51
|
Yin F, Gao Q, Tang B, Sun P, Han K, Huang W. Transcriptome and analysis on the complement and coagulation cascades pathway of large yellow croaker (Larimichthys crocea) to ciliate ectoparasite Cryptocaryon irritans infection. FISH & SHELLFISH IMMUNOLOGY 2016; 50:127-141. [PMID: 26804649 DOI: 10.1016/j.fsi.2016.01.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 06/05/2023]
Abstract
Large yellow croaker (Larimichthys crocea) is one of the most valuable marine fish in southern China. Given to the rapid development of aquaculture industry, the L. crocea was subjected to ciliate ectoparasite Cryptocaryon irritans. It therefore is indispensable and urgent to understand the mechanism of L. crocea host defense against C. irritans infection. In the present study, the extensively analysis at the transcriptome level for Cryptocaryoniasis in L. crocea was carried out. These results showed that 15,826,911, 16,462,921, and 15,625,433 paired-end clean reads were obtained from three cDNA libraries (A: 0 theronts/fish, B: 12,000 theronts/fish, and C: 24,000 theronts/fish) of the L. crocea immune-related tissues by Illumina paired-end sequencing technology. Totally, 30,509 unique transcript fragments (unigenes) were assembled, with an average length of 1715 bp. In B/A, C/A, and C/B pairwise comparison, 972, 900, and 1126 genes showed differential expression respectively. Differently expressed immune-related genes (DEIGs) were scrutinized, in B/A pairwise comparison, 48 genes showed differential expression, including 26 up-regulated genes and 22 down-regulated genes in B; in C/A pairwise comparison, there were 39 DEIGs, including 7 up-regulated genes and 32 down-regulated genes in C; in C/B pairwise comparison, 40 genes showed differential expression, including 11 up-regulated genes and 29 down-regulated genes in C. There were 16 DEIGs enriched KEGG pathways, in which the complement and coagulation cascades pathway was the top most DEIGs enriched pathway (B:A = 42; C:A = 28; C:B = 42). The coagulation and fibrinolytic system was in a highly active state after infected by C. irritans with non-lethal concentration; the alternative complement pathway may play an important role in the early stages of C. irritans infection. These results demonstrated that low-concentration infection can significantly induce the immunological response in fishes, however, when fishes were in fatal conditions, the immunity was suppressed.
Collapse
Affiliation(s)
- Fei Yin
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, PR China.
| | - Quanxin Gao
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, PR China
| | - Baojun Tang
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, PR China
| | - Peng Sun
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, PR China
| | - Kunhuang Han
- Ningde Fufa Fisheries Co., Ltd., Ningde, Fujian Province, 352000, PR China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, PR China
| | - Weiqing Huang
- Ningde Fufa Fisheries Co., Ltd., Ningde, Fujian Province, 352000, PR China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, PR China
| |
Collapse
|
52
|
Umasuthan N, Mothishri MS, Thulasitha WS, Nam BH, Lee J. Molecular, genomic, and expressional delineation of a piscidin from rock bream (Oplegnathus fasciatus) with evidence for the potent antimicrobial activities of Of-Pis1 peptide. FISH & SHELLFISH IMMUNOLOGY 2016; 48:154-168. [PMID: 26549174 DOI: 10.1016/j.fsi.2015.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
The piscidin family comprises a group of antimicrobial peptides (AMPs) that are vital components of teleost innate immunity. Piscidins protect the host from pathogens, through multifaceted roles as immunomodulators and anti-infective peptides. The present study reports the identification, and characterization of a putative piscidin homolog, Of-Pis1, from rock bream (Oplegnathus fasciatus). A combined genomic and transcriptomic approach revealed that the Of-Pis1 gene comprises 1396 nucleotides (nt), four exons, and three introns. The cDNA with the 213 nt open reading frame encoded a 70-amino acid preprotein consisting of a signal peptide, a mature peptide, and a prodomain. Predicted mature Of-Pis1 was assumed to be a membrane-active AMP, based on the prediction of an amphipathic α-helical conformation with a net charge of +4. In addition, Of-Pis1 demonstrated significant similarities with other piscidin family members in terms of gene structure, sequence homology, and evolutionary relationship. Examination by quantitative real-time PCR (qPCR) of basal transcription of Of-Pis1 in the tissues of naïve rock bream, revealed predominant transcript levels in the gills, followed by the spleen, intestine, skin, and head kidney. In gill tissues, the temporally induced mRNA expression of Of-Pis1, upon in vivo injection trials with lipopolysaccharide (LPS); polyinosinic:polycytidylic acid (poly I:C); and pathogens, including Edwardsiella tarda, Streptococcus iniae, and rock bream iridovirus (RBIV), was weak. In contrast, in vivo flagellin administration led to a robust upregulation of Of-Pis1 in different tissues. Antimicrobial potency was determined by employing recombinant (rOf-Pis1), and synthetic (pOf-Pis1) peptides, in in vitro assays. Recombinant overexpression inhibited the growth of bacteria expressing the rOf-Pis1 protein in a growth delay assay. The broad antimicrobial spectrum of pOf-Pis1 was evidenced by its potent activity against an array of microbes, including bacteria, fungi, and parasitic species. In addition, pOf-Pis1 showed no significant hemolytic toxicity against human erythrocytes. Collectively, the data presented in the current study improve our understanding of the piscidin AMP family, and the contribution of Of-Pis1 to the rock bream immunity.
Collapse
Affiliation(s)
- Navaneethaiyer Umasuthan
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - M S Mothishri
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - William Shanthakumar Thulasitha
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Fisheries Research and Development Institute, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan 619-705, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea.
| |
Collapse
|
53
|
Wang P, Wang J, Su YQ, Mao Y, Zhang JS, Wu CW, Ke QZ, Han KH, Zheng WQ, Xu ND. Transcriptome analysis of the Larimichthys crocea liver in response to Cryptocaryon irritans. FISH & SHELLFISH IMMUNOLOGY 2016; 48:1-11. [PMID: 26578248 DOI: 10.1016/j.fsi.2015.11.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 11/02/2015] [Accepted: 11/05/2015] [Indexed: 05/28/2023]
Abstract
The large yellow croaker (Larimichthys crocea) is an economically important marine fish cultured in China and East Asian countries and is facing a serious threat from Cryptocaryon irritans, which is a protozoan ectoparasite that infects most reared marine fish species. To understand the molecular immune mechanisms underlying the response to C. irritans, we first performed a comparative gene transcription analysis using livers from C. irritans-immunized L. croceas and from a control group through RNA-Seq technology. After the removal of low-quality sequences and assembly, 51360 contigs were obtained, with an average length of 1066.93 bp. Further, a blast analysis indicates that 30747 contigs can be annotated based on homology with matches in the NT, NR, gene, and string databases. A gene ontology analysis was used to classify 21598 genes according to three major functional categories: molecular function, cellular component, and biological process. Moreover, 14470 genes were found in 303 KEGG pathways. We used RSEM and EdgeR to determine that 3841 genes were significantly differentially expressed (FDR < 0.001), including 2129 up-regulated genes and 1712 down-regulated genes. A significant enrichment analysis of these differentially expressed genes and isogenes revealed major immune-related pathways, including the toll-like receptor, complement and coagulation cascades, and chemokine signaling pathways. In addition, 28748 potential simple sequence repeats (SSRs) were detected from 12776 transcripts, and 62992 candidate single nucleotide polymorphisms (SNPs) were identified in the L. croceas liver transcriptome. This study characterized a gene expression pattern for normal and C. irritans-immunized L. croceas for the first time and not only sheds new light on the molecular mechanisms underlying the host-C. irritans interaction but also facilitates future studies on L. croceas gene expression and functional genomics.
Collapse
Affiliation(s)
- Panpan Wang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Jun Wang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Yong-Quan Su
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Yong Mao
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China.
| | | | - Chang-Wen Wu
- Zhejiang Ocean University, Zhoushan, 316022, China
| | - Qiao-Zhen Ke
- Ningde Fufa Fisheries Co., LTD, Ningde, 352002, China
| | - Kun-Huang Han
- Ningde Fufa Fisheries Co., LTD, Ningde, 352002, China
| | | | - Nen-di Xu
- Ningde Fufa Fisheries Co., LTD, Ningde, 352002, China
| |
Collapse
|
54
|
Katzenback BA. Antimicrobial Peptides as Mediators of Innate Immunity in Teleosts. BIOLOGY 2015; 4:607-39. [PMID: 26426065 PMCID: PMC4690011 DOI: 10.3390/biology4040607] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/16/2015] [Accepted: 09/17/2015] [Indexed: 12/16/2022]
Abstract
Antimicrobial peptides (AMPs) have been identified throughout the metazoa suggesting their evolutionarily conserved nature and their presence in teleosts is no exception. AMPs are short (18–46 amino acids), usually cationic, amphipathic peptides. While AMPs are diverse in amino acid sequence, with no two AMPs being identical, they collectively appear to have conserved functions in the innate immunity of animals towards the pathogens they encounter in their environment. Fish AMPs are upregulated in response to pathogens and appear to have direct broad-spectrum antimicrobial activity towards both human and fish pathogens. However, an emerging role for AMPs as immunomodulatory molecules has become apparent—the ability of AMPs to activate the innate immune system sheds light onto the multifaceted capacity of these small peptides to combat pathogens through direct and indirect means. Herein, this review focuses on the role of teleost AMPs as modulators of the innate immune system and their regulation in response to pathogens or other exogenous molecules. The capacity to regulate AMP expression by exogenous factors may prove useful in modulating AMP expression in fish to prevent disease, particularly in aquaculture settings where crowded conditions and environmental stress pre-dispose these fish to infection.
Collapse
Affiliation(s)
- Barbara A Katzenback
- Department of Biology, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
55
|
Zhang DL, Yu DH, Chen J, Chen C, Wang ZY. Co-expression of march5b and tlr7 in large yellow croaker Larimichthys crocea in response to Cryptocaryon irritans infection. JOURNAL OF FISH BIOLOGY 2015; 87:360-370. [PMID: 26179830 DOI: 10.1111/jfb.12726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 07/01/2014] [Accepted: 05/15/2015] [Indexed: 06/04/2023]
Abstract
In this study, molecular characteristics of march5b and co-expression of march5b and tlr7 in response to the infection of Cryptocaryon irritans in the large yellow croaker Larimichthys crocea were investigated. The full-length complementary (c)DNA of march5b was 1314 bp, including an open reading frame of 846 bp encoding a polypeptide of 281 amino acids, and the full-length genomic sequence was composed of 23,577 nucleotides, including six exons and five introns. The putative March5b protein contained a RINGv motif and four transmembrane domains. The march5b transcripts were broadly distributed in all detected tissues, with a strong expression in blood, brain and gills, and a weak expression in kidney by quantitative PCR analysis. The expression of march5b and tlr7 in the skin, gills, spleen and head kidney changed in the same manner at most time points post-primary infection with C. irritans. Significant increase was observed in the skin with march5b at days 2 and 3 by 26.10 and 6.88 fold, respectively, and with tlr7 at day 3 by 57.68 fold, when compared with the control. Their expressions, however, were decreased in the gills, especially at day 3 (march5b by 8.9%, tlr7 by 22.06%). In the spleen and head kidney, march5b and tlr7 transcripts were up-regulated early, then noticeably declined at day 3. These results suggested that march5b and tlr7 are co-expressed in response to parasite infection and March5b probably catalyses ubiquitination of some proteins of TLR7 signalling pathway.
Collapse
Affiliation(s)
- D L Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, PR China
| | - D H Yu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China
| | - J Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, PR China
| | - C Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China
| | - Z Y Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, PR China
| |
Collapse
|
56
|
Piscidin is highly active against carbapenem-resistant Acinetobacter baumannii and NDM-1-producing Klebsiella pneumonia in a systemic Septicaemia infection mouse model. Mar Drugs 2015; 13:2287-305. [PMID: 25874924 PMCID: PMC4413212 DOI: 10.3390/md13042287] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 03/30/2015] [Accepted: 04/01/2015] [Indexed: 11/16/2022] Open
Abstract
This study was designed to investigate the antimicrobial activity of two synthetic antimicrobial peptides from an aquatic organism, tilapia piscidin 3 (TP3) and tilapia piscidin 4 (TP4), in vitro and in a murine sepsis model, as compared with ampicillin, tigecycline, and imipenem. Mice were infected with (NDM-1)-producing K. pneumonia and multi-drug resistant Acinetobacter baumannii, and subsequently treated with TP3, TP4, or antibiotics for different periods of time (up to 168 h). Mouse survival and bacterial colony forming units (CFU) in various organs were measured after each treatment. Toxicity was determined based on observation of behavior and measurement of biochemical parameters. TP3 and TP4 exhibited strong activity against K. pneumonia and A. baumannii in vitro. Administration of TP3 (150 μg/mouse) or TP4 (50 μg/mouse) 30 min after infection with K. pneumonia or A. baumannii significantly increased survival in mice. TP4 was more effective than tigecycline at reducing CFU counts in several organs. TP3 and TP4 were shown to be non-toxic, and did not affect mouse behavior. TP3 and TP4 are able at potentiate anti-Acinetobacter baumannii or anti-Klebsiella pneumonia drug activity, reduce bacterial load, and prevent drug resistance, indicating their potential for use in combating multidrug-resistant bacteria.
Collapse
|
57
|
Zhou QJ, Su YQ, Niu SF, Liu M, Qiao Y, Wang J. Discovery and molecular cloning of piscidin-5-like gene from the large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2014; 41:417-420. [PMID: 25263194 DOI: 10.1016/j.fsi.2014.09.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/09/2014] [Accepted: 09/17/2014] [Indexed: 06/03/2023]
Affiliation(s)
- Qi-Jia Zhou
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Yong-Quan Su
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Su-Fang Niu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Min Liu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Ying Qiao
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Jun Wang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
58
|
Zhang DL, Han F, Yu DH, Xiao SJ, Li MY, Chen J, Wang ZY. Characterization of E3 ubiquitin ligase neuregulin receptor degradation protein-1 (Nrdp1) in the large yellow croaker (Larimichthys crocea) and its immune responses to Cryptocaryon irritans. Gene 2014; 556:98-105. [PMID: 25447921 DOI: 10.1016/j.gene.2014.11.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/18/2014] [Accepted: 11/11/2014] [Indexed: 11/18/2022]
Abstract
Neuregulin receptor degradation protein-1 (Nrdp1) was recently identified in humans as an important immune factor responding to the challenge of virus, LPS or cytokine. Its role in fish immune defense and whether it is involved in anti-parasite immunity have not been proven yet. In this report, the full-length cDNA sequence and genomic structure of Nrdp1 in the large yellow croaker Larimichthys crocea (LcNrdp1) were identified and characterized. The full-length cDNA of LcNrdp1 was 1248bp, including a 5' untranslated region (UTR) of 32bp, a 3' UTR of 259bp and an open reading frame (ORF) of 937bp, encoding a polypeptide of 318 amino acid residues. The full-length genomic DNA sequence of LcNrdp1 was composed of 2635 nucleotides, including four exons and three introns. The putative LcNrdp1 protein had no signal peptide sequence and contained a characteristic Nrdp1 consensus motif C3HC3D ring finger and a Coiled-coil domain. Phylogenetic analysis showed that Nrdp1 in fish was closer with that in other vertebrates (79%-90% amino acid identity) than in invertebrates and bacteria (27%-65%). In fishes, Nrdp1 in large yellow croaker was closer with that in Takifugu rubripes. The expression profile showed that LcNrdp1 was constitutively expressed in all tested tissues, especially highly expressed in brain, muscle and kidney. Post-infection (PI) with Cryptocaryon irritans, an increased expression of LcNrdp1 was induced in infection sites (skin and gill), whereas in immune organs, the expression of LcNrdp1 was up-regulated in spleen (except the 1st d and 10th d PI) but suppressed in head kidney. These results suggested that LcNrdp1 might play an important immune role in the finfish L. crocea in the defense against the parasite C. irritans.
Collapse
Affiliation(s)
- Dong Ling Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, PR China
| | - Fang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, PR China
| | - Da Hui Yu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Shi Jun Xiao
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, PR China
| | - Ming Yun Li
- College of Ocean, Ningbo University, Ningbo 315211, PR China
| | - Jian Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, PR China
| | - Zhi Yong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
59
|
Khatami MH, Bromberek M, Saika-Voivod I, Booth V. Molecular dynamics simulations of histidine-containing cod antimicrobial peptide paralogs in self-assembled bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2778-87. [DOI: 10.1016/j.bbamem.2014.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 07/10/2014] [Accepted: 07/14/2014] [Indexed: 01/24/2023]
|
60
|
Li HX, Lu XJ, Li CH, Chen J. Molecular characterization and functional analysis of two distinct liver-expressed antimicrobial peptide 2 (LEAP-2) genes in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2014; 38:330-339. [PMID: 24727197 DOI: 10.1016/j.fsi.2014.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 03/19/2014] [Accepted: 04/01/2014] [Indexed: 06/03/2023]
Abstract
Liver-expressed antimicrobial peptide 2 (LEAP-2) plays a vital role in the host innate immune system. In the present study, two LEAP-2 genes (LcLEAP-2A and LcLEAP-2C) from large yellow croaker (Larimichthys crocea) were cloned, both of which consist of 3 exons and 2 introns. The LcLEAP-2A transcripts were expressed in a wide range of tissues, with the highest mRNA levels found in the liver and intestine, while LcLEAP-2C transcripts showed obvious lower mRNA levels in all tested tissues compared to LcLEAP-2A. Upon infection by Vibrio alginolyticus, LcLEAP-2A transcripts were significantly up-regulated in liver, trunk kidney, spleen, head kidney, and gill, but down-regulated in intestine. In addition, significant up-regulation of LcLEAP-2C transcripts were also detected in all tissues tested, including intestine. The LcLEAP-2A and LcLEAP-2C mature peptides were chemically synthesized and found to exhibit selective antimicrobial activity in vitro against various species of bacteria. LcLEAP-2C, but not LcLEAP-2A, had antimicrobial activity against V. alginolyticus. Moreover, LcLEAP-2C treatment at low concentrations was evaluated and found to improve survival rate in V. alginolyticus-infected large yellow croaker, resulting in a decrease in bacterial load and expression of inflammatory cytokines. These results suggest that LcLEAP-2 isoforms play an important role in innate immunity by killing bacteria and inhibiting early inflammatory response in large yellow croaker.
Collapse
Affiliation(s)
- He-Xiang Li
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xin-Jiang Lu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chang-Hong Li
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
61
|
Perrin BS, Tian Y, Fu R, Grant CV, Chekmenev EY, Wieczorek W, Dao AE, Hayden RM, Burzynski CM, Venable RM, Sharma M, Opella SJ, Pastor RW, Cotten ML. High-resolution structures and orientations of antimicrobial peptides piscidin 1 and piscidin 3 in fluid bilayers reveal tilting, kinking, and bilayer immersion. J Am Chem Soc 2014; 136:3491-504. [PMID: 24410116 PMCID: PMC3985945 DOI: 10.1021/ja411119m] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Indexed: 01/16/2023]
Abstract
While antimicrobial peptides (AMPs) have been widely investigated as potential therapeutics, high-resolution structures obtained under biologically relevant conditions are lacking. Here, the high-resolution structures of the homologous 22-residue long AMPs piscidin 1 (p1) and piscidin 3 (p3) are determined in fluid-phase 3:1 phosphatidylcholine/phosphatidylglycerol (PC/PG) and 1:1 phosphatidylethanolamine/phosphatidylglycerol (PE/PG) bilayers to identify molecular features important for membrane destabilization in bacterial cell membrane mimics. Structural refinement of (1)H-(15)N dipolar couplings and (15)N chemical shifts measured by oriented sample solid-state NMR and all-atom molecular dynamics (MD) simulations provide structural and orientational information of high precision and accuracy about these interfacially bound α-helical peptides. The tilt of the helical axis, τ, is between 83° and 93° with respect to the bilayer normal for all systems and analysis methods. The average azimuthal rotation, ρ, is 235°, which results in burial of hydrophobic residues in the bilayer. The refined NMR and MD structures reveal a slight kink at G13 that delineates two helical segments characterized by a small difference in their τ angles (<10°) and significant difference in their ρ angles (~25°). Remarkably, the kink, at the end of a G(X)4G motif highly conserved among members of the piscidin family, allows p1 and p3 to adopt ρ angles that maximize their hydrophobic moments. Two structural features differentiate the more potent p1 from p3: p1 has a larger ρ angle and less N-terminal fraying. The peptides have comparable depths of insertion in PC/PG, but p3 is 1.2 Å more deeply inserted than p1 in PE/PG. In contrast to the ideal α-helical structures typically assumed in mechanistic models of AMPs, p1 and p3 adopt disrupted α-helical backbones that correct for differences in the amphipathicity of their N- and C-ends, and their centers of mass lie ~1.2-3.6 Å below the plane defined by the C2 atoms of the lipid acyl chains.
Collapse
Affiliation(s)
- B. Scott Perrin
- Laboratory
of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ye Tian
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093-0307, United States
| | - Riqiang Fu
- National High Magnetic
Field Laboratory, Tallahassee, Florida 32310, United
States
| | - Christopher V. Grant
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093-0307, United States
| | - Eduard Y. Chekmenev
- National High Magnetic
Field Laboratory, Tallahassee, Florida 32310, United
States
| | - William
E. Wieczorek
- Department
of Chemistry, Hamilton College, Clinton, New York 13323, United States
| | - Alexander E. Dao
- Department
of Chemistry, Hamilton College, Clinton, New York 13323, United States
| | - Robert M. Hayden
- Department
of Chemistry, Hamilton College, Clinton, New York 13323, United States
| | - Caitlin M. Burzynski
- Department
of Chemistry, Hamilton College, Clinton, New York 13323, United States
| | - Richard M. Venable
- Laboratory
of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Mukesh Sharma
- Department
of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Stanley J. Opella
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093-0307, United States
| | - Richard W. Pastor
- Laboratory
of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Myriam L. Cotten
- Department
of Chemistry, Hamilton College, Clinton, New York 13323, United States
| |
Collapse
|
62
|
Masso-Silva JA, Diamond G. Antimicrobial peptides from fish. Pharmaceuticals (Basel) 2014; 7:265-310. [PMID: 24594555 PMCID: PMC3978493 DOI: 10.3390/ph7030265] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/06/2014] [Accepted: 02/18/2014] [Indexed: 12/21/2022] Open
Abstract
Antimicrobial peptides (AMPs) are found widely distributed through Nature, and participate in the innate host defense of each species. Fish are a great source of these peptides, as they express all of the major classes of AMPs, including defensins, cathelicidins, hepcidins, histone-derived peptides, and a fish-specific class of the cecropin family, called piscidins. As with other species, the fish peptides exhibit broad-spectrum antimicrobial activity, killing both fish and human pathogens. They are also immunomodulatory, and their genes are highly responsive to microbes and innate immuno-stimulatory molecules. Recent research has demonstrated that some of the unique properties of fish peptides, including their ability to act even in very high salt concentrations, make them good potential targets for development as therapeutic antimicrobials. Further, the stimulation of their gene expression by exogenous factors could be useful in preventing pathogenic microbes in aquaculture.
Collapse
Affiliation(s)
- Jorge A Masso-Silva
- Department of Pediatrics and Graduate School of Biomedical Sciences, Rutgers New Jersey Medical School, Newark, NJ 07101, USA.
| | - Gill Diamond
- Department of Oral Biology, University of Florida, Box 100424, Gainesville, FL 32610, USA.
| |
Collapse
|
63
|
Mao Y, Niu S, Xu X, Wang J, Su Y, Wu Y, Zhong S. The effect of an adding histidine on biological activity and stability of Pc-pis from Pseudosciaena crocea. PLoS One 2013; 8:e83268. [PMID: 24349477 PMCID: PMC3862765 DOI: 10.1371/journal.pone.0083268] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 11/12/2013] [Indexed: 11/19/2022] Open
Abstract
Pc-pis is a novel piscidin-like antimicrobial polypeptide that was identified in Pseudosciaena crocea. Although active against most bacteria tested, Pc-pis was inactive against Aeromonas hydrophila and Pseudomonas aeruginosa. The Pc-pis analogue Pc-pis-His was designed by adding a histidine residue at the carboxyl terminal. Pc-pis-His demonstrated a more broad-spectrum and stronger antimicrobial activity against a representative set of microorganisms and more potent antiparasitic activity against Cryptocaryon irritans trophonts than Pc-pis. The stability assay revealed that Pc-pis-His was active against Staphylococcus aureus not only in acidic (pH 5.5-7.3) and relatively low concentration monovalent cation (0-160 mM NaCl) environments but also in alkaline (pH 7.5-9.5), divalent cation (1.25-160 mM MgCl2 and 1.25-40 mM CaCl2) and high concentration monovalent cation (320-2560 mM NaCl) environments, which indicates that the added histidine residue conferred better salt-, acid- and alkali-tolerance to Pc-pis-His. Pc-pis-His also possessed the desired heat-tolerance, which was reflected by the antimicrobial activity of the peptide after being boiled for 10-60 minutes. Hemolytic activity analysis revealed that Pc-pis-His at concentrations up to 6 µM exhibited no hemolysis against human erythrocytes, with 6 µM being a concentration that is highly active against most of the microorganisms tested, although the hemolytic activity of Pc-pis-His was enhanced compared to Pc-pis. These results provide a unique, reasonable basis for designing novel piscidins with potent, broad-spectrum and stable antimicrobial activity and new insight into the future development of piscidins as potential therapeutic agents against microbial and external protozoan parasite infections.
Collapse
Affiliation(s)
- Yong Mao
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- * E-mail:
| | - Sufang Niu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xin Xu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jun Wang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yongquan Su
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yang Wu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Shengping Zhong
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|