51
|
Deng YF, Wang YJ, Zou Y, Azarfar A, Wei XL, Ji SK, Zhang J, Wu ZH, Wang SX, Dong SZ, Xu Y, Shao DF, Xiao JX, Yang KL, Cao ZJ, Li SL. Influence of dairy by-product waste milk on the microbiomes of different gastrointestinal tract components in pre-weaned dairy calves. Sci Rep 2017; 7:42689. [PMID: 28281639 PMCID: PMC5345013 DOI: 10.1038/srep42689] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/13/2017] [Indexed: 12/25/2022] Open
Abstract
The community structure of colonised bacteria in the gastrointestinal tracts (GITs) of pre-weaned calves is affected by extrinsic factors, such as the genetics and diet of the calves; however, the dietary impact is not fully understood and warrants further research. Our study revealed that a total of 6, 5, 2 and 10 bacterial genera showed biologically significant differences in the GITs of pre-weaned calves fed four waste-milk diets: acidified waste milk, pasteurised waste milk, untreated bulk milk, and untreated waste milk, respectively. Specifically, generic biomarkers were observed in the rumen (e.g., Bifidobacterium, Parabacteroides, Fibrobacter, Clostridium, etc.), caecum (e.g., Faecalibacterium, Oxalobacter, Odoribacter, etc.) and colon (e.g., Megamonas, Comamonas, Stenotrophomonas, etc.) but not in the faeces. In addition, the predicted metabolic pathways showed that the expression of genes related to metabolic diseases was increased in the calves fed untreated waste milk, which indicated that untreated waste milk is not a suitable liquid diet for pre-weaned calves. This is the first study to demonstrate how different types of waste milk fed to pre-weaned calves affect the community structure of colonised bacteria, and the results may provide insights for the intentional adjustment of diets and gastrointestinal bacterial communities.
Collapse
Affiliation(s)
- Y F Deng
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Y J Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Y Zou
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - A Azarfar
- Department of Animal Science, Faculty of Agriculture, Lorestan University, PO Box 465, Khorramabad, Iran
| | - X L Wei
- Sichuan Animal Science Academy, Animal Breeding and Genetics key Laboratory of Sichuan Province, Chengdu 610066, P. R. China
| | - S K Ji
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - J Zhang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Z H Wu
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - S X Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - S Z Dong
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Y Xu
- Beijing Computing Center, Beijing 100094, P. R. China
| | - D F Shao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - J X Xiao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - K L Yang
- College of Animal Science, Xinjiang Agricultural University, Wulumuqi 830052, P. R. China
| | - Z J Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - S L Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
52
|
Comtet-Marre S, Parisot N, Lepercq P, Chaucheyras-Durand F, Mosoni P, Peyretaillade E, Bayat AR, Shingfield KJ, Peyret P, Forano E. Metatranscriptomics Reveals the Active Bacterial and Eukaryotic Fibrolytic Communities in the Rumen of Dairy Cow Fed a Mixed Diet. Front Microbiol 2017; 8:67. [PMID: 28197133 PMCID: PMC5281551 DOI: 10.3389/fmicb.2017.00067] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 01/10/2017] [Indexed: 12/31/2022] Open
Abstract
Ruminants have a unique ability to derive energy from the degradation of plant polysaccharides through the activity of the rumen microbiota. Although this process is well studied in vitro, knowledge gaps remain regarding the relative contribution of the microbiota members and enzymes in vivo. The present study used RNA-sequencing to reveal both the expression of genes encoding carbohydrate-active enzymes (CAZymes) by the rumen microbiota of a lactating dairy cow and the microorganisms forming the fiber-degrading community. Functional analysis identified 12,237 CAZymes, accounting for 1% of the transcripts. The CAZyme profile was dominated by families GH94 (cellobiose-phosphorylase), GH13 (amylase), GH43 and GH10 (hemicellulases), GH9 and GH48 (cellulases), PL11 (pectinase) as well as GH2 and GH3 (oligosaccharidases). Our data support the pivotal role of the most characterized fibrolytic bacteria (Prevotella, Ruminocccus and Fibrobacter), and highlight a substantial, although most probably underestimated, contribution of fungi and ciliate protozoa to polysaccharide degradation. Particularly these results may motivate further exploration of the role and the functions of protozoa in the rumen. Moreover, an important part of the fibrolytic bacterial community remains to be characterized since one third of the CAZyme transcripts originated from distantly related strains. These findings are used to highlight limitations of current metatranscriptomics approaches to understand the functional rumen microbial community and opportunities to circumvent them.
Collapse
Affiliation(s)
| | - Nicolas Parisot
- EA4678 CIDAM, Clermont Université, Université d'Auvergne Clermont-Ferrand, France
| | - Pascale Lepercq
- UR454 Unité de Microbiologie, INRA Saint-Genès-Champanelle, France
| | | | - Pascale Mosoni
- UR454 Unité de Microbiologie, INRA Saint-Genès-Champanelle, France
| | - Eric Peyretaillade
- EA4678 CIDAM, Clermont Université, Université d'Auvergne Clermont-Ferrand, France
| | - Ali R Bayat
- Nutritional Physiology, Green Technology, Natural Resources Institute Finland (Luke) Jokioinen, Finland
| | - Kevin J Shingfield
- Nutritional Physiology, Green Technology, Natural Resources Institute Finland (Luke)Jokioinen, Finland; Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| | - Pierre Peyret
- EA4678 CIDAM, Clermont Université, Université d'Auvergne Clermont-Ferrand, France
| | - Evelyne Forano
- UR454 Unité de Microbiologie, INRA Saint-Genès-Champanelle, France
| |
Collapse
|
53
|
Abstract
The microbiome refers to the thousands of microbial species that inhabit a specific host or environment. Extensive microbiome surveys have been conducted for soils, the built environment, and our oceans. In addition, extensive studies of the human microbiome have revealed significant microbial diversity across all body sites and have hinted at new opportunities for diagnostic and therapeutic approaches to addressing human health and disease. Mammals in general are known to hold a complicated mix of species within their gastrointestinal tracts, including virus, archaea, bacteria, and fungi. These microbial species present beneficial aspects to the host species through the production of vitamins, metabolism of plant structural compounds and sugars, and education of the immune system. In addition to a vast number of studies on humans, studies of the mammalian microbiome have been performed, with several publications on a variety of animal species currently available. These have included studies on the microbiome of companion animals, animals used for research, and animals used for agricultural and food purposes, and various human/animal models.
Collapse
Affiliation(s)
- Karen E Nelson
- Karen E. Nelson is President at the J. Craig Venter Institute (JCVI) in Rockville, Maryland
| |
Collapse
|
54
|
Namburi RB, Berteau O, Spillmann D, Rossi M. Chondroitinase AC: A host-associated genetic feature of Helicobacter bizzozeronii. Vet Microbiol 2016; 186:21-7. [DOI: 10.1016/j.vetmic.2016.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 12/16/2022]
|
55
|
Patel AB, Patel AK, Shah MP, Parikh IK, Joshi CG. Isolation and characterization of novel multifunctional recombinant family 26 glycoside hydrolase from Mehsani buffalo rumen metagenome. Biotechnol Appl Biochem 2016; 63:257-65. [PMID: 25644118 DOI: 10.1002/bab.1358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/27/2015] [Indexed: 11/08/2022]
Abstract
Rumen microbiota harbor a diverse set of carbohydrate-active enzymes (CAZymes), which play a crucial role in the degradation of a complex plant polysaccharide thereby providing metabolic energy to the host animals. Earlier, we reported CAZYme analysis from the buffalo rumen metagenome by high throughput shotgun sequencing. Among the various CAZymes, glycoside hydrolase family 26 (GH26) enzymes have a number of industrial applications including in paper, oil, biofuel, food, feed, pharmaceutical, coffee, and detergent industries. Here, we report isolation and characterization of GH26 enzyme from the buffalo rumen metagenome. A novel GH26 gene composed of 1,119 base pairs was successfully amplified using the gene-specific primers inferred based on the contig generated from metagenome sequence assembly and cloned in a pET32a (+) expression vector as an N-terminal histidine tag fusion protein. A novel GH26 protein from an unknown rumen microorganism shared a maximum of 68% identity with the Prevotella ruminicola 23 encoded carbohydrate esterase family 7 and 46% with Bacteroides sp. 2_1_33B encoded mannan endo-1, 4-β-mannosidase. The recombinant GH26-histidine tag fusion protein was expressed in Escherichia coli and purified using Ni-NTA affinity chromatography. The purified enzyme displayed multifunctional activities against various carbohydrate substrates including locust bean gum, beechwood xylan, pectin, and carboxymethyl cellulose suggesting mannanase, xylanase, pectin esterase, and endoglucanase activities, respectively.
Collapse
Affiliation(s)
- Avani B Patel
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, India
| | - Amrutlal K Patel
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, India
| | - Mihir P Shah
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, India
| | - Ishan K Parikh
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, India
| | - Chaitanya G Joshi
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, India
| |
Collapse
|
56
|
Indugu N, Bittinger K, Kumar S, Vecchiarelli B, Pitta D. A comparison of rumen microbial profiles in dairy cows as retrieved by 454 Roche and Ion Torrent (PGM) sequencing platforms. PeerJ 2016; 4:e1599. [PMID: 26870608 PMCID: PMC4748696 DOI: 10.7717/peerj.1599] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/23/2015] [Indexed: 01/09/2023] Open
Abstract
Next generation sequencing (NGS) technology is a widely accepted tool used by microbial ecologists to explore complex microbial communities in different ecosystems. As new NGS platforms continue to become available, it becomes imperative to compare data obtained from different platforms and analyze their effect on microbial community structure. In the present study, we compared sequencing data from both the 454 and Ion Torrent (PGM) platforms on the same DNA samples obtained from the rumen of dairy cows during their transition period. Despite the substantial difference in the number of reads, error rate and length of reads among both platforms, we identified similar community composition between the two data sets. Procrustes analysis revealed similar correlations (M (2) = 0.319; P = 0.001) in the microbial community composition between the two platforms. Both platforms revealed the abundance of the same bacterial phyla which were Bacteroidetes and Firmicutes; however, PGM recovered an additional four phyla. Comparisons made at the genus level by each platforms revealed differences in only a few genera such as Prevotella, Ruminococcus, Succiniclasticum and Treponema (p < 0.05; chi square test). Collectively, we conclude that the output generated from PGM and 454 yielded concurrent results, provided stringent bioinformatics pipelines are employed.
Collapse
Affiliation(s)
- Nagaraju Indugu
- Department of Clinical Studies, University of Pennsylvania , Kennett Square, PA , United States of America
| | - Kyle Bittinger
- Department of Microbiology and Department of Biostatistics and Epidemiology, University of Pennsylvania , Philadelphia, PA , United States of America
| | - Sanjay Kumar
- Department of Clinical Studies, University of Pennsylvania , Kennett Square, PA , United States of America
| | - Bonnie Vecchiarelli
- Department of Clinical Studies, University of Pennsylvania , Kennett Square, PA , United States of America
| | - Dipti Pitta
- Department of Clinical Studies, University of Pennsylvania , Kennett Square, PA , United States of America
| |
Collapse
|
57
|
Nguyen SG, Kim J, Guevarra RB, Lee JH, Kim E, Kim SI, Unno T. Laminarin favorably modulates gut microbiota in mice fed a high-fat diet. Food Funct 2016; 7:4193-4201. [DOI: 10.1039/c6fo00929h] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We investigated the anti-obesity effects of the potential prebiotic, laminarin, on mice fed a high-fat diet.
Collapse
Affiliation(s)
- Son G. Nguyen
- Faculty of Biotechnology
- College of Applied Life Science
- SARI
- Jeju National University
- Jeju 63243
| | - Jungman Kim
- Faculty of Biotechnology
- College of Applied Life Science
- SARI
- Jeju National University
- Jeju 63243
| | - Robin B. Guevarra
- Faculty of Biotechnology
- College of Applied Life Science
- SARI
- Jeju National University
- Jeju 63243
| | - Ji-Hoon Lee
- Department of Bioenvironmental Chemistry
- Chonbuk National University
- Jeonju 561-756
- Republic of Korea
| | - Eungpil Kim
- Marine Biotechnology Research Center
- Jellanam-do
- South Korea
| | - Su-il Kim
- Marine Biotechnology Research Center
- Jellanam-do
- South Korea
| | - Tatsuya Unno
- Faculty of Biotechnology
- College of Applied Life Science
- SARI
- Jeju National University
- Jeju 63243
| |
Collapse
|
58
|
Nathani NM, Patel AK, Mootapally CS, Reddy B, Shah SV, Lunagaria PM, Kothari RK, Joshi CG. Effect of roughage on rumen microbiota composition in the efficient feed converter and sturdy Indian Jaffrabadi buffalo (Bubalus bubalis). BMC Genomics 2015; 16:1116. [PMID: 26714477 PMCID: PMC4696265 DOI: 10.1186/s12864-015-2340-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/22/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The rumen microbiota functions as an effective system for conversion of dietary feed to microbial proteins and volatile fatty acids. In the present study, metagenomic approach was applied to elucidate the buffalo rumen microbiome of Jaffrabadi buffalo adapted to varied dietary treatments with the hypothesis that the microbial diversity and subsequent in the functional capacity will alter with diet change and enhance our knowledge of effect of microbe on host physiology. Eight adult animals were gradually adapted to an increasing roughage diet (4 animals each with green and dry roughage) containing 50:50 (J1), 75:25 (J2) and 100:0 (J3) roughage to concentrate proportion for 6 weeks. Metagenomic sequences of solid (fiber adherent microbiota) and liquid (fiber free microbiota) fractions obtained using Ion Torrent PGM platform were analyzed using MG-RAST server and CAZymes approach. RESULTS Taxonomic analysis revealed that Bacteroidetes was the most abundant phylum followed by Firmicutes, Fibrobacter and Proteobacteria. Functional analysis revealed protein (25-30 %) and carbohydrate (15-20 %) metabolism as the dominant categories. Principal component analysis demonstrated that roughage proportion, fraction of rumen and type of forage affected rumen microbiome at taxonomic as well as functional level. Rumen metabolite study revealed that rumen fluid nitrogen content reduced in high roughage diet fed animals and pathway analysis showed reduction in the genes coding enzymes involved in methanogenesis pathway. CAZyme annotation revealed the abundance of genes encoding glycoside hydrolases (GH), with the GH3 family most abundant followed by GH2 and GH13 in all samples. CONCLUSIONS Results reveals that high roughage diet feed improved microbial protein synthesis and reduces methane emission. CAZyme analysis indicated the importance of microbiome in feed component digestion for fulfilling energy requirements of the host. The findings help determine the role of rumen microbes in plant polysaccharide breakdown and in developing strategies to maximize productivity in ruminants.
Collapse
Affiliation(s)
- Neelam M Nathani
- Department of Animal Biotechnology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand, Gujarat, 388 001, India. .,UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, 360 005, Gujarat, India.
| | - Amrutlal K Patel
- Department of Animal Biotechnology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand, Gujarat, 388 001, India.
| | - Chandra Shekar Mootapally
- Department of Animal Biotechnology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand, Gujarat, 388 001, India.
| | - Bhaskar Reddy
- Department of Animal Biotechnology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand, Gujarat, 388 001, India.
| | - Shailesh V Shah
- Livestock Research Station, Anand Agricultural University, Anand, Gujarat, 388 001, India.
| | - Pravin M Lunagaria
- Livestock Research Station, Anand Agricultural University, Anand, Gujarat, 388 001, India.
| | - Ramesh K Kothari
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, 360 005, Gujarat, India.
| | - Chaitanya G Joshi
- Department of Animal Biotechnology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand, Gujarat, 388 001, India.
| |
Collapse
|
59
|
Contemporary molecular tools in microbial ecology and their application to advancing biotechnology. Biotechnol Adv 2015; 33:1755-73. [DOI: 10.1016/j.biotechadv.2015.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 09/19/2015] [Accepted: 09/20/2015] [Indexed: 12/30/2022]
|
60
|
Unveiling the metabolic potential of two soil-derived microbial consortia selected on wheat straw. Sci Rep 2015; 5:13845. [PMID: 26343383 PMCID: PMC4561380 DOI: 10.1038/srep13845] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/07/2015] [Indexed: 12/21/2022] Open
Abstract
Based on the premise that plant biomass can be efficiently degraded by mixed microbial cultures and/or enzymes, we here applied a targeted metagenomics-based approach to explore the metabolic potential of two forest soil-derived lignocellulolytic microbial consortia, denoted RWS and TWS (bred on wheat straw). Using the metagenomes of three selected batches of two experimental systems, about 1.2 Gb of sequence was generated. Comparative analyses revealed an overrepresentation of predicted carbohydrate transporters (ABC, TonB and phosphotransferases), two-component sensing systems and β-glucosidases/galactosidases in the two consortia as compared to the forest soil inoculum. Additionally, “profiling” of carbohydrate-active enzymes showed significant enrichments of several genes encoding glycosyl hydrolases of families GH2, GH43, GH92 and GH95. Sequence analyses revealed these to be most strongly affiliated to genes present on the genomes of Sphingobacterium, Bacteroides, Flavobacterium and Pedobacter spp. Assembly of the RWS and TWS metagenomes generated 16,536 and 15,902 contigs of ≥10 Kb, respectively. Thirteen contigs, containing 39 glycosyl hydrolase genes, constitute novel (hemi)cellulose utilization loci with affiliation to sequences primarily found in the Bacteroidetes. Overall, this study provides deep insight in the plant polysaccharide degrading capabilities of microbial consortia bred from forest soil, highlighting their biotechnological potential.
Collapse
|
61
|
Mhuantong W, Charoensawan V, Kanokratana P, Tangphatsornruang S, Champreda V. Comparative analysis of sugarcane bagasse metagenome reveals unique and conserved biomass-degrading enzymes among lignocellulolytic microbial communities. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:16. [PMID: 25709713 PMCID: PMC4337096 DOI: 10.1186/s13068-015-0200-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/08/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND As one of the most abundant agricultural wastes, sugarcane bagasse is largely under-exploited, but it possesses a great potential for the biofuel, fermentation, and cellulosic biorefinery industries. It also provides a unique ecological niche, as the microbes in this lignocellulose-rich environment thrive in relatively high temperatures (50°C) with varying microenvironments of aerobic surface to anoxic interior. The microbial community in bagasse thus presents a good resource for the discovery and characterization of new biomass-degrading enzymes; however, it remains largely unexplored. RESULTS We have constructed a fosmid library of sugarcane bagasse and obtained the largest bagasse metagenome to date. A taxonomic classification of the bagasse metagenome reviews the predominance of Proteobacteria, which are also found in high abundance in other aerobic environments. Based on the functional characterization of biomass-degrading enzymes, we have demonstrated that the bagasse microbial community benefits from a large repertoire of lignocellulolytic enzymes, which allows them to digest different components of lignocelluoses into single molecule sugars. Comparative genomic analyses with other lignocellulolytic and non-lignocellulolytic metagenomes show that microbial communities are taxonomically separable by their aerobic "open" or anoxic "closed" environments. Importantly, a functional analysis of lignocellulose-active genes (based on the CAZy classifications) reveals core enzymes highly conserved within the lignocellulolytic group, regardless of their taxonomic compositions. Cellulases, in particular, are markedly more pronounced compared to the non-lignocellulolytic group. In addition to the core enzymes, the bagasse fosmid library also contains some uniquely enriched glycoside hydrolases, as well as a large repertoire of the newly defined auxiliary activity proteins. CONCLUSIONS Our study demonstrates a conservation and diversification of carbohydrate-active genes among diverse microbial species in different biomass-degrading niches, and signifies the importance of taking a global approach to functionally investigate a microbial community as a whole, as compared to focusing on individual organisms.
Collapse
Affiliation(s)
- Wuttichai Mhuantong
- />Enzyme Technology Laboratory, Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathumthani, 12120 Thailand
| | - Varodom Charoensawan
- />Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand
- />Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, 73170 Thailand
| | - Pattanop Kanokratana
- />Enzyme Technology Laboratory, Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathumthani, 12120 Thailand
| | - Sithichoke Tangphatsornruang
- />Genome Institute, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathumthani, 12120 Thailand
| | - Verawat Champreda
- />Enzyme Technology Laboratory, Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathumthani, 12120 Thailand
| |
Collapse
|