51
|
Cen Z, Chen Y, Yang D, Zhu Q, Chen S, Chen X, Wang B, Xie F, Ouyang Z, Jiang Z, Fu A, Hu B, Yin H, Qiu X, Yu F, Du X, Hao W, Liu Y, Wang H, Wang L, Yu X, Xiao Y, Liu C, Xiao J, Zhou Y, Yang W, Zhang B, Luo W. Intronic (TTTGA)
n
insertion in
SAMD12
also causes familial cortical myoclonic tremor with epilepsy. Mov Disord 2019; 34:1571-1576. [PMID: 31483537 DOI: 10.1002/mds.27832] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/02/2019] [Accepted: 07/29/2019] [Indexed: 11/09/2022] Open
Affiliation(s)
- Zhidong Cen
- Department of Neurology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou Zhejiang China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou Zhejiang China
| | - You Chen
- Department of Neurology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou Zhejiang China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou Zhejiang China
| | - Dehao Yang
- Department of Neurology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou Zhejiang China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou Zhejiang China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences University of Chinese Academy of Sciences, Chinese Academy of Sciences Shanghai China
| | - Si Chen
- Department of Neurology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou Zhejiang China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou Zhejiang China
| | - Xinhui Chen
- Department of Neurology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou Zhejiang China
| | - Bo Wang
- Department of Neurology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou Zhejiang China
| | - Fei Xie
- Department of Neurology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou Zhejiang China
- Department of Neurology Sir Run Run Shaw Hospital, Zhejiang University School of Medicine Hangzhou Zhejiang China
| | - Zhiyuan Ouyang
- Department of Neurology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou Zhejiang China
| | - Zhengwen Jiang
- Genesky Diagnostics Inc, Biobay, SIP Suzhou Jiangsu China
| | - Aisi Fu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences Wuhan University Wuhan Hubei China
| | - Ben Hu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences Wuhan University Wuhan Hubei China
| | - Houmin Yin
- Department of Neurology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou Zhejiang China
| | - Xia Qiu
- Department of Neurology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou Zhejiang China
| | - Feng Yu
- Genesky Diagnostics Inc, Biobay, SIP Suzhou Jiangsu China
| | - Xiaoping Du
- Epilepsy Center, Department of Neurosurgery Humanity Hospital Xiamen Fujian China
- Department of Neurology, West District The Second Hospital of Shanxi Medical University Taiyuan Shanxi China
| | - Weicheng Hao
- Department of Neurology, West District The Second Hospital of Shanxi Medical University Taiyuan Shanxi China
| | - Yuxi Liu
- Institute of Epilepsy Shanxi Medical University Taiyuan Shanxi China
| | - Haotian Wang
- Department of Neurology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou Zhejiang China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou Zhejiang China
| | - Lebo Wang
- Department of Neurology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou Zhejiang China
| | - Xiafei Yu
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology Zhejiang University School of Medicine Hangzhou Zhejiang China
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences University of Chinese Academy of Sciences, Chinese Academy of Sciences Shanghai China
| | - Chunyu Liu
- Department of Psychiatry SUNY Upstate Medical University Syracuse New York USA
| | - Jianfeng Xiao
- Department of Neurology University of Tennessee Health Science Center Memphis Tennessee USA
| | - Yongxing Zhou
- Department of Neurology MedStar St Mary's Hospital/Georgetown University Hospital, MedStar Medical Group Leonardtown Maryland USA
| | - Wei Yang
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology Zhejiang University School of Medicine Hangzhou Zhejiang China
| | - Baorong Zhang
- Department of Neurology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou Zhejiang China
| | - Wei Luo
- Department of Neurology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou Zhejiang China
| |
Collapse
|
52
|
Jenquin JR, Yang H, Huigens RW, Nakamori M, Berglund JA. Combination Treatment of Erythromycin and Furamidine Provides Additive and Synergistic Rescue of Mis-Splicing in Myotonic Dystrophy Type 1 Models. ACS Pharmacol Transl Sci 2019; 2:247-263. [PMID: 31485578 DOI: 10.1021/acsptsci.9b00020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is a multi-systemic disease that presents with clinical symptoms including myotonia, cardiac dysfunction and cognitive impairment. DM1 is caused by a CTG expansion in the 3' UTR of the DMPK gene. The transcribed expanded CUG repeat RNA sequester the muscleblind-like (MBNL) and up-regulate the CUG-BP Elav-like (CELF) families of RNA-binding proteins leading to global mis-regulation of RNA processing and altered gene expression. Currently, there are no disease-targeting treatments for DM1. Given the multi-step pathogenic mechanism, combination therapies targeting different aspects of the disease mechanism may be a viable therapeutic approach. Here, as proof-of-concept, we studied a combination of two previously characterized small molecules, erythromycin and furamidine, in two DM1 models. In DM1 patient-derived myotubes, rescue of mis-splicing was observed with little to no cell toxicity. In a DM1 mouse model, a combination of erythromycin and the prodrug of furamidine (pafuramidine), administered orally, displayed both additive and synergistic mis-splicing rescue. Gene expression was only modestly affected and over 40 % of the genes showing significant expression changes were rescued back toward WT expression levels. Further, the combination treatment partially rescued the myotonia phenotype in the DM1 mouse. This combination treatment showed a high degree of mis-splicing rescue coupled with low off-target gene expression changes. These results indicate that combination therapies are a promising therapeutic approach for DM1.
Collapse
Affiliation(s)
- Jana R Jenquin
- Department of Biochemistry & Molecular Biology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA
| | - Hongfen Yang
- Department of Medicinal Chemistry, Center for Natural Products Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Robert W Huigens
- Department of Medicinal Chemistry, Center for Natural Products Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - J Andrew Berglund
- Department of Biochemistry & Molecular Biology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, Florida, 32610, USA.,Department of Biological Sciences, RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, 12222, USA
| |
Collapse
|
53
|
Cen Z, Jiang Z, Chen Y, Zheng X, Xie F, Yang X, Lu X, Ouyang Z, Wu H, Chen S, Yin H, Qiu X, Wang S, Ding M, Tang Y, Yu F, Li C, Wang T, Ishiura H, Tsuji S, Jiao C, Liu C, Xiao J, Luo W. Intronic pentanucleotide TTTCA repeat insertion in the SAMD12 gene causes familial cortical myoclonic tremor with epilepsy type 1. Brain 2019; 141:2280-2288. [PMID: 29939203 DOI: 10.1093/brain/awy160] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/18/2018] [Indexed: 12/16/2022] Open
Abstract
Familial cortical myoclonic tremor with epilepsy is an autosomal dominant neurodegenerative disease, characterized by cortical tremor and epileptic seizures. Although four subtypes (types 1-4) mapped on different chromosomes (8q24, 2p11.1-q12.2, 5p15.31-p15.1 and 3q26.32-3q28) have been reported, the causative gene has not yet been identified. Here, we report the genetic study in a cohort of 20 Chinese pedigrees with familial cortical myoclonic tremor with epilepsy. Linkage and haplotype analysis in 11 pedigrees revealed maximum two-point logarithm of the odds (LOD) scores from 1.64 to 3.77 (LOD scores in five pedigrees were >3.0) in chromosomal region 8q24 and narrowed the candidate region to an interval of 4.9 Mb. Using whole-genome sequencing, long-range polymerase chain reaction and repeat-primed polymerase chain reaction, we identified an intronic pentanucleotide (TTTCA)n insertion in the SAMD12 gene as the cause, which co-segregated with the disease among the 11 pedigrees mapped on 8q24 and additional seven unmapped pedigrees. Only two pedigrees did not contain the (TTTCA)n insertion. Repeat-primed polymerase chain reaction revealed that the sizes of (TTTCA)n insertion in all affected members were larger than 105 repeats. The same pentanucleotide insertion (ATTTCATTTC)58 has been reported to form RNA foci resulting in neurotoxicity in spinocerebellar ataxia type 37, which suggests the similar pathogenic process in familial cortical myoclonic tremor with epilepsy type 1.
Collapse
Affiliation(s)
- Zhidong Cen
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhengwen Jiang
- Genesky Diagnostics Inc, Biobay, SIP, Suzhou, Jiangsu, China
| | - You Chen
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaosheng Zheng
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Intensive Care Unit, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Fei Xie
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaodong Yang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xingjiao Lu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Zhiyuan Ouyang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongwei Wu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Neurology, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Si Chen
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Houmin Yin
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xia Qiu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuang Wang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Meiping Ding
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yelei Tang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Feng Yu
- Genesky Diagnostics Inc, Biobay, SIP, Suzhou, Jiangsu, China
| | - Caihua Li
- Genesky Biotechnologies Inc., Shanghai, China
| | - Tao Wang
- Genesky Biotechnologies Inc., Shanghai, China
| | - Hiroyuki Ishiura
- Department of Neurology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoji Tsuji
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan
| | - Chuan Jiao
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Chunyu Liu
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jianfeng Xiao
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Wei Luo
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
54
|
Nahalka J. The role of the protein-RNA recognition code in neurodegeneration. Cell Mol Life Sci 2019; 76:2043-2058. [PMID: 30980111 PMCID: PMC11105320 DOI: 10.1007/s00018-019-03096-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/14/2019] [Accepted: 04/08/2019] [Indexed: 12/14/2022]
Abstract
MicroRNAs are small endogenous RNAs that pair and bind to sites on mRNAs to direct post-transcriptional repression. However, there is a possibility that microRNAs directly influence protein structure and activity, and this influence can be termed post-translational riboregulation. This conceptual review explores the literature on neurodegenerative disorders. Research on the association between neurodegeneration and RNA-repeat toxicity provides data that support a protein-RNA recognition code. For example, this code explains why hnRNP H and SFPQ proteins, which are involved in amyotrophic lateral sclerosis, are sequestered by the (GGGGCC)n repeat sequence. Similarly, it explains why MNBL proteins and (CTG)n repeats in RNA, which are involved in myotonic dystrophy, are sequestered into RNA foci. Using this code, proteins involved in diseases can be identified. A simple protein BLAST search of the human genome for amino acid repeats that correspond to the nucleotide repeats reveals new proteins among already known proteins that are involved in diseases. For example, the (CAG)n repeat sequence, when transcribed into possible peptide sequences, leads to the identification of PTCD3, Rem2, MESP2, SYPL2, WDR33, COL23A1, and others. After confirming this approach on RNA repeats, in the next step, the code was used in the opposite manner. Proteins that are involved in diseases were compared with microRNAs involved in those diseases. For example, a reasonable correspondence of microRNA 9 and 107 with amyloid-β-peptide (Aβ42) was identified. In the last step, a miRBase search for micro-nucleotides, obtained by transcription of a prion amino acid sequence, revealed new microRNAs and microRNAs that have previously been identified as involved in prion diseases. This concept provides a useful key for designing RNA or peptide probes.
Collapse
Affiliation(s)
- Jozef Nahalka
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dubravska cesta 9, 84538, Bratislava, Slovak Republic.
- Institute of Chemistry, Centre of Excellence for White-green Biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, 94976, Nitra, Slovak Republic.
| |
Collapse
|
55
|
Ashizawa AT, Holt J, Faust K, Liu W, Tiwari A, Zhang N, Ashizawa T. Intravenously Administered Novel Liposomes, DCL64, Deliver Oligonucleotides to Cerebellar Purkinje Cells. THE CEREBELLUM 2019; 18:99-108. [PMID: 29987489 DOI: 10.1007/s12311-018-0961-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cerebellar Purkinje cells (PCs) show conspicuous damages in many ataxic disorders. Targeted delivery of short nucleic acids, such as antisense oligonucleotides, to PCs may be a potential treatment for ataxic disorders, especially spinocerebellar ataxias (SCAs), which are mostly caused by a gain of toxic function of the mutant RNA or protein. However, oligonucleotides do not cross the blood-brain barrier (BBB), necessitating direct delivery into the central nervous system (CNS) through intra-thecal, intra-cisternal, intra-cerebral ventricular, or stereotactic parenchymal administration. We have developed a novel liposome (100 to 200 nm in diameter) formulation, DCL64, composed of dipalmitoyl-phosphatidylcholine, cholesterol, and poloxamer L64, which incorporates oligonucleotides efficiently (≥ 70%). Confocal microscopy showed that DCL64 was selectively taken up by brain microvascular endothelial cells by interacting with low-density lipoprotein receptor (LDLr) family members on cell surface, but not with other types of lipid receptors such as caveolin or scavenger receptor class B type 1. LDLr family members are implicated in brain microvascular endothelial cell endocytosis/transcytosis, and are abundantly localized on cerebellar PCs. Intravenous administration of DCL64 in normal mice showed distribution of oligonucleotides to the brain, preferentially in PCs. Mice that received DCL64 showed no adverse effect on hematological, hepatic, and renal functions in blood tests, and no histopathological abnormalities in major organs. These studies suggest that DCL64 delivers oligonucleotides to PCs across the BBB via intravenous injection with no detectable adverse effects. This property potentially makes DCL64 particularly attractive as a delivery vehicle in treatments of SCAs.
Collapse
Affiliation(s)
- Ana Tari Ashizawa
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, USA.,Bio-Path Holdings, Inc., Bellaire, TX, USA
| | - Jenny Holt
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Kelsey Faust
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Weier Liu
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Anjana Tiwari
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6670 Bertner Avenue, R11-117, Houston, TX, 77030, USA
| | - Nan Zhang
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6670 Bertner Avenue, R11-117, Houston, TX, 77030, USA
| | - Tetsuo Ashizawa
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA. .,Department of Neurology, University of Florida, Gainesville, FL, USA. .,Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6670 Bertner Avenue, R11-117, Houston, TX, 77030, USA.
| |
Collapse
|
56
|
Westenberger A, Reyes CJ, Saranza G, Dobricic V, Hanssen H, Domingo A, Laabs B, Schaake S, Pozojevic J, Rakovic A, Grütz K, Begemann K, Walter U, Dressler D, Bauer P, Rolfs A, Münchau A, Kaiser FJ, Ozelius LJ, Jamora RD, Rosales RL, Diesta CCE, Lohmann K, König IR, Brüggemann N, Klein C. A hexanucleotide repeat modifies expressivity of X‐linked dystonia parkinsonism. Ann Neurol 2019; 85:812-822. [DOI: 10.1002/ana.25488] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 02/02/2023]
Affiliation(s)
| | | | - Gerard Saranza
- Department of NeurosciencesCollege of Medicine‐Philippine General Hospital, University of the Philippines Manila Philippines
| | - Valerija Dobricic
- Institute of NeurogeneticsUniversity of Lübeck Lübeck Germany
- Lübeck Interdisciplinary Platform for Genome AnalyticsInstitutes of Neurogenetics and Cardiogenetics, University of Lübeck Lübeck Germany
| | - Henrike Hanssen
- Institute of NeurogeneticsUniversity of Lübeck Lübeck Germany
- Department of NeurologyUniversity of Lübeck Lübeck Germany
| | - Aloysius Domingo
- Institute of NeurogeneticsUniversity of Lübeck Lübeck Germany
- Center for Genomic MedicineMassachusetts General Hospital Boston MA
| | - Björn‐Hergen Laabs
- Institute of Medical Biometry and StatisticsUniversity of Lübeck Lübeck Germany
| | - Susen Schaake
- Institute of NeurogeneticsUniversity of Lübeck Lübeck Germany
| | - Jelena Pozojevic
- Section for Functional GeneticsInstitute for Human Genetics, University of Lübeck Lübeck Germany
| | | | - Karen Grütz
- Institute of NeurogeneticsUniversity of Lübeck Lübeck Germany
| | | | - Uwe Walter
- Department of NeurologyUniversity of Rostock Rostock Germany
| | - Dirk Dressler
- Movement Disorders Section, Department of NeurologyHannover Medical School Hannover Germany
| | | | | | | | - Frank J. Kaiser
- Section for Functional GeneticsInstitute for Human Genetics, University of Lübeck Lübeck Germany
| | - Laurie J. Ozelius
- Department of NeurologyMassachusetts General Hospital and Harvard Medical School Boston MA
| | - Roland Dominic Jamora
- Department of NeurosciencesCollege of Medicine‐Philippine General Hospital, University of the Philippines Manila Philippines
| | | | - Cid Czarina E. Diesta
- Department of Neurosciences, Movement Disorders ClinicMakati Medical Center Makati City Philippines
| | - Katja Lohmann
- Institute of NeurogeneticsUniversity of Lübeck Lübeck Germany
| | - Inke R. König
- Institute of Medical Biometry and StatisticsUniversity of Lübeck Lübeck Germany
| | - Norbert Brüggemann
- Institute of NeurogeneticsUniversity of Lübeck Lübeck Germany
- Department of NeurologyUniversity of Lübeck Lübeck Germany
| | - Christine Klein
- Institute of NeurogeneticsUniversity of Lübeck Lübeck Germany
| |
Collapse
|
57
|
|
58
|
Abstract
The spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of autosomal dominantly inherited progressive disorders, the clinical hallmark of which is loss of balance and coordination accompanied by slurred speech; onset is most often in adult life. Genetically, SCAs are grouped as repeat expansion SCAs, such as SCA3/Machado-Joseph disease (MJD), and rare SCAs that are caused by non-repeat mutations, such as SCA5. Most SCA mutations cause prominent damage to cerebellar Purkinje neurons with consecutive cerebellar atrophy, although Purkinje neurons are only mildly affected in some SCAs. Furthermore, other parts of the nervous system, such as the spinal cord, basal ganglia and pontine nuclei in the brainstem, can be involved. As there is currently no treatment to slow or halt SCAs (many SCAs lead to premature death), the clinical care of patients with SCA focuses on managing the symptoms through physiotherapy, occupational therapy and speech therapy. Intense research has greatly expanded our understanding of the pathobiology of many SCAs, revealing that they occur via interrelated mechanisms (including proteotoxicity, RNA toxicity and ion channel dysfunction), and has led to the identification of new targets for treatment development. However, the development of effective therapies is hampered by the heterogeneity of the SCAs; specific therapeutic approaches may be required for each disease.
Collapse
|
59
|
Qawasmi L, Braun M, Guberman I, Cohen E, Naddaf L, Mellul A, Matilainen O, Roitenberg N, Share D, Stupp D, Chahine H, Cohen E, Garcia SM, Tabach Y. Expanded CUG Repeats Trigger Disease Phenotype and Expression Changes through the RNAi Machinery in C. elegans. J Mol Biol 2019; 431:1711-1728. [DOI: 10.1016/j.jmb.2019.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 11/26/2022]
|
60
|
Lei XX, Liu Q, Lu Q, Huang Y, Zhou XQ, Sun HY, Wu LW, Cui LY, Zhang X. TTTCA repeat expansion causes familial cortical myoclonic tremor with epilepsy. Eur J Neurol 2018; 26:513-518. [PMID: 30351492 DOI: 10.1111/ene.13848] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/12/2018] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND PURPOSE The aim was to investigate whether abnormal TTTTA and TTTCA repeat expansions in introns of SAMD12, TNRC6A and RAPGEF2 are involved in the pathogenesis of familial cortical myoclonic tremor with epilepsy (FCMTE). METHODS Five families diagnosed with FCMTE were included in the current genetic analysis. Whole-exome sequencing was performed in selected patients of each family. TTTTA and TTTCA expansions were examined by repeat-primed polymerase chain reaction. The clinical features of FCMTE were elicited as defined by the common genetic mechanism of 14 patients. RESULTS Abnormal TTTCA expansion was identified and co-segregated in all five FCMTE families, four inserted in SAMD12 and one in RAPGEF2. The insertion of expanded TTTCA was not found in 116 control alleles. TTTTA expansion in SAMD12 was detected in 90.9% (10/11) of patients or mutation carriers; TTTTA expansion in RAPGEF2 was not found. The onset age of myoclonic tremor was 27.4 ± 5.9 (19-37) and epilepsy usually presented around age 34. Focal and generalized seizures were witnessed with various origins recorded by electroencephalogram. Cognitive deficits were not common within the first 3 years after epilepsy onset. Emotional instability was reported by most patients. No patients showed any cerebellar deficits. Valproate added with clonazepam is effective in controlling seizures but cannot guarantee a complete remission of tremor. Repeat length showed intergenerational instability and was inversely correlated with age at onset of myoclonic tremor and epilepsy. CONCLUSIONS TTTCA expansion insertion is associated with FCMTE in Chinese families. The homogenous genetic mechanism allowed for a higher precision of FCMTE description.
Collapse
Affiliation(s)
- X X Lei
- Department of Neurology and Laboratory of Clinical Genetics, Peking Union Medical College Hospital (PUMCH), CAMS and PUMC, Beijing, China.,McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Q Liu
- Department of Neurology and Laboratory of Clinical Genetics, Peking Union Medical College Hospital (PUMCH), CAMS and PUMC, Beijing, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Q Lu
- Department of Neurology and Laboratory of Clinical Genetics, Peking Union Medical College Hospital (PUMCH), CAMS and PUMC, Beijing, China
| | - Y Huang
- Department of Neurology and Laboratory of Clinical Genetics, Peking Union Medical College Hospital (PUMCH), CAMS and PUMC, Beijing, China
| | - X Q Zhou
- Department of Neurology and Laboratory of Clinical Genetics, Peking Union Medical College Hospital (PUMCH), CAMS and PUMC, Beijing, China
| | - H Y Sun
- Department of Neurology and Laboratory of Clinical Genetics, Peking Union Medical College Hospital (PUMCH), CAMS and PUMC, Beijing, China
| | - L W Wu
- Department of Neurology and Laboratory of Clinical Genetics, Peking Union Medical College Hospital (PUMCH), CAMS and PUMC, Beijing, China
| | - L Y Cui
- Department of Neurology and Laboratory of Clinical Genetics, Peking Union Medical College Hospital (PUMCH), CAMS and PUMC, Beijing, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - X Zhang
- Department of Neurology and Laboratory of Clinical Genetics, Peking Union Medical College Hospital (PUMCH), CAMS and PUMC, Beijing, China.,McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
61
|
Wang Y, Hao L, Wang H, Santostefano K, Thapa A, Cleary J, Li H, Guo X, Terada N, Ashizawa T, Xia G. Therapeutic Genome Editing for Myotonic Dystrophy Type 1 Using CRISPR/Cas9. Mol Ther 2018; 26:2617-2630. [PMID: 30274788 PMCID: PMC6225032 DOI: 10.1016/j.ymthe.2018.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/30/2018] [Accepted: 09/06/2018] [Indexed: 12/18/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by a CTG nucleotide repeat expansion within the 3' UTR of the Dystrophia Myotonica protein kinase gene. In this study, we explored therapeutic genome editing using CRISPR/Cas9 via targeted deletion of expanded CTG repeats and targeted insertion of polyadenylation signals in the 3' UTR upstream of the CTG repeats to eliminate toxic RNA CUG repeats. We found paired SpCas9 or SaCas9 guide RNA induced deletion of expanded CTG repeats. However, this approach incurred frequent inversion in both the mutant and normal alleles. In contrast, the insertion of polyadenylation signals in the 3' UTR upstream of the CTG repeats eliminated toxic RNA CUG repeats, which led to phenotype reversal in differentiated neural stem cells, forebrain neurons, cardiomyocytes, and skeletal muscle myofibers. We concluded that targeted insertion of polyadenylation signals in the 3' UTR is a viable approach to develop therapeutic genome editing for DM1.
Collapse
Affiliation(s)
- Yanlin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Henan 450000, China
| | - Lei Hao
- Department of Neurology, The Fifth People's Hospital of Chongqing, Chongqing 400062, China
| | - Hongcai Wang
- Department of Neurology, Affiliated Hospital of Binzhou Medical University, Binzhou City, Shandong Province, China; Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Katherine Santostefano
- Department of Pathology, Immunology & Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Arjun Thapa
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - John Cleary
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Hui Li
- Department of Neurology, University of Wisconsin, Madison, WI, USA
| | - Xiuming Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Naohiro Terada
- Department of Pathology, Immunology & Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Tetsuo Ashizawa
- Houston Methodist Neurological Institute and Research Institute, 6670 Bertner Ave. R11-117, Houston, TX, USA
| | - Guangbin Xia
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA; Department of Neuroscience, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
62
|
Witkos TM, Krzyzosiak WJ, Fiszer A, Koscianska E. A potential role of extended simple sequence repeats in competing endogenous RNA crosstalk. RNA Biol 2018; 15:1399-1409. [PMID: 30381983 PMCID: PMC6284579 DOI: 10.1080/15476286.2018.1536593] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
MicroRNA (miRNA)-mediated crosstalk between coding and non-coding RNAs of various types is known as the competing endogenous RNA (ceRNA) concept. Here, we propose that there is a specific variant of the ceRNA language that takes advantage of simple sequence repeat (SSR) wording. We applied bioinformatics tools to identify human transcripts that may be regarded as repeat-associated ceRNAs (raceRNAs). Multiple protein-coding transcripts, transcribed pseudogenes, long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) showing this potential were identified, and numerous miRNAs were predicted to bind to SSRs. We propose that simple repeats expanded in various hereditary neurological diseases may act as sponges for miRNAs containing complementary repeats that would affect raceRNA crosstalk. Based on the representation of specific SSRs in transcripts, expression data for SSR-binding miRNAs and expression profiling data from patients, we determined that raceRNA crosstalk is most likely to be perturbed in the case of myotonic dystrophy type 1 (DM1) and type 2 (DM2).
Collapse
Affiliation(s)
- Tomasz M Witkos
- a Department of Molecular Biomedicine , Institute of Bioorganic Chemistry, Polish Academy of Sciences , Poznan , Poland
| | - Wlodzimierz J Krzyzosiak
- a Department of Molecular Biomedicine , Institute of Bioorganic Chemistry, Polish Academy of Sciences , Poznan , Poland
| | - Agnieszka Fiszer
- a Department of Molecular Biomedicine , Institute of Bioorganic Chemistry, Polish Academy of Sciences , Poznan , Poland
| | - Edyta Koscianska
- a Department of Molecular Biomedicine , Institute of Bioorganic Chemistry, Polish Academy of Sciences , Poznan , Poland
| |
Collapse
|
63
|
Jenquin JR, Coonrod LA, Silverglate QA, Pellitier NA, Hale MA, Xia G, Nakamori M, Berglund JA. Furamidine Rescues Myotonic Dystrophy Type I Associated Mis-Splicing through Multiple Mechanisms. ACS Chem Biol 2018; 13:2708-2718. [PMID: 30118588 DOI: 10.1021/acschembio.8b00646] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant, CTG•CAG microsatellite expansion disease. Expanded CUG repeat RNA sequester the muscleblind-like (MBNL) family of RNA-binding proteins, thereby disrupting their normal cellular function which leads to global mis-regulation of RNA processing. Previously, the small molecule furamidine was shown to reduce CUG foci and rescue mis-splicing in a DM1 HeLa cell model and to rescue mis-splicing in the HSALR DM1 mouse model, but furamidine's mechanism of action was not explored. Here we use a combination of biochemical, cell toxicity, and genomic studies in DM1 patient-derived myotubes and the HSALR DM1 mouse model to investigate furamidine's mechanism of action. Mis-splicing rescue was observed in DM1 myotubes and the HSALR DM1 mouse with furamidine treatment. Interestingly, while furamidine was found to bind CTG•CAG repeat DNA with nanomolar affinity, a reduction in expanded CUG repeat transcript levels was observed in the HSALR DM1 mouse but not DM1 patient-derived myotubes. Further investigation in these cells revealed that furamidine treatment at nanomolar concentrations led to up-regulation of MBNL1 and MBNL2 protein levels and a reduction of ribonuclear foci. Additionally, furamidine was shown to bind CUG RNA with nanomolar affinity and disrupted the MBNL1 -CUG RNA complex in vitro at micromolar concentrations. Furamidine's likely promiscuous interactions in vitro and in vivo appear to affect multiple pathways in the DM1 mechanism to rescue mis-splicing, yet surprisingly furamidine was shown globally to rescue many mis-splicing events with only modest off-target effects on gene expression in the HSALR DM1 mouse model. Importantly, over 20% of the differentially expressed genes were shown to be returned, to varying degrees, to wild-type expression levels.
Collapse
Affiliation(s)
- Jana R. Jenquin
- Department of Biochemistry & Molecular Biology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Leslie A. Coonrod
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Quinn A. Silverglate
- Department of Biochemistry & Molecular Biology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Natalie A. Pellitier
- Department of Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Melissa A. Hale
- Department of Biochemistry & Molecular Biology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Guangbin Xia
- Department of Neurology and Neuroscience, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, United States
| | - Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - J. Andrew Berglund
- Department of Biochemistry & Molecular Biology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
64
|
Donlic A, Hargrove AE. Targeting RNA in mammalian systems with small molecules. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:e1477. [PMID: 29726113 PMCID: PMC6002909 DOI: 10.1002/wrna.1477] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 12/18/2022]
Abstract
The recognition of RNA functions beyond canonical protein synthesis has challenged the central dogma of molecular biology. Indeed, RNA is now known to directly regulate many important cellular processes, including transcription, splicing, translation, and epigenetic modifications. The misregulation of these processes in disease has led to an appreciation of RNA as a therapeutic target. This potential was first recognized in bacteria and viruses, but discoveries of new RNA classes following the sequencing of the human genome have invigorated exploration of its disease-related functions in mammals. As stable structure formation is evolving as a hallmark of mammalian RNAs, the prospect of utilizing small molecules to specifically probe the function of RNA structural domains and their interactions is gaining increased recognition. To date, researchers have discovered bioactive small molecules that modulate phenotypes by binding to expanded repeats, microRNAs, G-quadruplex structures, and RNA splice sites in neurological disorders, cancers, and other diseases. The lessons learned from achieving these successes both call for additional studies and encourage exploration of the plethora of mammalian RNAs whose precise mechanisms of action remain to be elucidated. Efforts toward understanding fundamental principles of small molecule-RNA recognition combined with advances in methodology development should pave the way toward targeting emerging RNA classes such as long noncoding RNAs. Together, these endeavors can unlock the full potential of small molecule-based probing of RNA-regulated processes and enable us to discover new biology and underexplored avenues for therapeutic intervention in human disease. This article is categorized under: RNA Methods > RNA Analyses In Vitro and In Silico RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Anita Donlic
- Department of Chemistry, Duke University, Durham, North Carolina
| | - Amanda E Hargrove
- Department of Chemistry, Duke University, Durham, North Carolina
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
65
|
Derbis M, Konieczny P, Walczak A, Sekrecki M, Sobczak K. Quantitative Evaluation of Toxic Polyglycine Biosynthesis and Aggregation in Cell Models Expressing Expanded CGG Repeats. Front Genet 2018; 9:216. [PMID: 29971092 PMCID: PMC6018535 DOI: 10.3389/fgene.2018.00216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/28/2018] [Indexed: 12/23/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder caused by expanded CGG (CGGexp) trinucleotides in the 5′UTR of the FMR1 gene encoding fragile X mental retardation protein (FMRP). The patients, with the number of the repeats ranging from 55 to 200, show specific manifestation of clinical symptoms that include intention tremor, gait ataxia, cognitive deficits, and brain atrophy. Accumulation of toxic polyglycine (FMRpolyG), a by-product of the CGGexp repeat-associated non-ATG (RAN) translation, is considered to be one of the main factors triggering neurodegenerative processes in FXTAS patients. Nevertheless, the nature of the FMRpolyG-induced cell damage, especially in the context of its soluble and inclusion-associated forms, is still elusive. Targeting either biosynthesis, cellular stability or aggregation capacity of toxic FMRpolyG could be considered as a potential therapeutic strategy for FXTAS. Therefore, we tested a variety of quantitative methods based on forced expression of genetic constructs carrying CGGexp repeats in the context of the FMR1 5′UTR fused to GFP, mCherry or Firefly luciferase gene in or out of frame to the polyglycine encoding sequence. We show that FMRpolyG translation either from native or an AUG-induced start codon as well as the translation yield of the FMRP open reading frame equivalent located downstream of the CGGexp element can be effectively estimated using fluorescence microscopy, flow cytometry or luciferase assay. We also quantitatively estimated soluble fraction and insoluble form of FMRpolyG aggregated in foci using an electrophoretic separation of cell lysates and fluorescence microscopy, respectively. Importantly, we show that dependent on a fusion tag, FMRpolyG has a different potential for aggregate formation. Our established protocols enable sensitive tracking of FMRP and FMRpolyG quantitative and qualitative changes after treatment with potential therapeutic agents for FXTAS. Furthermore, they can be modified for application to other RAN translation- and aggregation-related diseases.
Collapse
Affiliation(s)
- Magdalena Derbis
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Patryk Konieczny
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Agnieszka Walczak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Michal Sekrecki
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Krzysztof Sobczak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
66
|
Intron retention induced by microsatellite expansions as a disease biomarker. Proc Natl Acad Sci U S A 2018; 115:4234-4239. [PMID: 29610297 DOI: 10.1073/pnas.1716617115] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Expansions of simple sequence repeats, or microsatellites, have been linked to ∼30 neurological-neuromuscular diseases. While these expansions occur in coding and noncoding regions, microsatellite sequence and repeat length diversity is more prominent in introns with eight different trinucleotide to hexanucleotide repeats, causing hereditary diseases such as myotonic dystrophy type 2 (DM2), Fuchs endothelial corneal dystrophy (FECD), and C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). Here, we test the hypothesis that these GC-rich intronic microsatellite expansions selectively trigger host intron retention (IR). Using DM2, FECD, and C9-ALS/FTD as examples, we demonstrate that retention is readily detectable in affected tissues and peripheral blood lymphocytes and conclude that IR screening constitutes a rapid and inexpensive biomarker for intronic repeat expansion disease.
Collapse
|
67
|
Dahlhaus R. Of Men and Mice: Modeling the Fragile X Syndrome. Front Mol Neurosci 2018; 11:41. [PMID: 29599705 PMCID: PMC5862809 DOI: 10.3389/fnmol.2018.00041] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/31/2018] [Indexed: 12/26/2022] Open
Abstract
The Fragile X Syndrome (FXS) is one of the most common forms of inherited intellectual disability in all human societies. Caused by the transcriptional silencing of a single gene, the fragile x mental retardation gene FMR1, FXS is characterized by a variety of symptoms, which range from mental disabilities to autism and epilepsy. More than 20 years ago, a first animal model was described, the Fmr1 knock-out mouse. Several other models have been developed since then, including conditional knock-out mice, knock-out rats, a zebrafish and a drosophila model. Using these model systems, various targets for potential pharmaceutical treatments have been identified and many treatments have been shown to be efficient in preclinical studies. However, all attempts to turn these findings into a therapy for patients have failed thus far. In this review, I will discuss underlying difficulties and address potential alternatives for our future research.
Collapse
Affiliation(s)
- Regina Dahlhaus
- Institute for Biochemistry, Emil-Fischer Centre, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
68
|
Abstract
More than 40 diseases, most of which primarily affect the nervous system, are caused by expansions of simple sequence repeats dispersed throughout the human genome. Expanded trinucleotide repeat diseases were discovered first and remain the most frequent. More recently tetra-, penta-, hexa-, and even dodeca-nucleotide repeat expansions have been identified as the cause of human disease, including some of the most common genetic disorders seen by neurologists. Repeat expansion diseases include both causes of myotonic dystrophy (DM1 and DM2), the most common genetic cause of amyotrophic lateral sclerosis/frontotemporal dementia (C9ORF72), Huntington disease, and eight other polyglutamine disorders, including the most common forms of dominantly inherited ataxia, the most common recessive ataxia (Friedreich ataxia), and the most common heritable mental retardation (fragile X syndrome). Here I review distinctive features of this group of diseases that stem from the unusual, dynamic nature of the underlying mutations. These features include marked clinical heterogeneity and the phenomenon of clinical anticipation. I then discuss the diverse molecular mechanisms driving disease pathogenesis, which vary depending on the repeat sequence, size, and location within the disease gene, and whether the repeat is translated into protein. I conclude with a brief clinical and genetic description of individual repeat expansion diseases that are most relevant to neurologists.
Collapse
Affiliation(s)
- Henry Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
69
|
Deregulation of RNA Metabolism in Microsatellite Expansion Diseases. ADVANCES IN NEUROBIOLOGY 2018; 20:213-238. [PMID: 29916021 DOI: 10.1007/978-3-319-89689-2_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RNA metabolism impacts different steps of mRNA life cycle including splicing, polyadenylation, nucleo-cytoplasmic export, translation, and decay. Growing evidence indicates that defects in any of these steps lead to devastating diseases in humans. This chapter reviews the various RNA metabolic mechanisms that are disrupted in Myotonic Dystrophy-a trinucleotide repeat expansion disease-due to dysregulation of RNA-Binding Proteins. We also compare Myotonic Dystrophy to other microsatellite expansion disorders and describe how some of these mechanisms commonly exert direct versus indirect effects toward disease pathologies.
Collapse
|
70
|
Gao FB, Richter JD, Cleveland DW. Rethinking Unconventional Translation in Neurodegeneration. Cell 2017; 171:994-1000. [PMID: 29149615 DOI: 10.1016/j.cell.2017.10.042] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/16/2017] [Accepted: 10/25/2017] [Indexed: 11/27/2022]
Abstract
Eukaryotic translation is tightly regulated to ensure that protein production occurs at the right time and place. Recent studies on abnormal repeat proteins, especially in age-dependent neurodegenerative diseases caused by nucleotide repeat expansion, have highlighted or identified two forms of unconventional translation initiation: usage of AUG-like sites (near cognates) or repeat-associated non-AUG (RAN) translation. We discuss how repeat proteins may differ due to not just unconventional initiation, but also ribosomal frameshifting and/or imperfect repeat DNA replication, expansion, and repair, and we highlight how research on translation of repeats may uncover insights into the biology of translation and its contribution to disease.
Collapse
Affiliation(s)
- Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605 USA.
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
71
|
Rohilla KJ, Gagnon KT. RNA biology of disease-associated microsatellite repeat expansions. Acta Neuropathol Commun 2017; 5:63. [PMID: 28851463 PMCID: PMC5574247 DOI: 10.1186/s40478-017-0468-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022] Open
Abstract
Microsatellites, or simple tandem repeat sequences, occur naturally in the human genome and have important roles in genome evolution and function. However, the expansion of microsatellites is associated with over two dozen neurological diseases. A common denominator among the majority of these disorders is the expression of expanded tandem repeat-containing RNA, referred to as xtrRNA in this review, which can mediate molecular disease pathology in multiple ways. This review focuses on the potential impact that simple tandem repeat expansions can have on the biology and metabolism of RNA that contain them and underscores important gaps in understanding. Merging the molecular biology of repeat expansion disorders with the current understanding of RNA biology, including splicing, transcription, transport, turnover and translation, will help clarify mechanisms of disease and improve therapeutic development.
Collapse
|
72
|
Abstract
In this review, we discuss how two evolutionarily conserved pathways at the interface of DNA replication and repair, template switching and break-induced replication, lead to the deleterious large-scale expansion of trinucleotide DNA repeats that cause numerous hereditary diseases. We highlight that these pathways, which originated in prokaryotes, may be subsequently hijacked to maintain long DNA microsatellites in eukaryotes. We suggest that the negative mutagenic outcomes of these pathways, exemplified by repeat expansion diseases, are likely outweighed by their positive role in maintaining functional repetitive regions of the genome such as telomeres and centromeres.
Collapse
Affiliation(s)
| | - Jane C Kim
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, USA
| | | |
Collapse
|
73
|
Querido E, Dekakra-Bellili L, Chartrand P. RNA fluorescence in situ hybridization for high-content screening. Methods 2017; 126:149-155. [PMID: 28694064 DOI: 10.1016/j.ymeth.2017.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/01/2017] [Accepted: 07/05/2017] [Indexed: 11/16/2022] Open
Abstract
Single molecule RNA imaging using fluorescent in situ hybridization (FISH) can provide quantitative information on mRNA abundance and localization in a single cell. There is now a growing interest in screening for modifiers of RNA abundance and/or localization. For instance, microsatellite expansion within RNA can lead to toxic gain-of-function via mislocalization of these transcripts into RNA aggregate and sequestration of RNA-binding proteins. Screening for inhibitors of these RNA aggregate can be performed by high-throughput RNA FISH. Here we describe detailed methods to perform single molecule RNA FISH in multiwell plates for high-content screening (HCS) microscopy. We include protocols adapted for HCS with either standard RNA FISH with fluorescent oligonucleotide probes or the recent single molecule inexpensive FISH (smiFISH). Recommendations for success in HCS microscopy with high magnification objectives are discussed.
Collapse
Affiliation(s)
- Emmanuelle Querido
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Qc H3C 3J7, Canada
| | - Lynda Dekakra-Bellili
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Qc H3C 3J7, Canada
| | - Pascal Chartrand
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Qc H3C 3J7, Canada.
| |
Collapse
|