorganisms8071014. [PMID: 32650492 PMCID: PMC7409356 DOI: 10.3390/microorganisms8071014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/30/2022] Open
Abstract
Influenza A viruses (IAVs) pose a serious global threat to humans and their livestock. This study aimed to determine the ideal irradiation by ultraviolet-light emitting diodes (UV-LEDs) for IAV disinfection. We irradiated the IAV H1N1 subtype with 4.8 mJ/cm2 UV using eight UV-LEDs [peak wavelengths (WL) = 365, 310, 300, 290, 280, 270, and 260 nm)] or a mercury low pressure (LP)-UV lamp (Peak WL = 254 nm). Inactivation was evaluated by the infection ratio of Madin–Darby canine kidney (MDCK) cells or chicken embryonated eggs. Irradiation by the 260 nm UV-LED showed the highest inactivation among all treatments. Because the irradiation-induced inactivation effects strongly correlated with damage to viral RNA, we calculated the correlation coefficient (RAE) between the irradiant spectrum and absorption of viral RNA. The RAE scores strongly correlated with the inactivation by the UV-LEDs and LP-UV lamp. To increase the RAE score, we combined three different peak WL UV-LEDs (hybrid UV-LED). The hybrid UV-LED (RAE = 86.3) significantly inactivated both H1N1 and H6N2 subtypes to a greater extent than 260 nm (RAE = 68.6) or 270 nm (RAE = 42.2) UV-LEDs. The RAE score is an important factor for increasing the virucidal effects of UV-LED irradiation.
Collapse
|
74
|
Cho ER, Kim SS, Kang DH. Inactivation Kinetics and Membrane Potential of Pathogens in Soybean Curd Subjected to Pulsed Ohmic Heating Depending on Applied Voltage and Duty Ratio. Appl Environ Microbiol 2020; 86:e00656-20. [PMID: 32385086 PMCID: PMC7357481 DOI: 10.1128/aem.00656-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/28/2020] [Indexed: 11/20/2022] Open
Abstract
The aim of this research was to investigate the efficacy of the duty ratio and applied voltage in the inactivation of pathogens in soybean curd by pulsed ohmic heating (POH). The heating rate of soybean curd increased rapidly as the applied voltage increased, although the duty ratio did not affect the temperature profile. We supported this result by verifying that electrical conductivity increased with the applied voltage. Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes in soybean curd were significantly (P < 0.05) inactivated by more than 1 log unit at 80 Vrms (root mean square voltage). To elucidate the mechanism underlying these results, the membrane potential of the pathogens was examined using DiBAC4(3) [bis-(1,3-dibutylbarbituric acid)trimethine oxonol] on the basis of a previous study showing that the electric field generated by ohmic heating affected the membrane potential of cells. The values of DiBAC4(3) accumulation increased under increasing applied voltage, and they were significantly (P < 0.05) higher at 80 Vrms, while the duty ratio had no effect. In addition, morphological analysis via transmission electron microscopy showed that electroporation and expulsion of intracellular materials were predominant at 80 Vrms Moreover, electrode corrosion was overcome by the POH technique, and the textural and color properties of soybean curd were preserved. These results substantiate the idea that the applied voltage has a profound effect on the microbial inactivation of POH as a consequence of not only the thermal effect, but also the nonthermal effect, of the electric field, whereas the duty ratio does not have such an effect.IMPORTANCE High-water-activity food products, such as soybean curd, are vulnerable to microbial contamination, which causes fatal foodborne diseases and food spoilage. Inactivating microorganisms inside food is difficult because the transfer of thermal energy is slower inside than it is outside the food. POH is an adequate sterilization technique because of its rapid and uniform heating without causing electrode corrosion. To elucidate the electrical factors associated with POH performance in the inactivation of pathogens, the effects of the applied voltage and duty ratio on POH were investigated. In this study, we verified that a high applied voltage (80 Vrms) at a duty ratio of 0.1 caused thermal and nonthermal effects on pathogens that led to an approximately 4-log-unit reduction in a significantly short time. Therefore, the results of this research corroborate database predictions of the inactivation efficiency of POH based on pathogen control strategy modeling.
Collapse
Affiliation(s)
- Eun-Rae Cho
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang-Soon Kim
- Department of Food Engineering, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Dong-Hyun Kang
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Institutes of Green Bio Science and Technology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
75
|
Jeong KO, Kim SS, Park SH, Kang DH. Inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium, and Bacillus cereus in roasted grain powder by radio frequency heating. J Appl Microbiol 2020; 129:1227-1237. [PMID: 32418285 DOI: 10.1111/jam.14705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/30/2020] [Accepted: 05/09/2020] [Indexed: 11/27/2022]
Abstract
AIMS The objective of this study was to evaluate the antimicrobial effects of radio frequency (RF) heating and the combination treatment of RF heating with ultraviolet (UV) radiation against foodborne pathogens in roasted grain powder (RGP). METHODS AND RESULTS Foodborne pathogens inoculated on RGP were subjected to RF heating or RF-UV combination treatments. After 120 s of RF heating, 4·68, 3·89 and 4·54 log reductions were observed for Escherichia coli, Salmonella Typhimurium and Bacillus cereus vegetative cells respectively. The combined RF-UV treatment showed synergistic effects of over 1 log unit compared to the sum of individual treatment for E. coli and S. Typhimurium, but not for B. cereus vegetative cells because of their high UV resistance. Germinated B. cereus cells were not significantly inactivated by RF heating (<1 log CFU per gram), and increased heat resistance compared to the vegetative cells was verified with mild heat treatment. The colour of RGP was not significantly affected by the RF or RF-UV treatments. CONCLUSIONS Applying RF heating to grain-based food products has advantages for the inactivation of E. coli and S. Typhimurium in RGP. SIGNIFICANCE AND IMPACT OF THE STUDY The results of the present study could be used as a basis for determining the treatment conditions for inactivating E. coli and other foodborne pathogens such as S. Typhimurium and B. cereus in RGP.
Collapse
Affiliation(s)
- K-O Jeong
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - S-S Kim
- Department of Food Engineering, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - S-H Park
- Department of Food Science and Technology, Kongju National University, Yesan, Chungnam, Republic of Korea
| | - D-H Kang
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea.,Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Republic of Korea
| |
Collapse
|
76
|
Rios de Souza V, Popović V, Warriner K, Koutchma T. A comparative study on the inactivation of Penicillium expansum spores on apple using light emitting diodes at 277 nm and a low-pressure mercury lamp at 253.7 nm. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
77
|
Cheng Y, Chen H, Sánchez Basurto LA, Protasenko VV, Bharadwaj S, Islam M, Moraru CI. Inactivation of Listeria and E. coli by Deep-UV LED: effect of substrate conditions on inactivation kinetics. Sci Rep 2020; 10:3411. [PMID: 32099043 PMCID: PMC7042228 DOI: 10.1038/s41598-020-60459-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/10/2020] [Indexed: 11/08/2022] Open
Abstract
Irradiation with deep-ultraviolet light-emitting diodes (DUV LEDs) is emerging as a low energy, chemical-free approach to mitigate microbial contamination, but the effect of surface conditions on treatment effectiveness is not well understood. Here, inactivation of L. innocua and E. coli ATCC25922, as examples of Gram-positive and Gram-negative bacteria, respectively, by DUV LED of 280 nm wavelength was studied. Surface scenarios commonly encountered in environmental, clinical or food processing environments were used: nutrient rich surfaces, thin liquid films (TLF), and stainless steel surfaces (SS). DUV LED exposure achieved 5-log reduction for both strains within 10 min in most scenarios, except for TLF thicker than 0.6 mm. Inactivation kinetics in TLF and on dry SS followed the Weibull model (0.96 ≤ R2 ≤ 0.99), but the model overestimated inactivation by small-dose DUV on wet SS. Confocal microscopy revealed in situ that bacteria formed a dense outer layer at the liquid-air interface of the liquid droplet, protecting the cells inside the droplet from the bactericidal DUV. This resulted in lower than anticipated inactivation on wet SS at small DUV doses, and deviation from the Weibull model. These findings can be used to design effective DUV LED disinfection strategies for various surface conditions and applications.
Collapse
Affiliation(s)
- Yifan Cheng
- Department of Food Science, Cornell University, Ithaca, NY, 14850, USA
| | - Hanyu Chen
- Department of Food Science, Cornell University, Ithaca, NY, 14850, USA
| | | | | | - Shyam Bharadwaj
- Electrical and Computer Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Moududul Islam
- Electrical and Computer Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Carmen I Moraru
- Department of Food Science, Cornell University, Ithaca, NY, 14850, USA.
| |
Collapse
|
78
|
|
79
|
Araújo CM, Sampaio KB, Menezes FNDD, Almeida ETDC, Lima MDS, Viera VB, Garcia EF, Gómez-Zavaglia A, de Souza EL, de Oliveira MEG. Protective Effects of Tropical Fruit Processing Coproducts on Probiotic Lactobacillus Strains during Freeze-Drying and Storage. Microorganisms 2020; 8:microorganisms8010096. [PMID: 31936726 PMCID: PMC7023476 DOI: 10.3390/microorganisms8010096] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/28/2019] [Accepted: 01/06/2020] [Indexed: 01/07/2023] Open
Abstract
This study evaluated the protective effects of coproducts from agroindustrial processing of the tropical fruits acerola (Malpighia glabra L., ACE), cashew (Anacardium occidentale L., CAS), and guava (Psidium guayaba L., GUA) on the probiotics Lactobacillus paracasei L-10, Lactobacillus casei L-26, and Lactobacillus acidophilus LA-05 during freeze-drying and storage. The occurrence of damage to membrane integrity, membrane potential, and efflux activity of Lactobacillus cells after freeze-drying was evaluated by flow cytometry, and viable counts were measured immediately after freeze-drying and during 90 days of storage under refrigerated or room temperature conditions. Probiotic strains freeze-dried without substrate had the overall highest count reductions (0.5 ± 0.1 to 2.9 ± 0.3 log cycles) after freeze-drying. Probiotics freeze-dried with fruit processing coproducts had small cell subpopulations with damaged efflux activity and membrane potential. Average counts of probiotics freeze-dried with ACE, CAS, or GUA after 90 days of storage under refrigerated or room temperature were in the range of 4.2 ± 0.1 to 5.3 ± 0.2 and 2.6 ± 0.3 to 4.9 ± 0.2 log CFU/g, respectively, which were higher than those observed for strains freeze-dried without substrate. The greatest protective effects on freeze-dried probiotics were overall presented by ACE. These results revealed that ACE, CAS, and GUA can exert protective effects and increase the stability of probiotic lactobacilli during freeze-drying and storage, in addition to supporting a possible added-value destination for these agroindustrial coproducts as vehicles for probiotics and for the development of novel functional foods.
Collapse
Affiliation(s)
- Caroliny Mesquita Araújo
- Departamento de Nutrição, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa 58051-900, Brazil; (C.M.A.); (K.B.S.); (F.N.D.D.M.); (E.T.d.C.A.); (M.E.G.d.O.)
| | - Karoliny Brito Sampaio
- Departamento de Nutrição, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa 58051-900, Brazil; (C.M.A.); (K.B.S.); (F.N.D.D.M.); (E.T.d.C.A.); (M.E.G.d.O.)
| | - Francisca Nayara Dantas Duarte Menezes
- Departamento de Nutrição, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa 58051-900, Brazil; (C.M.A.); (K.B.S.); (F.N.D.D.M.); (E.T.d.C.A.); (M.E.G.d.O.)
| | - Erika Tayse da Cruz Almeida
- Departamento de Nutrição, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa 58051-900, Brazil; (C.M.A.); (K.B.S.); (F.N.D.D.M.); (E.T.d.C.A.); (M.E.G.d.O.)
| | - Marcos dos Santos Lima
- Departamento de Tecnologia de Alimentos, Instituto Federal do Sertão de Pernambuco, Petrolina 56302-100, Brazil;
| | - Vanessa Bordin Viera
- Centro de Educação e Saúde, Universidade Federal de Campina Grande, Cuité 58175-000, Brazil;
| | - Estefânia Fernandes Garcia
- Departamento de Gastronomia, Centro de Tecnologia e Desenvolvimento Regional, Universidade Federal da Paraíba, João Pessoa 58058-600, Brazil;
| | - Andrea Gómez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET), La Plata 1900, Argentina;
| | - Evandro Leite de Souza
- Departamento de Nutrição, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa 58051-900, Brazil; (C.M.A.); (K.B.S.); (F.N.D.D.M.); (E.T.d.C.A.); (M.E.G.d.O.)
- Correspondence:
| | - Maria Elieidy Gomes de Oliveira
- Departamento de Nutrição, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa 58051-900, Brazil; (C.M.A.); (K.B.S.); (F.N.D.D.M.); (E.T.d.C.A.); (M.E.G.d.O.)
| |
Collapse
|
80
|
Kim SS, Shin M, Kang JW, Kim DK, Kang DH. Application of the 222 nm krypton-chlorine excilamp and 280 nm UVC light-emitting diode for the inactivation of Listeria monocytogenes and Salmonella Typhimurium in water with various turbidities. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
81
|
Protective effects of β-glucan extracted from spent brewer yeast during freeze-drying, storage and exposure to simulated gastrointestinal conditions of probiotic lactobacilli. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
82
|
Kim SS, Park SH, Kim SH, Kang DH. Synergistic effect of ohmic heating and UV-C irradiation for inactivation of Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes in buffered peptone water and tomato juice. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
83
|
Rowan NJ. Pulsed light as an emerging technology to cause disruption for food and adjacent industries – Quo vadis? Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
84
|
Almeida ETDC, de Souza GT, de Sousa Guedes JP, Barbosa IM, de Sousa CP, Castellano LRC, Magnani M, de Souza EL. Mentha piperita L. essential oil inactivates spoilage yeasts in fruit juices through the perturbation of different physiological functions in yeast cells. Food Microbiol 2019; 82:20-29. [PMID: 31027774 DOI: 10.1016/j.fm.2019.01.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 10/27/2022]
Abstract
This study evaluated the efficacy of the essential oil from Mentha piperita L. (MPEO) to inactivate cells of the potentially spoilage yeasts Candida albicans, Candida tropicalis, Pichia anomala and Saccharomyces cerevisiae in cashew, guava, mango and pineapple juices during 72 h of refrigerated storage. Damage in different physiological functions caused by MPEO in S. cerevisiae in cashew and guava juices were investigated using flow cytometry (FC). The effects of the incorporation of an effective anti-yeast MPEO dose on sensory characteristics of juices were also evaluated. MPEO displayed minimum inhibitory concentration of 1.875 μL/mL against all tested yeasts. A >5 log reduction in counts of C. albicans, P. anomala and S. cerevisiae was observed in cashew and guava juices with 7.5 and 3.75 μL/mL MPEO. Tested MPEO concentrations (1.875, 3.75 and 7.5 μL/mL) were not effective to cause >5 log reduction in counts of target yeasts in mango and pineapple juices during 72 h of exposure. Incorporation of 1.875 μL/mL MPEO in cashew and guava juices strongly compromised membrane permeability, membrane potential, enzymatic activity and efflux pump activity in S. cerevisiae cells. This same MPEO concentration did not affect appearance, odor and viscosity in fruit juices, but negatively affected their taste and aftertaste. These results show the efficacy of MPEO to inactivate potentially spoilage yeasts in fruit juices through disturbance of different physiological functions in yeast cells. However, the combined use of MPEO with other technologies should be necessary to decrease its effective anti-yeast dose in fruit juices and, consequently, the possible negative impacts on specific sensory properties of these products.
Collapse
Affiliation(s)
- Erika Tayse da Cruz Almeida
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Geany Targino de Souza
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, João Pessoa, Brazil
| | - Jossana Pereira de Sousa Guedes
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Isabella Medeiros Barbosa
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Cristina Paiva de Sousa
- Laboratory of Microbiology and Biomolecules, Department of Morphology and Pathology, Center for Biological and Health Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Lúcio Roberto Cançado Castellano
- Laboratory of Culture and Cell Analysis, Technical School of Health, Health Sciences Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, João Pessoa, Brazil
| | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Brazil.
| |
Collapse
|
85
|
Park JS, Ha JW. X-ray irradiation inactivation of Escherichia coli O157:H7, Salmonella enterica Serovar Typhimurium, and Listeria monocytogenes on sliced cheese and its bactericidal mechanisms. Int J Food Microbiol 2019; 289:127-133. [DOI: 10.1016/j.ijfoodmicro.2018.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 11/17/2022]
|
86
|
Elevated Inactivation Efficacy of a Pulsed UVC Light-Emitting Diode System for Foodborne Pathogens on Selective Media and Food Surfaces. Appl Environ Microbiol 2018; 84:AEM.01340-18. [PMID: 30097449 DOI: 10.1128/aem.01340-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/02/2018] [Indexed: 12/24/2022] Open
Abstract
UVC light, a strong surface disinfection technology, is used worldwide to ensure not only environmental safety but also food safety. Several drawbacks associated with the use of mercury-containing UV lamps, especially human and environmental health risks, led to the Minamata Convention on Mercury, which prohibits the manufacture and import/export of products containing mercury. Therefore, light-emitting diode (LED)-based UVC irradiation, a new technology that is ecofriendly and represents an effective UV light source, has been researched recently. To date, however, there has been no report describing pulsed UVC-LED irradiation for improvement of inactivation of foodborne pathogens, although much research regarding conventional pulsed xenon lamps has been published. In this investigation, we evaluated the enhanced bactericidal effect of a pulsed UVC-LED system, compared to continuous irradiation, and optimum conditions for maximizing the effect were determined. Also, the differences in inactivation between pulsed and continuous UVC-LED irradiation were determined by inactivation mechanism analyses. The combination of 20-Hz frequency and 50% duty ratio for pulsed UVC-LED irradiation achieved 4- to 5-log-unit reductions of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes; this combination showed the greatest bactericidal effect among various treatment conditions using 2 or 5 mJ/cm2 In mechanism assessments, membrane integrity (propidium iodide uptake) was not affected by UVC-LED treatment but membrane potential [bis-(1,3-dibutylbarbituric acid)trimethine oxonol [DiBAC4(3)] accumulation] showed significantly different values when pulsed and continuous treatments were compared. Changes in membrane lipid peroxidation and respiratory enzyme activity were attributed to generation of more reactive oxygen species by pulsed UVC-LED irradiation.IMPORTANCE In 2013, the United Nations Environment Programme convened the Minamata Convention on Mercury, which prohibits trade in mercury-containing products in order to ensure human health. It will be effectuated in 2020; use of low-pressure mercury lamps will be discontinued and a new UV light source selected to replace the conventional technology. In this regard, UVC-LEDs have been developed and the fundamental inactivating effect has been researched. However, a pulsed UVC-LED system has not been studied, because of the difficulty of generating a UVC-LED pulse wave. An optical chopper system that physically divides the light with an adjustable blade, with personalized frequency and duty ratio settings, was introduced for generation of pulsed UVC-LED irradiation. This study elucidated the efficacy of a pulsed UVC-LED system and investigated its enhanced bactericidal effect in mechanism analyses.
Collapse
|
87
|
Park SH, Kang JW, Kang DH. Inactivation of foodborne pathogens on fresh produce by combined treatment with UV-C radiation and chlorine dioxide gas, and mechanisms of synergistic inactivation. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.04.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
88
|
Lai ACK, Nunayon SS, Tan TF, Li WS. A pilot study on the disinfection efficacy of localized UV on the flushing-generated spread of pathogens. JOURNAL OF HAZARDOUS MATERIALS 2018; 358:389-396. [PMID: 30005250 PMCID: PMC7116983 DOI: 10.1016/j.jhazmat.2018.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/25/2018] [Accepted: 07/01/2018] [Indexed: 05/21/2023]
Abstract
The process of toilet-flushing can generate flushing-associated water droplets which can potentially expose humans to pathogen-laden aerosols. Very little is known about such aerosol dissemination or the means for minimizing exposure to these aerosols. This study has evaluated the efficacy of ultraviolet waveband C (UV-C) for disinfection of flushing-generated pathogen-laden aerosols through tests with localized disinfection systems for airborne and surface contaminations. Three types of bacteria were chosen for investigation: Staphylococcus epidermidis, Escherichia coli, and Salmonella typhimurium. Tests were conducted with UV-C tubes of 5 W and 10 W. High levels of disinfection efficacies were observed, ranging from 76% to 97% for bacteria-laden aerosols at sources of emission, and efficiencies of 53% to 79% for surface samples in localized systems. The results from the localized systems were further compared with those obtained with an upper-room ultraviolet germicidal irradiation (UVGI) system. As it is important to note, the UV-C doses and ozone emissions for the localized systems were found well below the limits recommended in current guidelines. This research has shown that the disinfection of flushing-generated pathogen-laden aerosols in proximity to the source of emission was more effective than at the more distant sites where aerosols may be dispersed to the environment.
Collapse
Affiliation(s)
- A C K Lai
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
| | - S S Nunayon
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - T F Tan
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - W S Li
- Queen Mary Hospital, Pokfulam Road, Hong Kong; School of Public Health, The University of Hong Kong, Hong Kong
| |
Collapse
|
89
|
UVC LED Irradiation Effectively Inactivates Aerosolized Viruses, Bacteria, and Fungi in a Chamber-Type Air Disinfection System. Appl Environ Microbiol 2018; 84:AEM.00944-18. [PMID: 29959245 DOI: 10.1128/aem.00944-18] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/19/2018] [Indexed: 11/20/2022] Open
Abstract
In this study, the possibility of inactivating viral, bacterial, and fungal aerosols in a chamber-type air disinfection system by using a UVC light-emitting-diode (LED) array was investigated and inactivation rate constants of each microorganism were calculated in fitting curves of surviving populations. UVC LED array treatment effectively inactivated viral infectivity, achieving 5-log reductions within 45 mJ/cm2 for MS2, Qβ, and ϕX174 viruses. UVC LED array effectiveness in inactivating Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, Listeria monocytogenes, and Staphylococcus aureus aerosols achieved 2.5- to 4-log reductions within 1.5 to 4.6 mJ/cm2 Also, 4-log reductions of Aspergillus flavus and Alternaria japonica were achieved at a dosage of 23 mJ/cm2 using UVC LED array irradiation. The highest UV susceptibility, represented by the inactivation rate constant, was calculated for bacteria, followed by fungi and viruses. UVC LED, an innovative technology, can effectively inactivate microorganisms regardless of taxonomic classification and can sufficiently substitute for conventional mercury UV lamps.IMPORTANCE The United Nations Environment Programme (UNEP) convened the Minamata Convention on Mercury in 2013 to ban mercury-containing products in order to ensure human and environmental health. It will be effectuated in 2020 to discontinue use of low-pressure mercury lamps and new UV-emitting sources have to replace this conventional technology. However, the UV germicidal irradiation (UVGI) system still uses conventional UV lamps, and no research has been conducted for air disinfection using UVC LEDs. The research reported here investigated the inactivation effect of aerosolized microorganisms, including viruses, bacteria, and fungi, with an UVC LED module. The results can be utilized as a primary database to replace conventional UV lamps with UVC LEDs, a novel type of UV emitter. Implementation of UVC LED technology is truly expected to significantly reduce the extent of global mercury contamination, and this study provides important baseline data to help ensure a healthier environment and increased health for humanity.
Collapse
|
90
|
Murray K, Wu F, Shi J, Jun Xue S, Warriner K. Challenges in the microbiological food safety of fresh produce: Limitations of post-harvest washing and the need for alternative interventions. FOOD QUALITY AND SAFETY 2017. [DOI: 10.1093/fqsafe/fyx027] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|