51
|
Wang Y, Zhang W, Dong J, Gao J. Design, synthesis and bioactivity evaluation of coumarin-chalcone hybrids as potential anticancer agents. Bioorg Chem 2019; 95:103530. [PMID: 31887477 DOI: 10.1016/j.bioorg.2019.103530] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/25/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022]
Abstract
The selenoprotein thioredoxin reductases (TrxRs) have been extensively studied as a potential target for the development of anticancer drugs. Herein, we designed, synthesized, and evaluated a series of coumarin-chalcone hybrids as TrxR inhibitors. Most of them exhibited enhancing anticancer activity than Xanthohumol (Xn). The representative Xn-2 (IC50 = 3.6 μM) was a fluorescence agent, wherein drug uptake can be readily monitored in living cells by red fluorescence imaging. Xn-2 down-regulated the expression of TrxR, remarkedly induced ROS accumulation to activate mitochondrial apoptosis pathway. Furthermore, Xn-2 inhibited cancer cell metastasis and abolished the colony formation ability of cancer cells. Taken together, these results highlight that compound Xn-2 may be a promising theranostic TrxR inhibitor for human cancer therapy.
Collapse
Affiliation(s)
- Yu Wang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou 450052, Henan, China
| | - Wenda Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou 450052, Henan, China.
| | - Junqiang Dong
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou 450052, Henan, China
| | - Jianbo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou 450052, Henan, China.
| |
Collapse
|
52
|
Zhang T, Zheng P, Shen X, Shao R, Wang B, Shen H, Zhang J, Xia Y, Zou P. Curcuminoid WZ26, a TrxR1 inhibitor, effectively inhibits colon cancer cell growth and enhances cisplatin-induced cell death through the induction of ROS. Free Radic Biol Med 2019; 141:93-102. [PMID: 31176737 DOI: 10.1016/j.freeradbiomed.2019.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/02/2019] [Accepted: 06/05/2019] [Indexed: 12/24/2022]
Abstract
Colon cancer is one of the leading causes of cancer-related deaths. Chemotherapy has improved survival in patients with colon cancer, but has a narrow therapeutic window due to its toxicity. Therefore, novel therapies for colon cancer are urgently needed. We previously developed a curcumin analog WZ26 as an anti-cancer agent in pre-clinical evaluation. In the present study, we further explored the mechanism and target of WZ26 in colon cancer cells. Our results show that WZ26 targets thioredoxin reductase 1 (TrxR1) and increases cellular reactive oxygen species (ROS) levels, which results in the activation of JNK signaling pathway in human colon cancer cells. Furthermore, we found that WZ26 significantly enhances cisplatin-induced cell growth inhibition in colon cancer cells. WZ26 combined with cisplatin markedly increases the accumulation of ROS, and thereby induces DNA damage and activation of JNK signaling pathway. Pretreatment with antioxidant N-acetyl-l-cysteine (NAC) significantly abrogates the combined treatment-induced ROS generation, DNA damage and cell death. In addition, the activation of JNK signaling pathway prompted by WZ26 and cisplatin was also reversed by NAC pretreatment. In vivo, WZ26 combined with cisplatin significantly inhibits tumor growth in a colon cancer xenograft model. Remarkably, WZ26 attenuates the body weight loss evoked by cisplatin treatment. This study discloses a previously unrecognized mechanism underlying the biological activity of WZ26, and reveals that WZ26 and cisplatin combinational treatment might potentially become a more effective regimen in colon cancer therapy.
Collapse
Affiliation(s)
- Tingting Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Peisen Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xin Shen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Rongrong Shao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Bin Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Huanpei Shen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jingjing Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yiqun Xia
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Peng Zou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
53
|
Li X, Zhang B, Yan C, Li J, Wang S, Wei X, Jiang X, Zhou P, Fang J. A fast and specific fluorescent probe for thioredoxin reductase that works via disulphide bond cleavage. Nat Commun 2019; 10:2745. [PMID: 31227705 PMCID: PMC6588570 DOI: 10.1038/s41467-019-10807-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/31/2019] [Indexed: 12/31/2022] Open
Abstract
Small molecule probes are indispensable tools to explore diverse cellular events. However, finding a specific probe of a target remains a high challenge. Here we report the discovery of Fast-TRFS, a specific and superfast fluorogenic probe of mammalian thioredoxin reductase, a ubiquitous enzyme involved in regulation of diverse cellular redox signaling pathways. By systematically examining the processes of fluorophore release and reduction of cyclic disulfides/diselenides by the enzyme, structural factors that determine the response rate and specificity of the probe are disclosed. Mechanistic studies reveal that the fluorescence signal is switched on by a simple reduction of the disulfide bond within the probe, which is in stark contrast to the sensing mechanism of published probes. The favorable properties of Fast-TRFS enable development of a high-throughput screening assay to discover inhibitors of thioredoxin reductase by using crude tissue extracts as a source of the enzyme. Thioredoxin reductase (TrxR) plays a crucial part in regulating cellular redox homeostasis. Here, the authors developed a fluorescent probe composed of a five-membered disulphide, a coumarin fluorophore and a urea linker that detects TrxR activity with fast response and high selectivity.
Collapse
Affiliation(s)
- Xinming Li
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Chaoxian Yan
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Jin Li
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Song Wang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiangxu Wei
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoyan Jiang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Panpan Zhou
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
54
|
Reddy KM, Mugesh G. Modelling the Inhibition of Selenoproteins by Small Molecules Using Cysteine and Selenocysteine Derivatives. Chemistry 2019; 25:8875-8883. [DOI: 10.1002/chem.201901363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Kishorkumar M. Reddy
- Department of Inorganic and Physical ChemistryIndian Institute of Science Bangalore 560012 India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical ChemistryIndian Institute of Science Bangalore 560012 India
| |
Collapse
|
55
|
Bian M, Fan R, Zhao S, Liu W. Targeting the Thioredoxin System as a Strategy for Cancer Therapy. J Med Chem 2019; 62:7309-7321. [PMID: 30963763 DOI: 10.1021/acs.jmedchem.8b01595] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Thioredoxin reductase (TrxR) participates in the regulation of redox reactions in organisms. It works mainly via its substrate molecule, thioredoxin, to maintain the redox balance and regulate signal transduction, which controls cell proliferation, differentiation, death, and other important physiological processes. In recent years, increasing evidence has shown that the overactivation of TrxR is related to the development of tumors. The exploration of TrxR-targeted antitumor drugs has attracted wide attention and is expected to provide new therapies for cancer treatment. In this perspective, we highlight the specific relationship between TrxR and apoptotic signaling pathways. The cytoplasm and mitochondria both contain TrxR, resulting in the activation of apoptosis. TrxR activity influences reactive oxygen species (ROS) and further regulates the inflammatory signaling pathway. In addition, we discuss representative TrxR inhibitors with anticancer activity and analyze the challenges in developing TrxR inhibitors as anticancer drugs.
Collapse
Affiliation(s)
- Mianli Bian
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China
| | - Rong Fan
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China
| | - Sai Zhao
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China.,Institute of New Medicine Research , Nanjing Hicin Pharmaceutical Co. Ltd. , Nanjing 210046 , P. R. China
| | - Wukun Liu
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China.,State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing 210009 , P. R. China
| |
Collapse
|