51
|
Andersson MN, Newcomb RD. Pest Control Compounds Targeting Insect Chemoreceptors: Another Silent Spring? Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
52
|
Ngoc PCT, Greenhalgh R, Dermauw W, Rombauts S, Bajda S, Zhurov V, Grbić M, Van de Peer Y, Van Leeuwen T, Rouzé P, Clark RM. Complex Evolutionary Dynamics of Massively Expanded Chemosensory Receptor Families in an Extreme Generalist Chelicerate Herbivore. Genome Biol Evol 2016; 8:3323-3339. [PMID: 27797949 PMCID: PMC5203786 DOI: 10.1093/gbe/evw249] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
While mechanisms to detoxify plant produced, anti-herbivore compounds have been associated with plant host use by herbivores, less is known about the role of chemosensory perception in their life histories. This is especially true for generalists, including chelicerate herbivores that evolved herbivory independently from the more studied insect lineages. To shed light on chemosensory perception in a generalist herbivore, we characterized the chemosensory receptors (CRs) of the chelicerate two-spotted spider mite, Tetranychus urticae, an extreme generalist. Strikingly, T. urticae has more CRs than reported in any other arthropod to date. Including pseudogenes, 689 gustatory receptors were identified, as were 136 degenerin/Epithelial Na+ Channels (ENaCs) that have also been implicated as CRs in insects. The genomic distribution of T. urticae gustatory receptors indicates recurring bursts of lineage-specific proliferations, with the extent of receptor clusters reminiscent of those observed in the CR-rich genomes of vertebrates or C. elegans Although pseudogenization of many gustatory receptors within clusters suggests relaxed selection, a subset of receptors is expressed. Consistent with functions as CRs, the genomic distribution and expression of ENaCs in lineage-specific T. urticae expansions mirrors that observed for gustatory receptors. The expansion of ENaCs in T. urticae to > 3-fold that reported in other animals was unexpected, raising the possibility that ENaCs in T. urticae have been co-opted to fulfill a major role performed by unrelated CRs in other animals. More broadly, our findings suggest an elaborate role for chemosensory perception in generalist herbivores that are of key ecological and agricultural importance.
Collapse
Affiliation(s)
- Phuong Cao Thi Ngoc
- Department of Plant Systems Biology, VIB, Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | | | - Wannes Dermauw
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Stephane Rombauts
- Department of Plant Systems Biology, VIB, Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Sabina Bajda
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Vladimir Zhurov
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Miodrag Grbić
- Department of Biology, The University of Western Ontario, London, ON, Canada.,University of La Rioja, Logroño, Spain
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent, Belgium.,Department of Genetics, Genomics Research Institute, University of Pretoria, Pretoria, South Africa
| | - Thomas Van Leeuwen
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Pierre Rouzé
- Department of Plant Systems Biology, VIB, Ghent, Belgium
| | - Richard M Clark
- Department of Biology, University of Utah, Salt Lake City, Utah .,Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah
| |
Collapse
|
53
|
Tsitoura P, Iatrou K. Positive Allosteric Modulation of Insect Olfactory Receptor Function by ORco Agonists. Front Cell Neurosci 2016; 10:275. [PMID: 28018173 PMCID: PMC5145856 DOI: 10.3389/fncel.2016.00275] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/17/2016] [Indexed: 12/25/2022] Open
Abstract
Insect olfactory receptors (ORs) are heteromeric ligand-gated cation channels composed of a common olfactory receptor subunit (ORco) and a variable subunit (ORx) of as yet unknown structures and undetermined stoichiometries. In this study, we examined the allosteric modulation exerted on Anopheles gambiae heteromeric ORx/ORco olfactory receptors in vitro by a specific class of ORco agonists (OAs) comprising ORcoRAM2 and VUAA1. High OA concentrations produced stronger functional responses in cells expressing heteromeric receptor channels relative to cells expressing ORco alone. These OA-induced responses of ORx/ORco channels were also notably much stronger than those obtained upon administration of ORx-specific ligands to the same receptors. Most importantly, small concentrations of OAs were found to act as strong potentiators of ORx/ORco function, increasing dramatically both the efficacy and potency of ORx-specific odorants. These results suggest that insect heteromeric ORs are highly dynamic complexes adopting different conformations that change in a concerted fashion as a result of the interplay between the subunits of the oligomeric assemblies, and that allosteric modulation may constitute an important element in the modulation and fining tuning of olfactory reception function.
Collapse
Affiliation(s)
| | - Kostas Iatrou
- Insect Molecular Genetics and Biotechnology Group, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”Athens, Greece
| |
Collapse
|
54
|
Iovinella I, Ban L, Song L, Pelosi P, Dani FR. Proteomic analysis of castor bean tick Ixodes ricinus: a focus on chemosensory organs. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 78:58-68. [PMID: 27693516 DOI: 10.1016/j.ibmb.2016.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/09/2016] [Accepted: 09/28/2016] [Indexed: 06/06/2023]
Abstract
In arthropods, the large majority of studies on olfaction have been focused on insects, where most of the proteins involved have been identified. In particular, chemosensing in insects relies on two families of membrane receptors, olfactory/gustatory receptors (ORs/GRs) and ionotropic receptors (IRs), and two classes of soluble proteins, odorant-binding proteins (OBPs) and chemosensory proteins (CSPs). In other arthropods, such as ticks and mites, only IRs have been identified, while genes encoding for OBPs and CSPs are absent. A third class of soluble proteins, called Niemann-Pick C2 (NPC2) has been suggested as potential carrier for semiochemicals both in insects and other arthropods. Here we report the results of a proteomic analysis on olfactory organs (Haller's organ and palps) and control tissues of the tick Ixodes ricinus, and of immunostaining experiments targeting NPC2s. Adopting different extraction and proteomic approaches, we identified a large number of proteins, and highlighted those differentially expressed. None of the 13 NPC2s known for this species was found. On the other hand, using immunocytochemistry, we detected reaction against one NPC2 in the Haller's organ and palp sensilla. We hypothesized that the low concentration of such proteins in the tick's tissues could possibly explain the discrepant results. In ligand-binding assays the corresponding recombinant NPC2 showed good affinity to the fluorescent probe N-phenylnaphthylamine and to few organic compounds, supporting a putative role of NPC2s as odorant carriers.
Collapse
Affiliation(s)
- Immacolata Iovinella
- Biology Department, University of Firenze, via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Liping Ban
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Limei Song
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Paolo Pelosi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Francesca Romana Dani
- Biology Department, University of Firenze, via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy; CISM, Mass Spectrometry Centre, University of Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
55
|
Tissue, developmental, and caste-specific expression of odorant binding proteins in a eusocial insect, the red imported fire ant, Solenopsis invicta. Sci Rep 2016; 6:35452. [PMID: 27765943 PMCID: PMC5073229 DOI: 10.1038/srep35452] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/28/2016] [Indexed: 11/13/2022] Open
Abstract
Insects interact with the surrounding environment via chemoreception, and in social insects such as ants, chemoreception functions to mediate diverse behaviors including food acquisition, self/non-self recognition, and intraspecific communication. The invasive red imported fire ant, Solenopsis invicta, has spread worldwide, displaying a remarkable environmental adaptability. Odorant binding proteins (OBPs) are chemical compound carriers, involved in diverse physiological processes including odor detection and chemical transport. S. invicta contains a highly divergent 17-member OBP gene family, that includes an ant-specific expansion and the social organization implicated Gp-9 (OBP3) gene. A systematic gene expression analysis of the SiOBP repertoire was performed across social caste (workers, male and female alates), tissues (antennae, head, thorax, and abdomen), and developmental stages (egg, larvae, and pupae), revealing that although SiOBPs were expressed in the antennae, the major regions of expression were in the head and thorax across all castes, and the abdomen in male and female alates. SiOBPs were very highly expressed in female alates and at somewhat lower levels in male alates and workers. SiOBPs were differentially expressed, with unique signatures in various castes and tissues, suggesting functionality of SiOBPs beyond olfaction Expression patterns of SiOBP subgroups also showed relationships with their evolutionary relatedness.
Collapse
|
56
|
Andersson MN, Corcoran JA, Zhang DD, Hillbur Y, Newcomb RD, Löfstedt C. A Sex Pheromone Receptor in the Hessian Fly Mayetiola destructor (Diptera, Cecidomyiidae). Front Cell Neurosci 2016; 10:212. [PMID: 27656130 PMCID: PMC5013046 DOI: 10.3389/fncel.2016.00212] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/24/2016] [Indexed: 11/13/2022] Open
Abstract
The Hessian fly, Mayetiola destructor Say (Diptera, Cecidomyiidae), is a pest of wheat and belongs to a group of gall-inducing herbivores. This species has a unique life history and several ecological features that differentiate it from other Diptera such as Drosophila melanogaster and blood-feeding mosquitoes. These features include a short, non-feeding adult life stage (1-2 days) and the use of a long-range sex pheromone produced and released by adult females. Sex pheromones are detected by members of the odorant receptor (OR) family within the Lepidoptera, but no receptors for similar long-range sex pheromones have been characterized from the Diptera. Previously, 122 OR genes have been annotated from the Hessian fly genome, with many of them showing sex-biased expression in the antennae. Here we have expressed, in HEK293 cells, five MdesORs that display male-biased expression in antennae, and we have identified MdesOR115 as a Hessian fly sex pheromone receptor. MdesOR115 responds primarily to the sex pheromone component (2S,8E,10E)-8,10-tridecadien-2-yl acetate, and secondarily to the corresponding Z,E-isomer. Certain sensory neuron membrane proteins (i.e., SNMP1) are important for responses of pheromone receptors in flies and moths. The Hessian fly genome is unusual in that it encodes six SNMP1 paralogs, of which five are expressed in antennae. We co-expressed each of the five antennal SNMP1 paralogs together with each of the five candidate sex pheromone receptors from the Hessian fly and found that they do not influence the response of MdesOR115, nor do they confer responsiveness in any of the non-responsive ORs to any of the sex pheromone components identified to date in the Hessian fly. Using Western blots, we detected protein expression of MdesOrco, all MdesSNMPs, and all MdesORs except for MdesOR113, potentially explaining the lack of response from this OR. In conclusion, we report the first functional characterization of an OR from the Cecidomyiidae, extending the role of ORs as long-range sex pheromone detectors from the Lepidoptera into the Diptera.
Collapse
Affiliation(s)
| | | | | | - Ylva Hillbur
- International Institute of Tropical Agriculture Ibadan, Nigeria
| | - Richard D Newcomb
- The New Zealand Institute for Plant and Food Research Ltd Auckland, New Zealand
| | | |
Collapse
|
57
|
Getahun MN, Thoma M, Lavista-Llanos S, Keesey I, Fandino RA, Knaden M, Wicher D, Olsson SB, Hansson BS. Intracellular regulation of the insect chemoreceptor complex impacts odour localization in flying insects. ACTA ACUST UNITED AC 2016; 219:3428-3438. [PMID: 27591307 DOI: 10.1242/jeb.143396] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/22/2016] [Indexed: 11/20/2022]
Abstract
Flying insects are well known for airborne odour tracking and have evolved diverse chemoreceptors. While ionotropic receptors (IRs) are found across protostomes, insect odorant receptors (ORs) have only been identified in winged insects. We therefore hypothesized that the unique signal transduction of ORs offers an advantage for odour localization in flight. Using Drosophila, we found expression and increased activity of the intracellular signalling protein PKC in antennal sensilla following odour stimulation. Odour stimulation also enhanced phosphorylation of the OR co-receptor Orco in vitro, while site-directed mutation of Orco or mutations in PKC subtypes reduced the sensitivity and dynamic range of OR-expressing neurons in vivo, but not IR-expressing neurons. We ultimately show that these mutations reduce competence for odour localization of flies in flight. We conclude that intracellular regulation of OR sensitivity is necessary for efficient odour localization, which suggests a mechanistic advantage for the evolution of the OR complex in flying insects.
Collapse
Affiliation(s)
- Merid N Getahun
- Max Planck Institute for Chemical Ecology, Department Evolutionary Neuroethology, Hans-Knöll-Strasse 8, Jena D-07745, Germany
| | - Michael Thoma
- Max Planck Institute for Chemical Ecology, Department Evolutionary Neuroethology, Hans-Knöll-Strasse 8, Jena D-07745, Germany
| | - Sofia Lavista-Llanos
- Max Planck Institute for Chemical Ecology, Department Evolutionary Neuroethology, Hans-Knöll-Strasse 8, Jena D-07745, Germany
| | - Ian Keesey
- Max Planck Institute for Chemical Ecology, Department Evolutionary Neuroethology, Hans-Knöll-Strasse 8, Jena D-07745, Germany
| | - Richard A Fandino
- Max Planck Institute for Chemical Ecology, Department Evolutionary Neuroethology, Hans-Knöll-Strasse 8, Jena D-07745, Germany
| | - Markus Knaden
- Max Planck Institute for Chemical Ecology, Department Evolutionary Neuroethology, Hans-Knöll-Strasse 8, Jena D-07745, Germany
| | - Dieter Wicher
- Max Planck Institute for Chemical Ecology, Department Evolutionary Neuroethology, Hans-Knöll-Strasse 8, Jena D-07745, Germany
| | - Shannon B Olsson
- Max Planck Institute for Chemical Ecology, Department Evolutionary Neuroethology, Hans-Knöll-Strasse 8, Jena D-07745, Germany
| | - Bill S Hansson
- Max Planck Institute for Chemical Ecology, Department Evolutionary Neuroethology, Hans-Knöll-Strasse 8, Jena D-07745, Germany
| |
Collapse
|
58
|
Liu H, Liu T, Xie L, Wang X, Deng Y, Chen CH, James AA, Chen XG. Functional analysis of Orco and odorant receptors in odor recognition in Aedes albopictus. Parasit Vectors 2016; 9:363. [PMID: 27350348 PMCID: PMC4924234 DOI: 10.1186/s13071-016-1644-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/13/2016] [Indexed: 11/10/2022] Open
Abstract
Background Aedes albopictus is a globally invasive mosquito and a major vector of arboviruses, including dengue, Zika and Chikungunya. Olfactory-related behaviors, particularly host-seeking, offer opportunities to disrupt the disease-transmission process. A better understanding of odorant receptors (ORs) may assist in explaining host selection and location, and contribute to novel strategy of vector control. Methods Based on previous prediction of 158 putative odorant receptors by Ae. albopictus genome analysis, 29 AalORs were selected for tissue-specific expression profiles in the present study. AalOrco (AalOR7), AalOR10 and AalOR88, highly expressed in female olfactory tissues, were chosen for further structure predictions as well as functional validation including calcium imaging assay in human embryonic kidney (HEK293) cells and RNA interference assay in Ae. albopictus. We also conducted electrophysiological and behavioral assays in mosquitoes after RNA interference of the three genes to determine their roles in host-seeking. Results The results support previous conclusions that individual conventional (ORXs) and Orco can form heteromeric complexes to recognize odorants and respond to components of human volatiles in HEK293 cells. The reduction of AalOrco transcript levels led to a significant decrease in host-seeking and confusion in host preference. In contrast, AalOR10 and AalOR88 knockdown mosquitoes showed no significant behavioral differences compared with controls. The functions of conventional ORs at least AalOR10 and AalOR88 are abolished with inhibited expression of the Orco gene orthologs, along with the concomitant relevant olfactory behavior. Conclusions Combining structural and functional data, we conclude that the product of the Orco gene in this mosquito is crucial for transmitting olfactory signaling and conventional ORs contribute directly to odorant recognition. Our results provide insight into the linkage between odorant receptors and host-seeking in this important vector species. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1644-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongmei Liu
- Department of Pathogen Biology, Key Laboratory of Prevention and Control of Emerging Infectious Diseases of Guangdong Higher Education Institutes, School of Public Health, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Tong Liu
- Department of Pathogen Biology, Key Laboratory of Prevention and Control of Emerging Infectious Diseases of Guangdong Higher Education Institutes, School of Public Health, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Lihua Xie
- Department of Pathogen Biology, Key Laboratory of Prevention and Control of Emerging Infectious Diseases of Guangdong Higher Education Institutes, School of Public Health, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoming Wang
- Department of Pathogen Biology, Key Laboratory of Prevention and Control of Emerging Infectious Diseases of Guangdong Higher Education Institutes, School of Public Health, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yuhua Deng
- Department of Pathogen Biology, Key Laboratory of Prevention and Control of Emerging Infectious Diseases of Guangdong Higher Education Institutes, School of Public Health, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Chun-Hong Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Anthony A James
- Departments of Microbiology and Molecular Genetics, and Molecular Biology and Biochemistry, 3205 McGaugh Hall, University of California, Irvine, CA, 92697-3900, USA
| | - Xiao-Guang Chen
- Department of Pathogen Biology, Key Laboratory of Prevention and Control of Emerging Infectious Diseases of Guangdong Higher Education Institutes, School of Public Health, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|