51
|
Song K, Im SH, Yoon YJ, Kim HM, Lee HJ, Park GS. A 60 Hz uniform electromagnetic field promotes human cell proliferation by decreasing intracellular reactive oxygen species levels. PLoS One 2018; 13:e0199753. [PMID: 30011321 PMCID: PMC6047776 DOI: 10.1371/journal.pone.0199753] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 06/13/2018] [Indexed: 12/27/2022] Open
Abstract
Previously, we showed that exposure of human normal and cancer cells to a 6 mT, 60 Hz gradient electromagnetic field (EMF) induced genotoxicity. Here, we investigated the cellular effects of a uniform EMF. Single or repetitive exposure to a 6 mT, 60 Hz uniform EMF neither induced DNA damage nor affected cell viability in HeLa and primary IMR-90 fibroblasts. However, continuous exposure of these cells to an EMF promoted cell proliferation. Cell viability increased 24.4% for HeLa and 15.2% for IMR-90 cells after a total 168 h exposure by subculture. This increase in cell proliferation was directly correlated with EMF strength and exposure time. When further incubated without EMF, cell proliferation slowed down to that of unexposed cells, suggesting that the proliferative effect is reversible. The expression of cell cycle markers increased in cells continuously exposed to an EMF as expected, but the distribution of cells in each stage of the cell cycle did not change. Notably, intracellular reactive oxygen species levels decreased and phosphorylation of Akt and Erk1/2 increased in cells exposed to an EMF, suggesting that reduced levels of intracellular reactive oxygen species play a role in increased proliferation. These results demonstrate that EMF uniformity at an extremely low frequency (ELF) is an important factor in the cellular effects of ELF-EMF.
Collapse
Affiliation(s)
- Kiwon Song
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Korea
- * E-mail: (KS); (GSP)
| | - Sang Hyeon Im
- Department of Electrical Engineering, Pusan National University, Pusan, Korea
| | - Yeo Jun Yoon
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Korea
| | - Hui Min Kim
- Department of Electrical Engineering, Pusan National University, Pusan, Korea
| | - Hae June Lee
- Department of Electrical Engineering, Pusan National University, Pusan, Korea
| | - Gwan Soo Park
- Department of Electrical Engineering, Pusan National University, Pusan, Korea
- * E-mail: (KS); (GSP)
| |
Collapse
|
52
|
Shen R, Liu P, Zhang Y, Yu Z, Chen X, Zhou L, Nie B, Żaczek A, Chen J, Liu J. Sensitive Detection of Single-Cell Secreted H2O2 by Integrating a Microfluidic Droplet Sensor and Au Nanoclusters. Anal Chem 2018; 90:4478-4484. [DOI: 10.1021/acs.analchem.7b04798] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Rui Shen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Peipei Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Yiqiu Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Zhao Yu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Xuyue Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Lu Zhou
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Baoqing Nie
- School of Electronic and Information Engineering, Soochow University, Suzhou, Jiangsu 215123, China
| | - Anna Żaczek
- Medical Biotechnology Department, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1, Gdańsk, 80-211, Poland
| | - Jian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Jian Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| |
Collapse
|
53
|
Lynnyk A, Lunova M, Jirsa M, Egorova D, Kulikov A, Kubinová Š, Lunov O, Dejneka A. Manipulating the mitochondria activity in human hepatic cell line Huh7 by low-power laser irradiation. BIOMEDICAL OPTICS EXPRESS 2018; 9. [PMID: 29541521 PMCID: PMC5846531 DOI: 10.1364/boe.9.001283] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Low-power laser irradiation of red light has been recognized as a promising tool across a vast variety of biomedical applications. However, deep understanding of the molecular mechanisms behind laser-induced cellular effects remains a significant challenge. Here, we investigated mechanisms involved in the death process in human hepatic cell line Huh7 at a laser irradiation. We decoupled distinct cell death pathways targeted by laser irradiations of different powers. Our data demonstrate that high dose laser irradiation exhibited the highest levels of total reactive oxygen species production, leading to cyclophilin D-related necrosis via the mitochondrial permeability transition. On the contrary, low dose laser irradiation resulted in the nuclear accumulation of superoxide and apoptosis execution. Our findings offer a novel insight into laser-induced cellular responses, and reveal distinct cell death pathways triggered by laser irradiation. The observed link between mitochondria depolarization and triggering ROS could be a fundamental phenomenon in laser-induced cellular responses.
Collapse
Affiliation(s)
- Anna Lynnyk
- Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Mariia Lunova
- Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
- Institute for Clinical & Experimental Medicine (IKEM), Prague, 14021, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), Prague, 14021, Czech Republic
| | | | | | - Šárka Kubinová
- Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
- Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, 14220, Czech Republic
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| |
Collapse
|
54
|
Martínez-Torres AC, Reyes-Ruiz A, Benítez-Londoño M, Franco-Molina MA, Rodríguez-Padilla C. IMMUNEPOTENT CRP induces cell cycle arrest and caspase-independent regulated cell death in HeLa cells through reactive oxygen species production. BMC Cancer 2018; 18:13. [PMID: 29298674 PMCID: PMC5753472 DOI: 10.1186/s12885-017-3954-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 12/21/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Regulated cell death (RCD) is a mechanism by which the cell activates its own machinery to self-destruct. RCD is important for the maintenance of tissue homeostasis and its deregulation is involved in diseases such as cervical cancer. IMMUNEPOTENT CRP (I-CRP) is a dialyzable bovine leukocyte extract that contains transfer factors and acts as an immunomodulator, and can be cytotoxic to cancer cell lines and reduce tumor burden in vivo. Although I-CRP has shown to improve or modulate immune response in inflammation, infectious diseases and cancer, its widespread use has been limited by the absence of conclusive data on the molecular mechanism of its action. METHODS In this study we analyzed the mechanism by which I-CRP induces cytotoxicity in HeLa cells. We assessed cell viability, cell death, cell cycle, nuclear morphology and DNA integrity, caspase dependence and activity, mitochondrial membrane potential, and reactive oxygen species production. RESULTS I-CRP diminishes cell viability in HeLa cells through a RCD pathway and induces cell cycle arrest in the G2/M phase. We show that the I-CRP induces caspase activation but cell death induction is independent of caspases, as observed by the use of a pan-caspase inhibitor, which blocked caspase activity but not cell death. Moreover, we show that I-CRP induces DNA alterations, loss of mitochondrial membrane potential, and production of reactive-oxygen species. Finally, pretreatment with N-acetyl-L-cysteine (NAC), a ROS scavenger, prevented both ROS generation and cell death induced by I-CRP. CONCLUSIONS Our data indicate that I-CRP treatment induced cell cycle arrest in G2/M phase, mitochondrial damage, and ROS-mediated caspase-independent cell death in HeLa cells. This work opens the way to the elucidation of a more detailed cell death pathway that could potentially work in conjunction with caspase-dependent cell death induced by classical chemotherapies.
Collapse
Affiliation(s)
- Ana Carolina Martínez-Torres
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, 66455 Monterrey, Mexico
| | - Alejandra Reyes-Ruiz
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, 66455 Monterrey, Mexico
| | - Milena Benítez-Londoño
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, 66455 Monterrey, Mexico
| | - Moises Armides Franco-Molina
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, 66455 Monterrey, Mexico
| | - Cristina Rodríguez-Padilla
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, 66455 Monterrey, Mexico
| |
Collapse
|
55
|
Sharma C, Wang HX, Li Q, Knoblich K, Reisenbichler ES, Richardson AL, Hemler ME. Protein Acyltransferase DHHC3 Regulates Breast Tumor Growth, Oxidative Stress, and Senescence. Cancer Res 2017; 77:6880-6890. [PMID: 29055014 DOI: 10.1158/0008-5472.can-17-1536] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/29/2017] [Accepted: 10/17/2017] [Indexed: 01/03/2023]
Abstract
DHHC-type protein acyltransferases may regulate the localization, stability, and/or activity of their substrates. In this study, we show that the protein palmitoyltransferase DHHC3 is upregulated in malignant and metastatic human breast cancer. Elevated expression of DHHC3 correlated with diminished patient survival in breast cancer and six other human cancer types. ZDHHC3 ablation in human MDA-MB-231 mammary tumor cell xenografts reduced the sizes of both the primary tumor and metastatic lung colonies. Gene array data and fluorescence dye assays documented increased oxidative stress and senescence in ZDHHC3-ablated cells. ZDHHC3-ablated tumors also showed enhanced recruitment of innate immune cells (antitumor macrophages, natural killer cells) associated with clearance of senescent tumors. These antitumor effects were reversed upon reconstitution with wild-type, but not enzyme-active site-deficient DHHC3. Concomitant ablation of the upregulated oxidative stress protein TXNIP substantially negated the effects of ZDHHC3 depletion on oxidative stress and senescence. Diminished DHHC3-dependent palmitoylation of ERGIC3 protein likely played a key role in TXNIP upregulation. In conclusion, DHHC3-mediated protein palmitoylation supports breast tumor growth by modulating cellular oxidative stress and senescence. Cancer Res; 77(24); 6880-90. ©2017 AACR.
Collapse
Affiliation(s)
- Chandan Sharma
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Hong-Xing Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Qinglin Li
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Konstantin Knoblich
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Emily S Reisenbichler
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Andrea L Richardson
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Martin E Hemler
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Pathology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
56
|
Electrochemical H2O2 biosensor composed of myoglobin on MoS2 nanoparticle-graphene oxide hybrid structure. Biosens Bioelectron 2017; 93:14-20. [DOI: 10.1016/j.bios.2016.11.064] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 11/28/2016] [Indexed: 12/16/2022]
|
57
|
Iron chelation for the treatment of uveitis. Med Hypotheses 2017; 103:1-4. [DOI: 10.1016/j.mehy.2017.03.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 02/04/2017] [Accepted: 03/06/2017] [Indexed: 12/21/2022]
|
58
|
Fedorovich SV, Waseem TV, Puchkova LV. Biogenetic and morphofunctional heterogeneity of mitochondria: the case of synaptic mitochondria. Rev Neurosci 2017; 28:363-373. [DOI: 10.1515/revneuro-2016-0077] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/29/2016] [Indexed: 12/26/2022]
Abstract
AbstractThe mitochondria of different cells are different in their morphological and biochemical properties. These organelles generate free radicals during activity, leading inevitably to mitochondrial DNA damage. It is not clear how this problem is addressed in long-lived cells, such as neurons. We propose the hypothesis that mitochondria within the same cell also differ in lifespan and ability to divide. According to our suggestion, cells have a pool of ‘stem’ mitochondria with low metabolic activity and a pool of ‘differentiated’ mitochondria with significantly shorter lifespans and high metabolic activity. We consider synaptic mitochondria as a possible example of ‘differentiated’ mitochondria. They are significantly smaller than mitochondria from the cell body, and they are different in key enzyme activity levels, proteome, and lipidome. Synaptic mitochondria are more sensitive to different damaging factors. It has been established that neurons have a sorting mechanism that sends mitochondria with high membrane potential to presynaptic endings. This review describes the properties of synaptic mitochondria and their role in the regulation of synaptic transmission.
Collapse
Affiliation(s)
- Sergei V. Fedorovich
- Institute of Biophysics and Cell Engineering, Akademicheskaya St., 27, Minsk 220072, Belarus
| | - Tatyana V. Waseem
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Ludmila V. Puchkova
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya str., 29, St. Petersburg 195251, Russia
- ITMO University, Kronverksky av., 49, St.Petersburg 197101, Russia
- Institute of Experimental Medicine, Pavlova str., 12, St.Petersburg 197376, Russia
| |
Collapse
|
59
|
Zhang L, Li J, Hu J, Li D, Wang X, Zhang R, Zhang H, Shi M, Chen H. Cigarette smoke extract induces EGFR-TKI resistance via promoting EGFR signaling pathway and ROS generation in NSCLC cell lines. Lung Cancer 2017; 109:109-116. [PMID: 28577939 DOI: 10.1016/j.lungcan.2017.05.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/10/2017] [Accepted: 05/10/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Epithelial growth factor receptor (EGFR) somatic-mutated non-small cell lung cancer (NSCLC) patients with smoking history always show a poor response to EGFR tyrosine kinase inhibitors (EGFR-TKIs). The aim of the study is to explore the molecular mechanism of EGFR-TKI resistance induced by cigarette smoke extract and investigate the novel anti-resistance strategies. METHODS The effect of cigarette smoke extract (CSE) on gefitinib sensitivity, EGFR signaling, apoptosis and reactive oxygen species (ROS) levels were detected in vitro by MTT assays, western blot, flow cytometry and laser scanning confocal microscope, respectively. RESULTS MTT assays presented that CSE claimed antagonistic effect on gefitinib sensitivity via the up-regulated half maximal inhibitory concentration (IC50) values, western blot showed that CSE instigated EGFR, AKT phosphorylation, while N-Acetyl-l-Cysteine (NAC) could alleviate gefitinib resistance and abort the aberrant phosphorylation in both PC-9 and A549 cells. Confocal microscope and flow cytometry displayed that ROS generation increased after CSE exposure in NSCLC cells and this change could be inhibited by NAC. CONCLUSION Cigarette smoke extract induces EGFR-TKI resistance via promoting EGFR signaling and ROS generation in NSCLC cell lines which could be suppressed by NAC. Alternatively, combined NAC with EGFR-TKIs to treat EGFR mutated NSCLC patients with smoking history may be a potential choice in clinical setting.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jun Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jing Hu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Dandan Li
- Department of Respiratory Medicine, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| | - Xiaohui Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Rui Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hui Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Meng Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hong Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
60
|
Bharathiraja S, Manivasagan P, Moorthy MS, Bui NQ, Lee KD, Oh J. Chlorin e6 conjugated copper sulfide nanoparticles for photodynamic combined photothermal therapy. Photodiagnosis Photodyn Ther 2017; 19:128-134. [PMID: 28465165 DOI: 10.1016/j.pdpdt.2017.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/28/2017] [Accepted: 04/11/2017] [Indexed: 10/19/2022]
Abstract
The photo-based therapeutic approaches have attracted tremendous attention in recent years especially in treatment and management of tumors. Photodynamic and photothermal are two major therapeutic modalities which are being applied in clinical therapy. The development of nanomaterials for photodynamic combined with photothermal therapy has gained significant attention for its treatment efficacy. In the present study, we designed chlorin e6 (Ce6) conjugated copper sulfide (CuS) nanoparticles (CuS-Ce6 NPs) through amine functionalization and the synthesized nanoparticles act as a dual-model agent for photodynamic therapy and photothermal therapy. CuS-Ce6 NPs showed enhanced photodynamic effect through generation of singlet oxygen upon 670nm laser illumination. The same nanoparticles exerted thermal response under an 808nm laser at 2W/cm2. The fabricated nanoparticles did not show any cytotoxic effect toward breast cancer cells in the absence of light. In vitro cell viability assay showed a potent cytotoxicity in photothermal and photodynamic treatment. Rather than singular treatment, the photodynamic combined photothermal treatment showed an enhanced cytotoxic effect on treated cells. In addition, the CuS-Ce6 NPs exert a photoacoustic signal for non-invasive imaging of treated cells in tissue-mimicking phantom. In conclusion the CuS-Ce6 NPs act as multimodal agent for photo based imaging and therapy.
Collapse
Affiliation(s)
- Subramaniyan Bharathiraja
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Republic of Korea
| | - Panchanathan Manivasagan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Republic of Korea
| | - Madhappan Santha Moorthy
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Republic of Korea
| | - Nhat Quang Bui
- Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| | - Kang Dae Lee
- Department of Otolaryngology - Head and Neck Surgery, Kosin University College of Medicine, Busan, Republic of Korea
| | - Junghwan Oh
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Republic of Korea; Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
61
|
Ahmed MM, Hussein MMA. Neurotoxic effects of silver nanoparticles and the protective role of rutin. Biomed Pharmacother 2017; 90:731-739. [PMID: 28419969 DOI: 10.1016/j.biopha.2017.04.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/31/2017] [Accepted: 04/10/2017] [Indexed: 11/30/2022] Open
Abstract
The toxicological studies on silver nanoparticles (Ag-NPs) have become a hot topic over the past few decades due to their unique properties on the nanoscale and widespread in many commercial products that launched into the market recently. This study was undertaken to shed light on Ag-NPs toxicity on neurotransmitters with special emphasis on the impact of concurrent administration of rutin with Ag-NPs in the experimental rats. The oral administration of Ag-NPs in rats induced brain oxidative stress, significant alterations in neurotransmitters and amino acids. Furthermore, transcriptional levels of glutamatergic N-methyl-d-aspartate (NMDA) receptors, monoamino oxidases (MAO-A, MAO-B) and metallothionein-III (MT-III) showed a significant elevation in Ag-NPs intoxicated rats. Moreover, histological examinations revealed astrogliosis and demyelination of neurons concomitant with neuronal degeneration and vacuolation. Strikingly, oral administration of rutin counterbalanced the toxic effects triggered by Ag-NPs. Taken together, our findings suggested that oral administration of Ag-NPs induced neurotoxicity in rats and rutin mitigates these effects.
Collapse
Affiliation(s)
- Mona M Ahmed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44519, Egypt
| | - Mohamed M A Hussein
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, 44519, Egypt.
| |
Collapse
|
62
|
Baez E, Guio-Vega GP, Echeverria V, Sandoval-Rueda DA, Barreto GE. 4'-Chlorodiazepam Protects Mitochondria in T98G Astrocyte Cell Line from Glucose Deprivation. Neurotox Res 2017; 32:163-171. [PMID: 28405935 DOI: 10.1007/s12640-017-9733-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/30/2017] [Accepted: 04/04/2017] [Indexed: 01/12/2023]
Abstract
The translocator protein (TSPO), formerly known as the peripheral-type benzodiazepine receptor (PBR), is considered an important regulator of steroidogenesis and a potential therapeutic target in neurological disorders. Previous evidence suggests that TSPO ligands can protect cells during injury and prevent apoptosis in central nervous system (CNS) cells. However, its actions on astrocytic cells under metabolic injury are not well understood. In this study, we explored whether 4'-chlorodiazepam (Ro5-4864), a TSPO ligand, might protect astrocyte mitochondria under glucose deprivation. Our results showed that 4'-chlorodiazepam preserved cell viability and reduced nuclear fragmentation in glucose-deprived cells. These effects were accompanied by a reduced production of free radicals and maintenance of mitochondrial functions in cells treated with 4'-chlorodiazepam. Finally, our findings suggest that TSPO might be involved in reducing oxidative stress by preserving mitochondrial functions in astrocytic cells exposed to glucose withdrawal.
Collapse
Affiliation(s)
- Eliana Baez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Gina Paola Guio-Vega
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | | | - Daniel Andres Sandoval-Rueda
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia. .,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
63
|
Thyagarajan A, Sahu RP. Potential Contributions of Antioxidants to Cancer Therapy: Immunomodulation and Radiosensitization. Integr Cancer Ther 2017. [PMID: 28627256 PMCID: PMC6041931 DOI: 10.1177/1534735416681639] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Antioxidants play important roles in the maintenance of cellular integrity and thus are critical in maintaining the homeostasis of the host immune system. A balance between the levels of pro-oxidants and antioxidants defines the cellular fate of genomic integrity via maintaining the redox status of the cells. An aberration in this balance modulates host immunity that affects normal cellular signaling pathways resulting in uncontrolled proliferation of cells leading to neocarcinogenesis. For decades, there have been scientific debates on the use of antioxidants for the treatment of human cancers. This review is focused on current updates on the implications of antioxidant use as adjuncts in cancer therapy with an emphasis on immunomodulation and radiosensitization.
Collapse
Affiliation(s)
| | - Ravi P. Sahu
- Wright State University, Dayton, OH, USA
- Ravi P. Sahu, Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, 230 Health Sciences Building, 3640 Colonel Glenn Highway, Dayton, OH 45435-0001, USA.
| |
Collapse
|
64
|
Huang K, Caplan J, Sweigard JA, Czymmek KJ, Donofrio NM. Optimization of the HyPer sensor for robust real-time detection of hydrogen peroxide in the rice blast fungus. MOLECULAR PLANT PATHOLOGY 2017; 18:298-307. [PMID: 26950262 PMCID: PMC6638257 DOI: 10.1111/mpp.12392] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Reactive oxygen species (ROS) production and breakdown have been studied in detail in plant-pathogenic fungi, including the rice blast fungus, Magnaporthe oryzae; however, the examination of the dynamic process of ROS production in real time has proven to be challenging. We resynthesized an existing ROS sensor, called HyPer, to exhibit optimized codon bias for fungi, specifically Neurospora crassa, and used a combination of microscopy and plate reader assays to determine whether this construct could detect changes in fungal ROS during the plant infection process. Using confocal microscopy, we were able to visualize fluctuating ROS levels during the formation of an appressorium on an artificial hydrophobic surface, as well as during infection on host leaves. Using the plate reader, we were able to ascertain measurements of hydrogen peroxide (H2 O2 ) levels in conidia as detected by the MoHyPer sensor. Overall, by the optimization of codon usage for N. crassa and related fungal genomes, the MoHyPer sensor can be used as a robust, dynamic and powerful tool to both monitor and quantify H2 O2 dynamics in real time during important stages of the plant infection process.
Collapse
Affiliation(s)
- Kun Huang
- BioImaging CenterDelaware Biotechnology InstituteNewarkDE 19716USA
- Department of Plant and Soil SciencesUniversity of DelawareNewarkDE19716USA
| | - Jeff Caplan
- BioImaging CenterDelaware Biotechnology InstituteNewarkDE 19716USA
| | - James A. Sweigard
- DuPont Stine Haskell Research Center 1090 Elkton RdNewarkDE 19711USA
| | | | - Nicole M. Donofrio
- Department of Plant and Soil SciencesUniversity of DelawareNewarkDE19716USA
| |
Collapse
|
65
|
Overexpression of Heme Oxygenase-1 in Mesenchymal Stem Cells Augments Their Protection on Retinal Cells In Vitro and Attenuates Retinal Ischemia/Reperfusion Injury In Vivo against Oxidative Stress. Stem Cells Int 2017; 2017:4985323. [PMID: 28255307 PMCID: PMC5309411 DOI: 10.1155/2017/4985323] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/26/2016] [Accepted: 12/21/2016] [Indexed: 01/08/2023] Open
Abstract
Retinal ischemia/reperfusion (I/R) injury, involving several ocular diseases, seriously threatens human ocular health, mainly treated by attenuating I/R-induced oxidative stress. Currently, mesenchymal stem cells (MSCs) could restore I/R-injured retina through paracrine secretion. Additionally, heme oxygenase-1 (HO-1) could ameliorate oxidative stress and thus retinal apoptosis, but the expression of HO-1 in MSC is limited. Here, we hypothesized that overexpression of HO-1 in MSC (MSC-HO-1) may significantly improve their retina-protective potentials. The overexpression of HO-1 in MSC was achieved by lentivirus transduction. Then, MSC or MSC-HO-1 was cocultured with retinal ganglion cells (RGC-5) in H2O2-simulated oxidative condition and their protection on RGC-5 was systemically valuated in vitro. Compared with MSC, MSC-HO-1 significantly attenuated H2O2-induced injury of RGC-5, including decrease in cellular ROS level and apoptosis, activation of antiapoptotic proteins p-Akt and Bcl-2, and blockage of proapoptotic proteins cleaved caspase 3 and Bax. In retinal I/R rats model, compared with control MSC, MSC-HO-1-treated retina significantly retrieved its structural thickness, reduced cell apoptosis, markedly attenuated retinal oxidative stress level, and largely regained the activities of typical antioxidant enzymes, SOD and CAT. Therefore, it could be concluded that overexpression of HO-1 provides a promising strategy to enhance the MSC-based therapy for I/R-related retinal injury.
Collapse
|
66
|
Zhou Z, Yin Y, Chang Q, Sun G, Lin J, Dai Y. Downregulation of B-myb promotes senescence via the ROS-mediated p53/p21 pathway, in vascular endothelial cells. Cell Prolif 2016; 50. [PMID: 27878894 DOI: 10.1111/cpr.12319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/18/2016] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES To reveal whether B-myb is involved in preventing senescence of vascular endothelial cells, and if so, to identify possible mechanisms for it. MATERIALS AND METHODS C57/BL6 male mice and primary human aortic endothelial cells (HAECs) were used. Bleomycin was applied to induce stress-related premature senescence. B-myb knockdown was achieved using an siRNA technique and cell senescence was assessed using the senescence-associated β-galactosidase (SA-β-gal) assay. Intracellular reactive oxygen species (ROS) production was analysed using an ROS assay kit and cell proliferation was evaluated using KFluor488 EdU kit. Capillary tube network formation was determined by Matrigel assay. Expressions of mRNA and protein levels were detected by real-time PCR and western blotting. RESULTS B-myb expression significantly decreased, while p53 and p21 expressions increased in the aortas of aged mice. This expression pattern was also found in replicative senescent HAECs and senescent HAECs induced by bleomycin. B-myb knockdown resulted in upregulation of p22phox , ROS accumulation and cell senescence of HAECs. Downregulation of B-myb significantly inhibited cell proliferation and capillary tube network formation and activated the p53/p21 signalling pathway. Blocking ROS production or inhibiting p53 activation remarkably attenuated SA-β-gal activity and delayed cell senescence induced by B-myb-silencing. CONCLUSION Downregulation of B-myb induced senescence by upregulation of p22phox and activation of the ROS/p53/p21 pathway, in our vascular endothelial cells, suggesting that B-myb may be a novel candidate for regulating cell senescence to protect against endothelial senescence-related cardiovascular diseases.
Collapse
Affiliation(s)
- Zhihui Zhou
- Department of Cardiology, Shanghai East Hospital and Immunology Department, Tongji University School of Medicine, Shanghai, China
| | - Yanlin Yin
- Department of Cardiology, Shanghai East Hospital and Immunology Department, Tongji University School of Medicine, Shanghai, China
| | - Qun Chang
- Department of Cardiology, Shanghai East Hospital and Immunology Department, Tongji University School of Medicine, Shanghai, China
| | - Guanqun Sun
- Department of Cardiology, Shanghai East Hospital and Immunology Department, Tongji University School of Medicine, Shanghai, China
| | - Jiahui Lin
- Department of Cardiology, Shanghai East Hospital and Immunology Department, Tongji University School of Medicine, Shanghai, China
| | - Yalei Dai
- Department of Cardiology, Shanghai East Hospital and Immunology Department, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
67
|
Lau P, Bidin N, Islam S, Shukri WNBWM, Zakaria N, Musa N, Krishnan G. Influence of gold nanoparticles on wound healing treatment in rat model: Photobiomodulation therapy. Lasers Surg Med 2016; 49:380-386. [DOI: 10.1002/lsm.22614] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2016] [Indexed: 01/10/2023]
Affiliation(s)
- PikSuan Lau
- Laser Center, Ibnu Sina Institute for Scientific and Industrial Research (ISI-SIR); Universiti Teknologi Malaysia; Johor Bahru Johor 81310 Malaysia
| | - Noriah Bidin
- Laser Center, Ibnu Sina Institute for Scientific and Industrial Research (ISI-SIR); Universiti Teknologi Malaysia; Johor Bahru Johor 81310 Malaysia
| | - Shumaila Islam
- Laser Center, Ibnu Sina Institute for Scientific and Industrial Research (ISI-SIR); Universiti Teknologi Malaysia; Johor Bahru Johor 81310 Malaysia
| | - Wan Norsyuhada Binti Wan Mohd Shukri
- Laser Center, Ibnu Sina Institute for Scientific and Industrial Research (ISI-SIR); Universiti Teknologi Malaysia; Johor Bahru Johor 81310 Malaysia
| | - Nurlaily Zakaria
- Laser Center, Ibnu Sina Institute for Scientific and Industrial Research (ISI-SIR); Universiti Teknologi Malaysia; Johor Bahru Johor 81310 Malaysia
| | - Nurfatin Musa
- Faculty of Science; Universiti Tun Hussein Onn Malaysia; Parit Raja Johor 86400 Malaysia
| | - Ganesan Krishnan
- Laser Center, Ibnu Sina Institute for Scientific and Industrial Research (ISI-SIR); Universiti Teknologi Malaysia; Johor Bahru Johor 81310 Malaysia
| |
Collapse
|
68
|
Koo MA, Kim BJ, Lee MH, Kwon BJ, Kim MS, Seon GM, Kim D, Nam KC, Wang KK, Kim YR, Park JC. Controlled Delivery of Extracellular ROS Based on Hematoporphyrin-Incorporated Polyurethane Film for Enhanced Proliferation of Endothelial Cells. ACS APPLIED MATERIALS & INTERFACES 2016; 8:28448-28457. [PMID: 27696825 DOI: 10.1021/acsami.6b07628] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The principle of photodynamic treatment (PDT) involves the administration of photosensitizer (PS) at diseased tissues, followed by light irradiation to produce reactive oxygen species (ROS). In cells, a moderate increase in ROS plays an important role as signaling molecule to promote cell proliferation, whereas a severe increase of ROS causes cell damage. Previous studies have shown that low levels of ROS stimulate cell growth through PS drugs-treating PDT and nonthermal plasma treatment. However, these methods have side effects which are associated with low tissue selectivity and remaining of PS residues. To overcome such shortcomings, we designed hematoporphyrin-incorporated polyurethane (PU) film induced generation of extracellular ROS with singlet oxygen and free radicals. The film can easily control ROS production rate by regulating several parameters including light dose, PS dose. Also, its use facilitates targeted delivery of ROS to the specific lesion. Our study demonstrated that extracellular ROS could induce the formation of intracellular ROS. In vascular endothelial cells, a moderated increase in intracellular ROS also stimulated cell proliferation and cell cycle progression by accurate control of optimum levels of ROS with hematoporphyrin-incorporated polymer films. This modulation of cellular growth is expected to be an effective strategy for the design of next-generation PDT.
Collapse
Affiliation(s)
| | - Bong-Jin Kim
- Department of Chemistry, Yonsei University , 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | | | | | | | | | | | - Ki Chang Nam
- Department of Medical Engineering, Dongguk University College of Medicine , Gyeonggi-do 10326, Republic of Korea
| | - Kang-Kyun Wang
- Department of Chemistry, Yonsei University , 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yong-Rok Kim
- Department of Chemistry, Yonsei University , 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | | |
Collapse
|
69
|
Olchowik-Grabarek E, Mavlyanov S, Abdullajanova N, Gieniusz R, Zamaraeva M. Specificity of Hydrolysable Tannins from Rhus typhina L. to Oxidants in Cell and Cell-Free Models. Appl Biochem Biotechnol 2016; 181:495-510. [PMID: 27600811 DOI: 10.1007/s12010-016-2226-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/26/2016] [Indexed: 01/08/2023]
Abstract
Polyphenols of plant origin with wide range of antiradical activity can prevent diseases caused by oxidative and inflammatory processes. In this study, we show using ESR method that the purified water-soluble extract from leaves of Rhus typhina L. containing hydrolysable tannins and its main component, 3,6-bis-O-di-O-galloyl-1,2,4-tri-O-galloyl-β-D-glucose (C55H40O34), displayed a strong antiradical activity against the synthetic 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) in homogenous (solution) and heterogeneous systems (suspension of DPPH containing liposomes) in the range of 1-10 μg/ml. The C55H40O34 and extract at 1-30 μg/ml also efficiently, but to a various degree, decreased reactive oxygen and nitrogen species (RONS) formation induced in erythrocytes by oxidants, following the sequence: tert-butyl hydroperoxide (tBuOOH) > peroxynitrite (ONOO-) >hypochlorous acid (HClO). The explanation of these differences should be seen in the specificity of scavenging different RONS types. These relationships can be represented for C55H40O34 and the extract by the following order of selectivity: O.-2 ≥ NO· > ·OH > 1O2. The extract exerted a more pronounced antiradical effect in reaction with DPPH and ROS in all models of oxidative stress in erythrocytes in comparison with C55H40O34. The redox processes between the extract components and their specificity in relation to RONS can underlie this effect.
Collapse
Affiliation(s)
- Ewa Olchowik-Grabarek
- Department of Biophysics, University of Bialystok, K. Ciolkowskiego 1J, 15-245, Bialystok, Poland
| | - Saidmukhtar Mavlyanov
- Institute of Bioorganic Chemistry, Academy of Science of Uzbekistan, Abdullaev 83, Tashkent, Uzbekistan, 100125
| | - Nodira Abdullajanova
- Institute of Bioorganic Chemistry, Academy of Science of Uzbekistan, Abdullaev 83, Tashkent, Uzbekistan, 100125
| | - Ryszard Gieniusz
- Laboratory of Magnetism, University of Bialystok, K. Ciolkowskiego 1L, 15-245, Bialystok, Poland
| | - Maria Zamaraeva
- Department of Biophysics, University of Bialystok, K. Ciolkowskiego 1J, 15-245, Bialystok, Poland.
| |
Collapse
|
70
|
Abstract
Current understanding points to unrepairable chromosomal damage as the critical determinant of accelerated senescence in cancer cells treated with radiation or chemotherapy. Nonetheless, the potent senescence inducer etoposide not only targets topoisomerase II to induce DNA damage but also produces abundant free radicals, increasing cellular reactive oxygen species (ROS). Toward examining roles for DNA damage and oxidative stress in therapy-induced senescence, we developed a quantitative flow cytometric senescence assay and screened 36 redox-active agents as enhancers of an otherwise ineffective dose of radiation. While senescence failed to correlate with total ROS, the radiation enhancers, etoposide and the other effective topoisomerase inhibitors each produced high levels of lipid peroxidation. The reactive aldehyde 4-hydroxy-2-nonenal, a lipid peroxidation end product, was sufficient to induce senescence in irradiated cells. In turn, sequestering aldehydes with hydralazine blocked effects of etoposide and other senescence inducers. These results suggest that lipid peroxidation potentiates DNA damage from radiation and chemotherapy to drive therapy-induced senescence.
Collapse
Affiliation(s)
- A C Flor
- Ludwig Center for Metastasis Research, Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - A P Doshi
- Ludwig Center for Metastasis Research, Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - S J Kron
- Ludwig Center for Metastasis Research, Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
71
|
Molecular and Cellular Effects of Hydrogen Peroxide on Human Lung Cancer Cells: Potential Therapeutic Implications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1908164. [PMID: 27375834 PMCID: PMC4916325 DOI: 10.1155/2016/1908164] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/10/2016] [Indexed: 02/05/2023]
Abstract
Lung cancer has a very high mortality-to-incidence ratio, representing one of the main causes of cancer mortality worldwide. Therefore, new treatment strategies are urgently needed. Several diseases including lung cancer have been associated with the action of reactive oxygen species (ROS) from which hydrogen peroxide (H2O2) is one of the most studied. Despite the fact that H2O2 may have opposite effects on cell proliferation depending on the concentration and cell type, it triggers several antiproliferative responses. H2O2 produces both nuclear and mitochondrial DNA lesions, increases the expression of cell adhesion molecules, and increases p53 activity and other transcription factors orchestrating cancer cell death. In addition, H2O2 facilitates the endocytosis of oligonucleotides, affects membrane proteins, induces calcium release, and decreases cancer cell migration and invasion. Furthermore, the MAPK pathway and the expression of genes related to inflammation including interleukins, TNF-α, and NF-κB are also affected by H2O2. Herein, we will summarize the main effects of hydrogen peroxide on human lung cancer leading to suggesting it as a potential therapeutic tool to fight this disease. Because of the multimechanistic nature of this molecule, novel therapeutic approaches for lung cancer based on the use of H2O2 may help to decrease the mortality from this malignancy.
Collapse
|
72
|
Cisáriková A, Barbieriková Z, Janovec L, Imrich J, Hunáková L, Bačová Z, Paulíková H. Acridin-3,6-dialkyldithiourea hydrochlorides as new photosensitizers for photodynamic therapy of mouse leukemia cells. Bioorg Med Chem 2016; 24:2011-22. [DOI: 10.1016/j.bmc.2016.03.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/20/2016] [Accepted: 03/16/2016] [Indexed: 10/22/2022]
|
73
|
Abstract
SIGNIFICANCE Hydrogen peroxide (H2O2) is not only a key mediator of oxidative stress but also one of the most important cellular second messengers. This small short-lived molecule is involved in the regulation of a wide range of different biological processes, including regulation of cellular signaling pathways. Studying the role of H2O2 in living systems would be challenging without modern approaches. A genetically encoded fluorescent biosensor, HyPer, is one of the most effective tools for this purpose. RECENT ADVANCES HyPer has been used by many investigators of redox signaling in various models of different scales: from cytoplasmic subcompartments and single cells to tissues of whole organisms. In many studies, the results obtained using HyPer have enabled a better understanding of the roles of H2O2 in these biological processes. However, much remains to be learned. CRITICAL ISSUES In this review, we focus on the uses of HyPer. We provide a general description of HyPer and its improved versions. Separate chapters are devoted to the results obtained by various groups who have used this biosensor for their experiments in living cells and organisms. FUTURE DIRECTIONS HyPer is an effective tool for H2O2 imaging in living systems as indicated by the increasing numbers of publications each year since its development. However, this biosensor requires further improvements. In particular, much brighter and more pH-stable versions of HyPer are necessary for imaging in mammalian tissues. Antioxid. Redox Signal. 24, 731-751.
Collapse
Affiliation(s)
- Dmitry S Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Moscow, Russia
| | | |
Collapse
|
74
|
Ansari SB, Kurian GA. Hydrogen sulfide modulates sub-cellular susceptibility to oxidative stress induced by myocardial ischemic reperfusion injury. Chem Biol Interact 2016; 252:28-35. [PMID: 27041072 DOI: 10.1016/j.cbi.2016.03.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 03/16/2016] [Accepted: 03/30/2016] [Indexed: 11/25/2022]
Abstract
In this study, we compared the impact of H2S pre (HIPC) and post-conditioning (HPOC) on oxidative stress, the prime reason for myocardial ischemia reperfusion injury (I/R), in different compartments of the myocardium, such as the mitochondria beside its subpopulations (interfibrillar (IFM) and subsarcolemmal (SSM) mitochondria) and microsomal fractions in I/R injured rat heart. The results demonstrated that compared to I/R rat heart, HIPC and HPOC treated hearts shows reduced myocardial injury, enhanced antioxidant enzyme activities and reduced the level of TBARS in different cellular compartments. The extent of recovery (measured by TBARS and GSH levels) in subcellular fractions, were in the following descending order: microsome > SSM > IFM in both HIPC and HPOC. In summary, oxidative stress mediated mitochondrial dysfunction, one of the primary causes for I/R injury, was partly recovered by HIPC and HPOC treatment, with significant improvement in SSM fraction compared to the IFM.
Collapse
Affiliation(s)
- Shakila Banu Ansari
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamilnadu, India
| | - Gino A Kurian
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamilnadu, India.
| |
Collapse
|
75
|
Kim EJ, Choi IS, Yoon JY, Park BS, Yoon JU, Kim CH. Effects of propofol-induced autophagy against oxidative stress in human osteoblasts. J Dent Anesth Pain Med 2016; 16:39-47. [PMID: 28879294 PMCID: PMC5564117 DOI: 10.17245/jdapm.2016.16.1.39] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 12/31/2022] Open
Abstract
Background Oxidative stress occurs during the aging process and other conditions such as bone fracture, bone diseases, and osteoporosis, but the role of oxidative stress in bone remodeling is unknown. Propofol exerts antioxidant effects, but the mechanisms of propofol preconditioning on oxidative stress have not been fully explained. Therefore, the aim of this study was to evaluate the protective effects of propofol against H2O2-induced oxidative stress on a human fetal osteoblast (hFOB) cell line via activation of autophagy. Methods Cells were randomly divided into the following groups: control cells were incubated in normoxia (5% CO2, 21% O2, and 74% N2) without propofol. Hydrogen peroxide (H2O2) group cells were exposed to H2O2 (200 µM) for 2 h, propofol preconditioning (PPC)/H2O2 group cells were pretreated with propofol then exposed to H2O2, 3-methyladenine (3-MA)/PPC/H2O2 cells were pretreated with 3-MA (1 mM) and propofol, then were exposed to H2O2. Cell viability and apoptosis were evaluated. Osteoblast maturation was determined by assaying bone nodular mineralization. Expression levels of bone related proteins were determined by western blot. Results Cell viability and bone nodular mineralization were decreased significantly by H2O2, and this effect was rescued by propofol preconditioning. Propofol preconditioning effectively decreased H2O2-induced hFOB cell apoptosis. However, pretreatment with 3-MA inhibited the protective effect of propofol. In western blot analysis, propofol preconditioning increased protein levels of collagen type I, BMP-2, osterix, and TGF-β1. Conclusions This study suggests that propofol preconditioning has a protective effect on H2O2-induced hFOB cell death, which is mediated by autophagy activation.
Collapse
Affiliation(s)
- Eun-Jung Kim
- Department of Dental Anesthesia and Pain Medicine, School of Dentistry, Pusan National University, Dental Research Institute, Gyeongnam, Korea
| | - In-Seok Choi
- Department of Dental Anesthesia and Pain Medicine, School of Dentistry, Pusan National University, Dental Research Institute, Gyeongnam, Korea
| | - Ji-Young Yoon
- Department of Dental Anesthesia and Pain Medicine, School of Dentistry, Pusan National University, Dental Research Institute, Gyeongnam, Korea
| | - Bong-Soo Park
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Gyeongnam, Korea
| | - Ji-Uk Yoon
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Gyeongnam, Korea
| | - Cheul-Hong Kim
- Department of Dental Anesthesia and Pain Medicine, School of Dentistry, Pusan National University, Dental Research Institute, Gyeongnam, Korea
| |
Collapse
|
76
|
Oroxin A inhibits breast cancer cell growth by inducing robust endoplasmic reticulum stress and senescence. Anticancer Drugs 2016; 27:204-15. [DOI: 10.1097/cad.0000000000000318] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
77
|
Lim JB, Huang BK, Deen WM, Sikes HD. Analysis of the lifetime and spatial localization of hydrogen peroxide generated in the cytosol using a reduced kinetic model. Free Radic Biol Med 2015; 89:47-53. [PMID: 26169725 DOI: 10.1016/j.freeradbiomed.2015.07.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/30/2015] [Accepted: 07/08/2015] [Indexed: 01/12/2023]
Abstract
Hydrogen peroxide (H2O2) acts as a signaling molecule via its reactions with particular cysteine residues of certain proteins. Determining the roles of direct oxidation by H2O2 versus disulfide exchange reactions (i.e. relay reactions) between oxidized and reduced proteins of different identities is a current focus. Here, we use kinetic modeling to estimate the spatial and temporal localization of H2O2 and its most likely oxidation targets during a sudden increase in H2O2 above the basal level in the cytosol. We updated a previous redox kinetic model with recently measured parameters for HeLa cells and used the model to estimate the length and time scales of H2O2 diffusion through the cytosol before it is consumed by reaction. These estimates were on the order of one micron and one millisecond, respectively. We found oxidation of peroxiredoxin by H2O2 to be the dominant reaction in the network and that the overall concentration of reduced peroxiredoxin is not significantly affected by physiological increases in intracellular H2O2 concentration. We used this information to reduce the model from 22 parameters and reactions and 21 species to a single analytical equation with only one dependent variable, i.e. the concentration of H2O2, and reproduced results from the complete model. The reduced kinetic model will facilitate future efforts to progress beyond estimates and precisely quantify how reactions and diffusion jointly influence the distribution of H2O2 within cells.
Collapse
Affiliation(s)
- Joseph B Lim
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Beijing K Huang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - William M Deen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hadley D Sikes
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
78
|
Tong L, Chuang CC, Wu S, Zuo L. Reactive oxygen species in redox cancer therapy. Cancer Lett 2015; 367:18-25. [DOI: 10.1016/j.canlet.2015.07.008] [Citation(s) in RCA: 258] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 07/08/2015] [Accepted: 07/10/2015] [Indexed: 12/21/2022]
|
79
|
Iloki-Assanga SB, Lewis-Luján LM, Fernández-Angulo D, Gil-Salido AA, Lara-Espinoza CL, Rubio-Pino JL. Retino-protective effect of Bucida buceras against oxidative stress induced by H2O2 in human retinal pigment epithelial cells line. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015. [PMID: 26219933 PMCID: PMC4518513 DOI: 10.1186/s12906-015-0765-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Reactive Oxygen Species (ROS) impair the physiological functions of Retinal Pigment Epithelial (RPE) cells, which are known as one major cause of age-related macular degeneration and retinopathy diseases. The purpose of this study is to explore the cytoprotective effects of the antioxidant Bucida buceras extract in co-treatment with hydrogen peroxide (H2O2) delivery as a single addition or with continuous generation using glucose oxidase (GOx) in ARPE-19 cell cultures. The mechanism of Bucida buceras extract is believed to be associated with their antioxidant capacity to protect cells against oxidative stress. METHODS A comparative oxidative stress H2O2-induced was performed by addition and enzymatic generation using glucose oxidase on human retinal pigment epithelial cells line. H2O2-induced injury was measured by toxic effects (cell death and apoptotic pathway) and intracellular redox status: glutathione (GSH), antioxidant enzymes (catalase and glutathione peroxidase) and reducing power (FRAP). The retino-protective effect of co-treatment with Bucida buceras extract on H2O2-induced human RPE cell injury was investigated by cell death (MTT assay) and oxidative stress biomarkers (H2O2, GSH, CAT, GPx and FRAP). RESULTS Bucida buceras L. extract is believed to be associated with the ability to prevent cellular oxidative stress. When added as a pulse, H2O2 is rapidly depleted and the cytotoxicity analyses show that cells can tolerate short exposure to high peroxide doses delivered as a pulse but are susceptible to lower chronic doses. Co-treatment with Bucida buceras was able to protect the cells against H2O2-induced injury. In addition to preventing cell death treatment with antioxidant plant could also reverse the significant decrease in GSH level, catalase activity and reducing power caused by H2O2. CONCLUSION These findings suggest that Bucida buceras could protect RPE against ocular pathogenesis associated with oxidative stress induced by H2O2-delivered by addition and enzymatic generation.
Collapse
|
80
|
Hubackova S, Kucerova A, Michlits G, Kyjacova L, Reinis M, Korolov O, Bartek J, Hodny Z. IFNγ induces oxidative stress, DNA damage and tumor cell senescence via TGFβ/SMAD signaling-dependent induction of Nox4 and suppression of ANT2. Oncogene 2015; 35:1236-49. [PMID: 25982278 DOI: 10.1038/onc.2015.162] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 03/23/2015] [Indexed: 02/06/2023]
Abstract
Cellular senescence provides a biological barrier against tumor progression, often associated with oncogene-induced replication and/or oxidative stress, cytokine production and DNA damage response (DDR), leading to persistent cell-cycle arrest. While cytokines such as tumor necrosis factor-alpha (TNFα) and interferon gamma (IFNγ) are important components of senescence-associated secretome and induce senescence in, for example, mouse pancreatic β-cancer cell model, their downstream signaling pathway(s) and links with oxidative stress and DDR are mechanistically unclear. Using human and mouse normal and cancer cell models, we now show that TNFα and IFNγ induce NADPH oxidases Nox4 and Nox1, reactive oxygen species (ROS), DDR signaling and premature senescence. Unlike mouse tumor cells that required concomitant presence of IFNγ and TNFα, short exposure to IFNγ alone was sufficient to induce Nox4, Nox1 and DDR in human cells. siRNA-mediated knockdown of Nox4 but not Nox1 decreased IFNγ-induced DDR. The expression of Nox4/Nox1 required Janus kinase (JAK)/signal transducers and activators of transcription (STAT) signaling and the effect was mediated by downstream activation of transforming growth factor-beta (TGFβ) secretion and consequent autocrine/paracrine activation of the TGFβ/Smad pathway. Furthermore, the expression of adenine nucleotide translocase 2 (ANT2) was suppressed by IFNγ contributing to elevation of ROS and DNA damage. In contrast to mouse B16 cells, inability of TC-1 cells to respond to IFNγ/TNFα by DDR and senescence correlated with the lack of TGFβ and Nox4 response, supporting the role of ROS induced by NADPH oxidases in cytokine-induced senescence. Overall, our data reveal differences between cytokine effects in mouse and human cells, and mechanistically implicate the TGFβ/SMAD pathway, via induction of NADPH oxidases and suppression of ANT2, as key mediators of IFNγ/TNFα-evoked genotoxicity and cellular senescence.
Collapse
Affiliation(s)
- S Hubackova
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - A Kucerova
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - G Michlits
- Department of Tumour Immunology, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - L Kyjacova
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - M Reinis
- Department of Tumour Immunology, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - O Korolov
- Department of Tumour Immunology, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - J Bartek
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic.,Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Z Hodny
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
81
|
The utility of iron chelators in the management of inflammatory disorders. Mediators Inflamm 2015; 2015:516740. [PMID: 25878400 PMCID: PMC4386698 DOI: 10.1155/2015/516740] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/01/2014] [Accepted: 09/01/2014] [Indexed: 01/19/2023] Open
Abstract
Since iron can contribute to detrimental radical generating processes through the Fenton and Haber-Weiss reactions, it seems to be a reasonable approach to modulate iron-related pathways in inflammation. In the human organism a counterregulatory reduction in iron availability is observed during inflammatory diseases. Under pathological conditions with reduced or increased baseline iron levels different consequences regarding protection or susceptibility to inflammation have to be considered. Given the role of iron in development of inflammatory diseases, pharmaceutical agents targeting this pathway promise to improve the clinical outcome. The objective of this review is to highlight the mechanisms of iron regulation and iron chelation, and to demonstrate the potential impact of this strategy in the management of several acute and chronic inflammatory diseases, including cancer.
Collapse
|
82
|
Gong J, Muñoz AR, Chan D, Ghosh R, Kumar AP. STAT3 down regulates LC3 to inhibit autophagy and pancreatic cancer cell growth. Oncotarget 2015; 5:2529-41. [PMID: 24796733 PMCID: PMC4058024 DOI: 10.18632/oncotarget.1810] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The dismal 5-year survival (<5%) for pancreatic cancer (PanCA) underscores the need for developing effective therapeutic options. Recent studies from our laboratory have shown that Nexrutine® (Nx), a bark extract from Phellodendron amurense exhibits excellent anticancer activity in human pancreatic cancer cells through inhibition of inflammatory signaling via STAT3/NFκB/Cox-2. Given the apparent high oxidative stress and autophagic activity in pancreatic tumors, we investigated the potential of Nx to modulate autophagy, reactive oxygen species (ROS), and their crosstalk. Our results show that Nx inhibits autophagy and decreases ROS generation. Pharmacological inhibition of autophagy led to decreased ROS generation and proliferation with no significant effect on apoptosis. Further, using combination index analysis we also found that combination of late-stage autophagy inhibitor with Nx exhibited a moderate synergistic to additive effect. Additionally, genetic or pharmacological inactivation of STAT3 reduced LC3-II levels and expression indicating a possible role for STAT3 in transcriptional regulation of autophagy. Since both inflammatory and oxidative stress signaling activate STAT3, our data implicates that STAT3 plays a vital role in the regulation of autophagy through its contributions to the positive feedback loop between ROS and autophagy. Overall, our findings reveal an important role for STAT3/LC3/ROS in Nx-mediated anti-pancreatic cancer effects.
Collapse
Affiliation(s)
- Jingjing Gong
- Department of Urology, The University of Texas Health Science Center, San Antonio, TX
| | | | | | | | - Addanki P Kumar
- Cancer Therapy and Research Center, The University of Texas Health Science Center, San Antonio, TX
| |
Collapse
|
83
|
Blázquez-Castro A, Stockert JC. In vitro human cell responses to a low-dose photodynamic treatment vs. mild H2O2 exposure. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 143:12-9. [DOI: 10.1016/j.jphotobiol.2014.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/07/2014] [Accepted: 12/13/2014] [Indexed: 01/01/2023]
|
84
|
Kim D, Park GB, Hur DY. Apoptotic signaling through reactive oxygen species in cancer cells. World J Immunol 2014; 4:158-173. [DOI: 10.5411/wji.v4.i3.158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/03/2014] [Accepted: 10/16/2014] [Indexed: 02/05/2023] Open
Abstract
Reactive oxygen species (ROS) take part in diverse biological processes like cell growth, programmed cell death, cell senescence, and maintenance of the transformed state through regulation of signal transduction. Cancer cells adapt to new higher ROS circumstance. Sometimes, ROS induce cancer cell proliferation. Meanwhile, elevated ROS render cancer cells vulnerable to oxidative stress-induced cell death. However, this prominent character of cancer cells allows acquiring a resistance to oxidative stress conditions relative to normal cells. Activated signaling pathways that increase the level of intracellular ROS in cancer cells not only render up-regulation of several genes involved in cellular proliferation and evasion of apoptosis but also cause cancer cells and cancer stem cells to develop a high metabolic rate. In over the past several decades, many studies have indicated that ROS play a critical role as the secondary messenger of tumorigenesis and metastasis in cancer from both in vitro and in vivo. Here we summarize the role of ROS and anti-oxidants in contributing to or preventing cancer. In addition, we review the activated signaling pathways that make cancer cells susceptible to death.
Collapse
|
85
|
Hoarau E, Chandra V, Rustin P, Scharfmann R, Duvillie B. Pro-oxidant/antioxidant balance controls pancreatic β-cell differentiation through the ERK1/2 pathway. Cell Death Dis 2014; 5:e1487. [PMID: 25341041 PMCID: PMC4237262 DOI: 10.1038/cddis.2014.441] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 09/06/2014] [Accepted: 09/08/2014] [Indexed: 12/20/2022]
Abstract
During embryogenesis, the intrauterine milieu affects cell proliferation, differentiation, and function by modifying gene expression in susceptible cells, such as the pancreatic β-cells. In this limited energy environment, mitochondrial dysfunction can lead to overproduction of reactive oxygen species (ROS) and to a decline in β-cell function. In opposition to this toxicity, ROS are also required for insulin secretion. Here we investigated the role of ROS in β-cell development. Surprisingly, decreasing ROS production in vivo reduced β-cell differentiation. Moreover, in cultures of pancreatic explants, progenitors were highly sensitive to ROS stimulation and responded by generating β-cells. ROS enhanced β-cell differentiation through modulation of ERK1/2 signaling. Gene transfer and pharmacological manipulations, which diminish cellular ROS levels, also interfered with normal β-cell differentiation. This study highlights the role of the redox balance on β-cell development and provides information that will be useful for improving β-cell production from embryonic stem cells, a step in cell therapy for diabetes.
Collapse
Affiliation(s)
- E Hoarau
- 1] INSERM, U1016, Institut Cochin, Paris, France [2] Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - V Chandra
- 1] INSERM, U1016, Institut Cochin, Paris, France [2] Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - P Rustin
- INSERM U676, Hopital Robert Debre, Paris, France
| | - R Scharfmann
- 1] INSERM, U1016, Institut Cochin, Paris, France [2] Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - B Duvillie
- 1] INSERM, U1016, Institut Cochin, Paris, France [2] Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| |
Collapse
|
86
|
miR-210 over-expression enhances mesenchymal stem cell survival in an oxidative stress environment through antioxidation and c-Met pathway activation. SCIENCE CHINA-LIFE SCIENCES 2014; 57:989-97. [PMID: 25168379 DOI: 10.1007/s11427-014-4725-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 04/19/2014] [Indexed: 01/18/2023]
Abstract
microRNA-210 (miR-210) has generally been reported to be associated with cell survival under hypoxia. However, there are few data regarding the role of miR-210 in the survival of mesenchymal stem cells (MSCs) under oxidative stress conditions. Thus, we sought to investigate whether miR-210 over-expression could protect MSCs against oxidative stress injury and what the primary mechanisms involved are. The results showed that over-expression of miR-210 significantly reduced the apoptosis of MSCs under oxidative stress, accompanied by obvious increases in cell viability and superoxide dismutase activity and remarkable decreases in malonaldehyde content and reactive oxygen species production, resulting in a noticeable reduction of apoptotic indices when compared with the control. Moreover, the above beneficial effects of miR-210 could be significantly reduced by c-Met pathway repression. Collectively, these results showed that miR-210 over-expression improved MSC survival under oxidative stress through antioxidation and c-Met pathway activation, indicating the potential development of a novel approach to enhance the efficacy of MSC-based therapy for injured myocardium.
Collapse
|
87
|
Plaimee P, Khamphio M, Weerapreeyakul N, Barusrux S, Johns NP. Immunomodulatory effect of melatonin in SK-LU-1 human lung adenocarcinoma cells co-cultured with peripheral blood mononuclear cells. Cell Prolif 2014; 47:406-15. [PMID: 25053373 DOI: 10.1111/cpr.12119] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/17/2014] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES The anti-cancer potential of melatonin has been examined using a variety of experimental approaches. Melatonin immunomodulatory action was evaluated against the lung cancer cell line SK-LU-1, in co-culture with human peripheral blood mononuclear cells (PBMC). MATERIALS AND METHODS Melatonin was tested on the cell line only after 24 h incubation (direct effect), and on the co-culture system of SK-LU-1 and PBMC to investigate any indirect effect. Apoptotic induction of the cancer cells was assessed using annexin V/PI staining with flow cytometric analysis for membrane alteration. Intracellular superoxide anion (O2 (•-) ) and hydrogen peroxide (H2 O2 ) for intracellular oxidative stress and glutathione (GSH) for intracellular anti-oxidation were measured with specific fluorescence probes. DNA fractions were measured employing propidium iodide (PI) fluorescence staining. RESULTS High doses of melatonin were directly toxic to SK-LU-1 cells, while PBMC-mediated indirect effect occurred after moderate doses (1 μm). Under co-culture conditions, increases in apoptotic cell death, increase in oxidative stress by reduction of GSH and cell cycle arrest in G0 /G1 in SK-LU-1 cells, were observed as the immunomodulatory effect of melatonin. CONCLUSION Melatonin had indirect effects on lung cancer cells by enhancement of immunomodulatory effects, but further studies of mechanism(s) involved are needed.
Collapse
Affiliation(s)
- P Plaimee
- Graduate School, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand; Melatonin Research Group, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | | | | | | |
Collapse
|
88
|
Abstract
SIGNIFICANCE Oxidative (reactive oxygen species [ROS]) and nitrosative (reactive nitrogen species [RNS]) stress affects many physiological processes, including survival and death. Although high levels of ROS/RNS mainly causes cell death, low levels of free radicals directly modulate the activities of transcriptional factors, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), p53, and nuclear factor (erythroid-derived) 2-like (Nrf2), and regulate numerous protein kinase cascades that participate in the regulation of the cross talk between autophagy and apoptosis. RECENT ADVANCES Low levels of ROS modify Atg4 and high mobility group box 1 (HMGB1) proteins, activate AMP-activated protein kinase (AMPK) and apoptosis signal-regulating kinase/c-Jun N-terminal kinase (JNK) pathways, or transactivate various proteins that could upregulate autophagy, leading to reductions in apoptosis. Transactivation of antioxidant genes blocks apoptosis and serves as a feedback loop to reduce autophagy. Free radicals could also activate protein kinase B (PKB, or Akt), preventing both autophagy and apoptosis. Stimulation of nitric oxide formation causes S-nitrosylation of several kinases, including JNK1 and IκB kinase β, which blocks autophagy and could promote apoptosis. However, S-nitrosylation of some proapoptotic proteins could block apoptosis. CRITICAL ISSUES Endoplasmic reticulum and mitochondria are the main sources of free radicals, which play an essential role in the regulation of apoptosis and autophagy. Oxidation of cardiolipin promotes cytochrome c release and apoptosis that potentially could be inhibited by autophagic clearance of damaged mitochondria. Elimination of damaged mitochondria reduces ROS accumulation, creating a feedback loop that causes inhibition of autophagy. Low levels of RNS could inhibit fission of mitochondria, which would block their degradation by autophagy and spare cells from apoptosis. FUTURE DIRECTIONS Understanding of mechanisms that regulate the cross talk between cell fates is essential for discovery of therapeutic tools in the strenuous fight against various disorders, including neurodegeneration and cancer.
Collapse
Affiliation(s)
- Vitaliy O Kaminskyy
- 1 Division of Toxicology, Institute of Environmental Medicine , Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
89
|
Wen ZS, Liu LJ, OuYang XK, Qu YL, Chen Y, Ding GF. Protective effect of polysaccharides from Sargassum horneri against oxidative stress in RAW264.7 cells. Int J Biol Macromol 2014; 68:98-106. [PMID: 24769083 DOI: 10.1016/j.ijbiomac.2014.04.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 03/26/2014] [Accepted: 04/16/2014] [Indexed: 01/27/2023]
Abstract
This study was designed to investigate chemical composition and the protective effects of polysaccharides isolated from Sargassum horneri against hydrogen peroxide (H2O2)-induced oxidative injury in RAW264.7 cells. Results showed that isolated polysaccharides (SHSc) and the major fractions (SHS1, SHS0.5) contained sulfate ester, and SHS1 was high fucose-containing sulfated polysaccharide. After preincubation with three isolated polysaccharides, RAW264.7 cells viability were significantly restored and decreased in cellular LDH release (P<0.05). SHS1 and SHS0.5 decreased intracellular ROS level, intracellular NO and malonic dialdehyde (MDA) level (P<0.05), restoring activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) (P<0.05), decreasing inducible nitric oxide synthase (iNOS) (P<0.05). Moreover, preincubation of SHS1 with RAW264.7 cells resulted in the increase of the gene expression level of endogenous antioxidant enzymes such as MnSOD and GSH-Px (P<0.05). These results clearly showed that SHSc and its fractions could attenuate H2O2-induced stress injury in RAW264.7 cells, and a similar efficiency in protecting RAW264.7 cells against H2O2-induced oxidative injury between SHS1 and Vitamin C. Taken together, our findings suggested that SHS1 can effectively protect RAW264.7 cells against oxidative stress by H2O2, which might be used as a potential natural antioxidant in the functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Zheng-Shun Wen
- Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316000 Zhejiang, China.
| | - Li-Jia Liu
- Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316000 Zhejiang, China
| | - Xiao-Kun OuYang
- Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316000 Zhejiang, China
| | - You-Le Qu
- Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316000 Zhejiang, China.
| | - Yin Chen
- Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316000 Zhejiang, China
| | - Guo-Fang Ding
- Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316000 Zhejiang, China
| |
Collapse
|
90
|
Togar B, Türkez H, Stefano AD, Tatar A, Cetin D. Zingiberene attenuates hydrogen peroxide-induced toxicity in neuronal cells. Hum Exp Toxicol 2014; 34:135-44. [PMID: 24925361 DOI: 10.1177/0960327114538987] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this experimental design, we explored the neuroprotective potential of zingiberene (ZGB), a monocyclic sesquiterpene, in hydrogen peroxide (H2O2)-induced toxicity in newborn rat cerebral cortex cell cultures for the first time. The rats were exposed to H2O2 for 6 h to determine the oxidative stress levels. To evaluate cell viability, both 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assays were carried out. Total antioxidant capacity (TAC) and total oxidative stress (TOS) parameters were used to evaluate oxidative changes. Besides determining 8-hydroxy-2-deoxyguanosine (8-OH-dG) levels in vitro, single-cell gel electrophoresis was also performed to measure the resistance of neuronal DNA to H2O2- exposed rats. Our results showed that survival and TAC levels of the cells decreased, while TOS, 8-OH-dG levels and the mean values of the total scores of cells showing DNA damage increased in the H2O2 alone-treated cultures. But pretreatment of ZGB suppressed the cytotoxicity, genotoxicity and oxidative stress that were increased by H2O2. Based on these observations, it is suggested that the sesquiterpene ZGB can be used as a novel and natural potential therapeutic in counteracting oxidative damages in the field of neurodegenerative disorders.
Collapse
Affiliation(s)
- B Togar
- Department of Biology, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - H Türkez
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - A D Stefano
- Department of Pharmacology, G. D'Annunzio University, Chieti, Italy
| | - A Tatar
- Department of Medical Genetics, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - D Cetin
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
91
|
Borodkina A, Shatrova A, Abushik P, Nikolsky N, Burova E. Interaction between ROS dependent DNA damage, mitochondria and p38 MAPK underlies senescence of human adult stem cells. Aging (Albany NY) 2014; 6:481-95. [PMID: 24934860 PMCID: PMC4100810 DOI: 10.18632/aging.100673] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/10/2014] [Indexed: 12/26/2022]
Abstract
Human endometrium-derived mesenchymal stem cells (hMESCs) enter the premature senescence under sublethal oxidative stress, however underlying mechanism remains unknown. Here, we showed that exogenous H2O2 induces a rapid phosphorylation and co-localization of ATM, H2A.X, 53BP1 leading to DNA damage response (DDR) activation. DDR was accompanied with nuclear translocation of p-p53 followed by up-regulation of p21Waf1 and the permanent hypophosphorylation of pRb. Additionally, the increased p38MAPK/MAPKAPK-2 activation persisted in H2O2-treated cells. We suggest that both p53/p21/pRb and p38MAPK/MAPKAPK-2 pathways are responsible for establishing an irreversible cell cycle arrest that is typical of senescence. The process of further stabilization of senescence required prolonged DDR signaling activation that was provided by the permanent ROS production which in turn was regulated by both p38MAPK and the increased functional mitochondria. To reverse senescence, the pharmacological inhibition of p38MAPK was performed. Cell treatment with SB203580 was sufficient to recover partially senescence phenotype, to block the ROS elevation, to decrease the mitochondrial function, and finally to rescue proliferation. Thus, suppression of the p38MAPK pathway resulted in a partial prevention of H2O2-induced senescence of hMESCs. The current study is the first to reveal the molecular mechanism of the premature senescence of hMESCs in response to oxidative stress.
Collapse
Affiliation(s)
- Aleksandra Borodkina
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alla Shatrova
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Polina Abushik
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Nikolay Nikolsky
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
- Department of Medical Physics, St.Petersburg State Polytechnical University, St Petersburg, Russia
| | - Elena Burova
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
92
|
Sec-containing TrxR1 is essential for self-sufficiency of cells by control of glucose-derived H2O2. Cell Death Dis 2014; 5:e1235. [PMID: 24853413 PMCID: PMC4047868 DOI: 10.1038/cddis.2014.209] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/05/2014] [Accepted: 04/08/2014] [Indexed: 11/10/2022]
Abstract
It is commonly recognized that diabetic complications involve increased oxidative stress directly triggered by hyperglycemia. The most important cellular protective systems against such oxidative stress have yet remained unclear. Here we show that the selenoprotein thioredoxin reductase 1 (TrxR1), encoded by the Txnrd1 gene, is an essential enzyme for such protection. Individually grown Txnrd1 knockout (Txnrd1−/−) mouse embryonic fibroblasts (MEFs) underwent massive cell death directly linked to glucose-induced H2O2 production. This death and excessive H2O2 levels could be reverted by reconstituted expression of selenocysteine (Sec)-containing TrxR1, but not by expression of Sec-devoid variants of the enzyme. Our results show that Sec-containing TrxR1 is absolutely required for self-sufficient growth of MEFs under high-glucose conditions, owing to an essential importance of this enzyme for elimination of glucose-derived H2O2. To our knowledge, this is the first time a strict Sec-dependent function of TrxR1 has been identified as being essential for mammalian cells.
Collapse
|
93
|
Antiapoptotic effect of a novel synthetic peptide from bovine muscle and MPG peptide on H2O2-induced C2C12 cells. In Vitro Cell Dev Biol Anim 2014; 50:630-9. [DOI: 10.1007/s11626-014-9745-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/27/2014] [Indexed: 12/11/2022]
|
94
|
Qu K, Lin T, Wang Z, Liu S, Chang H, Xu X, Meng F, Zhou L, Wei J, Tai M, Dong Y, Liu C. Reactive oxygen species generation is essential for cisplatin-induced accelerated senescence in hepatocellular carcinoma. Front Med 2014; 8:227-35. [PMID: 24752601 DOI: 10.1007/s11684-014-0327-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 01/14/2014] [Indexed: 11/25/2022]
Abstract
Accelerated senescence is important because this process is involved in tumor suppression and has been induced by many chemotherapeutic agents. The platinum-based chemotherapeutic agent cisplatin displays a wide range of antitumor activities. However, the molecular mechanism of cisplatin-induced accelerated senescence in hepatocellular carcinoma (HCC) remains unclear. In the present study, the growth inhibitory effect of cisplatin on HepG2 and SMMC-7721 cells was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cellular senescence was then assessed by β-galactosidase assay. Senescence-related factors, including p53, p21, and p16, were evaluated by quantitative reverse transcription-polymerase chain reaction. Reactive oxygen species (ROS) was analyzed by flow cytometry. Our results revealed that cisplatin reduced the proliferation of HepG2 and SMMC-7721 cells in a dose- and time-dependent manner. Senescent phenotype observed in cisplatintreated hepatoma cells was dependent on p53 and p21 activation but not on p16 activation. Furthermore, cisplatininduced accelerated senescence depended on intracellular ROS generation. The ROS scavenger N-acetyl-L-cysteine also significantly suppressed the cisplatin-induced senescence of HepG2 and SMMC-7721 cells. In conclusion, our results revealed a functional link between intracellular ROS generation and cisplatin-induced accelerated senescence, and this link may be used as a potential target of HCC.
Collapse
Affiliation(s)
- Kai Qu
- Department of Hepatobiliary Surgery, Xi'an Jiaotong University, Xi'an, 710061, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Sarkar B, Kumar D, Sasmal D, Mukhopadhyay K. Antioxidant and DNA damage protective properties of anthocyanin-rich extracts fromHibiscusandOcimum: a comparative study. Nat Prod Res 2014; 28:1393-8. [DOI: 10.1080/14786419.2014.904309] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
96
|
Turkez H, Togar B, Di Stefano A, Taspınar N, Sozio P. Protective effects of cyclosativene on H2O 2-induced injury in cultured rat primary cerebral cortex cells. Cytotechnology 2014; 67:299-309. [PMID: 24493068 DOI: 10.1007/s10616-013-9685-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 12/25/2013] [Indexed: 01/31/2023] Open
Abstract
Sesquiterpenes have attracted much interest with respect to their protective effect against oxidative damage that may be the cause of many diseases including several neurodegenerative disorders and cancer. Our previous unpublished work suggested that cyclosativene (CSV), a tetracyclic sesquiterpene, has antioxidant and anticarcinogenic features. However, little is known about the effects of CSV on oxidative stress induced neurotoxicity. We used hydrogen peroxide (H2O2) exposure for 6 h to model oxidative stress. Therefore, this experimental design allowed us to explore the neuroprotective potential of CSV in H2O2-induced toxicity in new-born rat cerebral cortex cell cultures for the first time. For this aim, MTT and lactate dehydrogenase release assays were carried out to evaluate cytotoxicity. Total antioxidant capacity (TAC) and total oxidative stress (TOS) parameters were used to evaluate oxidative changes. In addition to determining of 8-hydroxy-2-deoxyguanosine (8-OH-dG) levels, the single cell gel electrophoresis (or Comet assay) was also performed for measuring the resistance of neuronal DNA to H2O2-induced challenge. Our results showed that survival and TAC levels of the cells decreased, while TOS, 8-OH-dG levels and the mean values of the total scores of cells showing DNA damage (Comet assay) increased in the H2O2 alone treated cultures. But pre-treatment of CSV suppressed the cytotoxicity, genotoxicity and oxidative stress which were increased by H2O2. On the basis of these observations, it is suggested that CSV as a natural product with an antioxidant capacity in mitigating oxidative injuries in the field of neurodegenerative disorders.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | | | | | | | | |
Collapse
|
97
|
Mitochondrial ion channels as oncological targets. Oncogene 2014; 33:5569-81. [DOI: 10.1038/onc.2013.578] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 02/06/2023]
|
98
|
Georgiev V, Ananga A, Tsolova V. Recent advances and uses of grape flavonoids as nutraceuticals. Nutrients 2014; 6:391-415. [PMID: 24451310 PMCID: PMC3916869 DOI: 10.3390/nu6010391] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 01/04/2014] [Accepted: 01/10/2014] [Indexed: 01/06/2023] Open
Abstract
Grape is one of the oldest fruit crops domesticated by humans. The numerous uses of grape in making wine, beverages, jelly, and other products, has made it one of the most economically important plants worldwide. The complex phytochemistry of the berry is characterized by a wide variety of compounds, most of which have been demonstrated to have therapeutic or health promoting properties. Among them, flavonoids are the most abundant and widely studied, and have enjoyed greater attention among grape researchers in the last century. Recent studies have shown that the beneficial health effects promoted by consumption of grape and grape products are attributed to the unique mix of polyphenolic compounds. As the largest group of grape polyphenols, flavonoids are the main candidates considered to have biological properties, including but not limited to antioxidant, anti-inflammatory, anti-cancer, antimicrobial, antiviral, cardioprotective, neuroprotective, and hepatoprotective activities. Here, we discuss the recent scientific advances supporting the beneficial health qualities of grape and grape-derived products, mechanisms of their biological activity, bioavailability, and their uses as nutraceuticals. The advantages of modern plant cell based biotechnology as an alternative method for production of grape nutraceuticals and improvement of their health qualities are also discussed.
Collapse
Affiliation(s)
- Vasil Georgiev
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A & M University, 6505 Mahan Drive, Tallahassee, FL 32317, USA.
| | - Anthony Ananga
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A & M University, 6505 Mahan Drive, Tallahassee, FL 32317, USA.
| | - Violeta Tsolova
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A & M University, 6505 Mahan Drive, Tallahassee, FL 32317, USA.
| |
Collapse
|
99
|
Leonard MO, Limonciel A, Jennings P. Stress Response Pathways. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2014. [DOI: 10.1007/978-1-4939-0521-8_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
100
|
Ziemińska E, Stafiej A, Strużyńska L. The role of the glutamatergic NMDA receptor in nanosilver-evoked neurotoxicity in primary cultures of cerebellar granule cells. Toxicology 2014; 315:38-48. [DOI: 10.1016/j.tox.2013.11.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/08/2013] [Accepted: 11/20/2013] [Indexed: 12/24/2022]
|