51
|
Del Pozo MA, Lolo FN, Echarri A. Caveolae: Mechanosensing and mechanotransduction devices linking membrane trafficking to mechanoadaptation. Curr Opin Cell Biol 2020; 68:113-123. [PMID: 33188985 DOI: 10.1016/j.ceb.2020.10.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/21/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
Mechanical forces (extracellular matrix stiffness, vascular shear stress, and muscle stretching) reaching the plasma membrane (PM) determine cell behavior. Caveolae are PM-invaginated nanodomains with specific lipid and protein composition. Being highly abundant in mechanically challenged tissues (muscles, lungs, vessels, and adipose tissues), they protect cells from mechanical stress damage. Caveolae flatten upon increased PM tension, enabling both force sensing and accommodation, critical for cell mechanoprotection and homeostasis. Thus, caveolae are highly plastic, ranging in complexity from flattened membranes to vacuolar invaginations surrounded by caveolae-rosettes-which also contribute to mechanoprotection. Caveolar components crosstalk with mechanotransduction pathways and recent studies show that they translocate from the PM to the nucleus to convey stress information. Furthermore, caveolae components can regulate membrane traffic from/to the PM to adapt to environmental mechanical forces. The interdependence between lipids and caveolae starts to be understood, and the relevance of caveolae-dependent membrane trafficking linked to mechanoadaption to different physiopathological processes is emerging.
Collapse
Affiliation(s)
- Miguel A Del Pozo
- Mechanoadaptation and Caveolae Biology Laboratory, Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| | - Fidel-Nicolás Lolo
- Mechanoadaptation and Caveolae Biology Laboratory, Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Asier Echarri
- Mechanoadaptation and Caveolae Biology Laboratory, Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
52
|
Wang H, Feng X, Yan W, Tian D. Regulatory T Cells in Autoimmune Hepatitis: Unveiling Their Roles in Mouse Models and Patients. Front Immunol 2020; 11:575572. [PMID: 33117375 PMCID: PMC7575771 DOI: 10.3389/fimmu.2020.575572] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a severe and chronic liver disease, and its incidence has increased worldwide in recent years. Research into the pathogenesis of AIH remains limited largely owing to the lack of suitable mouse models. The concanavalin A (ConA) mouse model is a typical and well-established model used to investigate T cell-dependent liver injury. However, ConA-induced hepatitis is acute and usually disappears after 48 h; thus, it does not mimic the pathogenesis of AIH in the human body. Several studies have explored various AIH mouse models, but as yet there is no widely accepted and valid mouse model for AIH. Immunosuppression is the standard clinical therapy for AIH, but patient side effects and recurrence limit its use. Regulatory T cells (Tregs) play critical roles in the maintenance of immune homeostasis and in the prevention of autoimmune diseases, which may provide a potential therapeutic target for AIH therapy. However, the role of Tregs in AIH has not yet been clarified, partly because of difficulties in diagnosing AIH and in collecting patient samples. In this review, we discuss the studies related to Treg in various AIH mouse models and patients with AIH and provide some novel insights for this research area.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinxia Feng
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
53
|
Kuang F, Liu J, Tang D, Kang R. Oxidative Damage and Antioxidant Defense in Ferroptosis. Front Cell Dev Biol 2020; 8:586578. [PMID: 33043019 PMCID: PMC7527737 DOI: 10.3389/fcell.2020.586578] [Citation(s) in RCA: 275] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022] Open
Abstract
Many new types of regulated cell death have been recently implicated in human health and disease. These regulated cell deaths have different morphological, genetic, biochemical, and functional hallmarks. Ferroptosis was originally described as a carcinogenic RAS-dependent non-apoptotic cell death, and is now defined as a type of regulated necrosis characterized by iron accumulation, lipid peroxidation, and the release of damage-associated molecular patterns (DAMPs). Multiple oxidative and antioxidant systems, acting together autophagy machinery, shape the process of lipid peroxidation during ferroptosis. In particular, the production of reactive oxygen species (ROS) that depends on the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) and the mitochondrial respiratory chain promotes lipid peroxidation by lipoxygenase (ALOX) or cytochrome P450 reductase (POR). In contrast, the glutathione (GSH), coenzyme Q10 (CoQ10), and tetrahydrobiopterin (BH4) system limits oxidative damage during ferroptosis. These antioxidant processes are further transcriptionally regulated by nuclear factor, erythroid 2-like 2 (NFE2L2/NRF2), whereas membrane repair during ferroptotic damage requires the activation of endosomal sorting complexes required for transport (ESCRT)-III. A further understanding of the process and function of ferroptosis may provide precise treatment strategies for disease.
Collapse
Affiliation(s)
- Feimei Kuang
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiao Liu
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Daolin Tang
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
54
|
Affiliation(s)
- Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation; the Third Affiliated Hospital; School of Basic Medical Sciences; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jingbo Li
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Daolin Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation; the Third Affiliated Hospital; School of Basic Medical Sciences; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
55
|
Ouyang X, Li X, Liu J, Liu Y, Xie Y, Du Z, Xie H, Chen B, Lu W, Chen D. Structure-activity relationship and mechanism of four monostilbenes with respect to ferroptosis inhibition. RSC Adv 2020; 10:31171-31179. [PMID: 35520676 PMCID: PMC9056428 DOI: 10.1039/d0ra04896h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/08/2020] [Indexed: 12/20/2022] Open
Abstract
Erastin-treated bone marrow-derived mesenchymal stem cells (bmMSCs) were prepared and used to compare the ferroptosis inhibitory bioactivities of four monostilbenes, including rhapontigenin (1a), isorhapontigenin (1b), piceatannol-3'-O-glucoside (1c), and rhapontin (1d). Their relative levels were 1c ≈ 1b > 1a ≈ 1d in 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid (C11-BODIPY), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and flow cytometric assays. The comparison highlighted two 4'-OH-containing monostilbenes (1c and 1b) in ferroptosis inhibitory bioactivity. Similar structure-activity relationships were also observed in antioxidant assays, including 1,1-diphenyl-2-picryl-hydrazl radical (DPPH˙)-trapping, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO˙)-trapping, and Fe3+-reducing assays. UPLC-ESI-Q-TOF-MS analysis of the DPPH˙-trapping reaction of the monostilbenes revealed that they can inhibit ferroptosis in erastin-treated bmMSCs through a hydrogen donation-based antioxidant pathway. After hydrogen donation, these monostilbenes usually produce the corresponding stable dimers; additionally, the hydrogen donation potential was enhanced by the 4'-OH. The enhancement by 4'-OH can be attributed to the transannular resonance effect. This effect can be used to predict the inhibition potential of other π-π conjugative phenolics.
Collapse
Affiliation(s)
- Xiaojian Ouyang
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Jie Liu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine Guangzhou 510006 China
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Yangping Liu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine Guangzhou 510006 China
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Yulu Xie
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Zhongcun Du
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Hong Xie
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Ban Chen
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Wenbiao Lu
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Dongfeng Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine Guangzhou 510006 China
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| |
Collapse
|
56
|
The emerging role of ferroptosis in non-cancer liver diseases: hype or increasing hope? Cell Death Dis 2020; 11:518. [PMID: 32647111 PMCID: PMC7347946 DOI: 10.1038/s41419-020-2732-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
Ferroptosis is an iron- and lipotoxicity-dependent form of regulated cell death (RCD). It is morphologically and biochemically distinct from characteristics of other cell death. This modality has been intensively investigated in recent years due to its involvement in a wide array of pathologies, including cancer, neurodegenerative diseases, and acute kidney injury. Dysregulation of ferroptosis has also been linked to various liver diseases and its modification may provide a hopeful and attractive therapeutic concept. Indeed, targeting ferroptosis may prevent the pathophysiological progression of several liver diseases, such as hemochromatosis, nonalcoholic steatohepatitis, and ethanol-induced liver injury. On the contrary, enhancing ferroptosis may promote sorafenib-induced ferroptosis and pave the way for combination therapy in hepatocellular carcinoma. Glutathione peroxidase 4 (GPx4) and system xc− have been identified as key players to mediate ferroptosis pathway. More recently diverse signaling pathways have also been observed. The connection between ferroptosis and other forms of RCD is intricate and compelling, where discoveries in this field advance our understanding of cell survival and fate. In this review, we summarize the central molecular machinery of ferroptosis, describe the role of ferroptosis in non-cancer hepatic disease conditions and discuss the potential to manipulate ferroptosis as a therapeutic strategy.
Collapse
|
57
|
Liu Y, Chen H, Hao J, Li Z, Hou T, Hao H. Characterization and functional prediction of the microRNAs differentially expressed in a mouse model of concanavalin A-induced autoimmune hepatitis. Int J Med Sci 2020; 17:2312-2327. [PMID: 32922197 PMCID: PMC7484648 DOI: 10.7150/ijms.47766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
In order to investigate the altered expression of microRNAs (miRNAs) in the development of autoimmune hepatitis (AIH), the aberrantly expressed miRNAs in the concanavalin A (Con A)-induced AIH mouse model were identified for the first time with microarray in this study. A total of 49 miRNAs (31 up- and 18 down-regulated) were screened out, and the qRT-PCR validation results of 12 chosen miRNAs were consistent with the microarray data. Combined with the profiling of differently expressed mRNAs in the same model (data not shown), 959 predicted target genes (601 for up- and 358 for down-regulated miRNAs) were obtained according to the intersection of databases miRWalk and miRDB, and several hub genes were obtained from the regulatory networks, including Cadm1 and Mier3. These target genes were significantly enriched in the Gene ontology (GO) terms of "transcription, DNA-templated", and were annotated in 47 signaling pathways, comprising "Wnt signaling pathway", "Hippo signaling pathway", "Ferroptosis" and "mitogen-activated protein kinase (MAPK) signaling pathway", according to the GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. In the miRNA-GO-network, mmu-miR-193b-3p were exhibited in 33 GO terms of biological processes (BP), and the most significantly regulated GO term in BP categories was "regulation of transcription, DNA-templated". While in the miRNA-pathway-network, mmu-miR-7005-5p were enriched in 37 pathways, which was more than the other specifically expressed miRNAs, and the most significantly enriched pathways were "Endocytosis" and "MAPK signaling pathway". In conclusion, these differently expressed miRNAs seemed to be associated with the onset of AIH, and have the potential to serve as the new targets on the treatment of this disease.
Collapse
Affiliation(s)
- Yang Liu
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, 030619, PR China.,Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, PR China
| | - Hao Chen
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, 030619, PR China.,Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, PR China
| | - Jianheng Hao
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, 030619, PR China.,Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, PR China
| | - Zhencheng Li
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, 030619, PR China.,Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, PR China
| | - Tiezheng Hou
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, 030619, PR China.,Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, PR China
| | - Huiqin Hao
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, 030619, PR China.,Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, PR China
| |
Collapse
|