51
|
Ianiski FR, Alves CB, Ferreira CF, Rech VC, Savegnago L, Wilhelm EA, Luchese C. Meloxicam-loaded nanocapsules as an alternative to improve memory decline in an Alzheimer's disease model in mice: involvement of Na(+), K(+)-ATPase. Metab Brain Dis 2016; 31:793-802. [PMID: 26922073 DOI: 10.1007/s11011-016-9812-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/17/2016] [Indexed: 10/22/2022]
Abstract
The objective of this study was to investigate the effect of meloxicam-loaded nanocapsules (M-NC) on the treatment of the memory impairment induced by amyloid β-peptide (aβ) in mice. The involvement of Na(+), K(+)-ATPase and cyclooxygenase-2 (COX-2) activities in the hippocampus and cerebral cortex was also evaluated. Mice received aβ (3 nmol/ 3 μl/ per site, intracerebroventricular) or vehicle (3 μl/ per site, i.c.v.). The next day, the animals were treated with blank nanocapsules (17 mL/kg) or M-NC (5 mg/kg) or free meloxicam (M-F) (5 mg/kg). Treatments were performed every other day, until the twelfth day. Animals were submitted to the behavioral tasks (open-field, object recognition, Y-maze and step-down inhibitory avoidance tasks) from the twelfth day. Na(+), K(+)-ATPase and COX-2 activities were performed in hippocampus and cerebral cortex. aβ caused a memory deficit, an inhibition of the hippocampal Na(+), K(+)-ATPase activity and an increase in the hippocampal COX-2 activity. M-NC were effective against all behavioral and biochemical alterations, while M-F restored only the COX-2 activity. In conclusion, M-NC were able to reverse the memory impairment induced by aβ, and Na(+), K(+)-ATPase is involved in the effect of M-NC.
Collapse
Affiliation(s)
- Francine R Ianiski
- Programa de Pós-Graduação em Nanociências, Centro de Ciências Tecnológicas, Centro Universitário Franciscano, Santa Maria, CEP 97010-032, RS, Brazil
| | - Catiane B Alves
- Programa de Pós-Graduação em Nanociências, Centro de Ciências Tecnológicas, Centro Universitário Franciscano, Santa Maria, CEP 97010-032, RS, Brazil
| | - Carla F Ferreira
- Programa de Pós-Graduação em Nanociências, Centro de Ciências Tecnológicas, Centro Universitário Franciscano, Santa Maria, CEP 97010-032, RS, Brazil
| | - Virginia C Rech
- Programa de Pós-Graduação em Nanociências, Centro de Ciências Tecnológicas, Centro Universitário Franciscano, Santa Maria, CEP 97010-032, RS, Brazil
| | - Lucielli Savegnago
- Grupo de pesquisa em Neurobiotecnologia - GPN, Centro de Desenvolvimento Tecnológico, Unidade Biotecnologia, Universidade Federal de Pelotas, Pelotas, CEP: 96010-900, RS, Brazil
| | - Ethel A Wilhelm
- Grupo de pesquisa em Neurobiotecnologia - GPN, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, CEP 96010-900, RS, Brazil.
| | - Cristiane Luchese
- Grupo de pesquisa em Neurobiotecnologia - GPN, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, CEP 96010-900, RS, Brazil.
| |
Collapse
|
52
|
Aslam M, Aqil M, Ahad A, Najmi AK, Sultana Y, Ali A. Application of Box–Behnken design for preparation of glibenclamide loaded lipid based nanoparticles: Optimization, in vitro skin permeation, drug release and in vivo pharmacokinetic study. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.03.069] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
53
|
Akhtar N, Verma A, Pathak K. Feasibility of binary composition in development of nanoethosomal glycolic vesicles of triamcinolone acetonide using Box-behnken design: in vitro and ex vivo characterization. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:1-9. [PMID: 27367965 DOI: 10.1080/21691401.2016.1202261] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Triamcinolone acetonide (TA) employed for the treatment of atopic dermatitis exhibits limited penetration into the epidermis. This investigation aimed to explore the role of binary solvents in topical drug delivery of TA by developing nanoethosomal glycolic lipid vesicles by infusion method. Screening of vesicles (TA1-TA17) formulated by Box Behnken design identified the optimized formulation (TA10) that was developed as carbomer gels. The gels were then evaluated for pharmaceutical properties and compared with control and reference ethosomal gel (RG). Higher in vitro permeation was found in gels containing TA10, prepared with or without using penetration enhancer (EGP 83.76 ± 0.72% and EG 82.42 ± 0.89%, respectively). CLSM studies depicted deeper uniform penetration of fluorescent tracer into the epidermis via EG as compared with RG and control gel. Enhanced penetration was due to combinational solvent effect exerted by ethanol and propylene glycol. Histological analysis confirmed the non-irritant potential of the gel. Thus, it can be concluded that nanoethosomal glycolic vesicles proved to be an effective non irritant carrier for improvised penetration of triamcinolone acetonide for potential topical therapeutics.
Collapse
Affiliation(s)
- Nida Akhtar
- a Department of Pharmaceutics , Rajiv Academy for Pharmacy , Mathura , India
| | - Anurag Verma
- b Department of Pharmaceutics , School of Pharmaceutical Sciences , Moradabad , India
| | - Kamla Pathak
- c Department of Pharmaceutics , Pharmacy College Saifai, Uttar Pradesh University of Medical Sciences , Saifai, Etawah , Uttar Pradesh , India
| |
Collapse
|
54
|
Abdulbaqi IM, Darwis Y, Khan NAK, Assi RA, Khan AA. Ethosomal nanocarriers: the impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials. Int J Nanomedicine 2016; 11:2279-304. [PMID: 27307730 PMCID: PMC4887071 DOI: 10.2147/ijn.s105016] [Citation(s) in RCA: 242] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Ethosomal systems are novel lipid vesicular carriers containing a relatively high percentage of ethanol. These nanocarriers are especially designed for the efficient delivery of therapeutic agents with different physicochemical properties into deep skin layers and across the skin. Ethosomes have undergone extensive research since they were invented in 1996; new compounds were added to their initial formula, which led to the production of new types of ethosomal systems. Different preparation techniques are used in the preparation of these novel carriers. For ease of application and stability, ethosomal dispersions are incorporated into gels, patches, and creams. Highly diverse in vivo models are used to evaluate their efficacy in dermal/transdermal delivery, in addition to clinical trials. This article provides a detailed review of the ethosomal systems and categorizes them on the basis of their constituents to classical ethosomes, binary ethosomes, and transethosomes. The differences among these systems are discussed from several perspectives, including the formulation, size, ζ-potential (zeta potential), entrapment efficiency, skin-permeation properties, and stability. This paper gives a detailed review on the effects of ethosomal system constituents, preparation methods, and their significant roles in determining the final properties of these nanocarriers. Furthermore, the novel pharmaceutical dosage forms of ethosomal gels, patches, and creams are highlighted. The article also provides detailed information regarding the in vivo studies and clinical trials conducted for the evaluation of these vesicular systems.
Collapse
Affiliation(s)
- Ibrahim M Abdulbaqi
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Yusrida Darwis
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | | | - Reem Abou Assi
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Arshad A Khan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
55
|
Moghddam SMM, Ahad A, Aqil M, Imam SS, Sultana Y. Optimization of nanostructured lipid carriers for topical delivery of nimesulide using Box–Behnken design approach. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:617-624. [DOI: 10.3109/21691401.2016.1167699] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohd. Aqil
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Syed Sarim Imam
- Glocal School of Pharmacy, Glocal University, Saharanpur, Uttar Pradesh, India
| | - Yasmin Sultana
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi, India
| |
Collapse
|
56
|
Maestrelli F, Bragagni M, Mura P. Advanced formulations for improving therapies with anti-inflammatory or anaesthetic drugs: A review. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2015.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
57
|
Chen J, Gao Y. Strategies for meloxicam delivery to and across the skin: a review. Drug Deliv 2016; 23:3146-3156. [DOI: 10.3109/10717544.2016.1157839] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jianmin Chen
- College of Pharmaceutical and Medical Technology, Putian University, Fujian, China and
| | - Yunhua Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
58
|
Design, formulation and optimization of novel soft nano-carriers for transdermal olmesartan medoxomil delivery: In vitro characterization and in vivo pharmacokinetic assessment. Int J Pharm 2016; 505:147-58. [PMID: 27005906 DOI: 10.1016/j.ijpharm.2016.03.030] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 12/11/2022]
Abstract
Olmesartan is a hydrophobic antihypertensive drug with a short biological half-life, and low bioavailability, presents a challenge with respect to its oral administration. The objective of the work was to formulate, optimize and evaluate the transdermal potential of novel vesicular nano-invasomes, containing above anti-hypertensive agent. To achieve the above purpose, soft carriers (viz. nano-invasomes) of olmesartan with β-citronellene as potential permeation enhancer were developed and optimized using Box-Behnken design. The physicochemical characteristics e.g., vesicle size, shape, entrapment efficiency and skin permeability of the nano-invasomes formulations were evaluated. The optimized formulation was further evaluated for in vitro drug release, confocal microscopy and in vivo pharmacokinetic study. The optimum nano-invasomes formulation showed vesicles size of 83.35±3.25nm, entrapment efficiency of 65.21±2.25% and transdermal flux of 32.78±0.703 (μg/cm(2)/h) which were found in agreement with the predicted value generated by Box-Behnken design. Confocal laser microscopy of rat skin showed that optimized formulation was eventually distributed and permeated deep into the skin. The pharmacokinetic study presented that transdermal nano-invasomes formulation showed 1.15 times improvement in bioavailability of olmesartan with respect to the control formulation in Wistar rats. It was concluded that the response surfaces estimated by Design Expert(®) illustrated obvious relationship between formulation factors and response variables and nano-invasomes were found to be a proficient carrier system for transdermal delivery of olmesartan.
Collapse
|
59
|
Aqil M, Kamran M, Ahad A, Imam SS. Development of clove oil based nanoemulsion of olmesartan for transdermal delivery: Box–Behnken design optimization and pharmacokinetic evaluation. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2015.12.077] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
60
|
Qadri GR, Ahad A, Aqil M, Imam SS, Ali A. Invasomes of isradipine for enhanced transdermal delivery against hypertension: formulation, characterization, and in vivo pharmacodynamic study. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:139-145. [PMID: 26829018 DOI: 10.3109/21691401.2016.1138486] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Context Isradipine is an effective calcium channel blocker used in the management of hypertension. It undergoes extensive first pass metabolism and has low oral bioavailability. Hence we attempted to develop isradipine-loaded invasomes. Objective The purpose of this work was to prepare and characterize invasomes carrier for isradipine, and to evaluate the optimized formulation obtained for pharmacodynamic study. Materials and methods Isradipine-loaded invasomes were prepared by conventional thin layer evaporation technique using Phospholipon® 90G, β-citronellene (terpene) and ethanol. Prepared formulations were characterized in terms of size, size distribution, morphology, entrapment efficiency, and antihypertensive activity. Results and discussion It was observed that prepared isradipine-loaded invasomes delivers ameliorated flux, reasonable entrapment efficiency, and more effectiveness for transdermal delivery. The optimized formulation presented the particle size of 194 ± 18 nm, entrapment efficiency (88.46%), and attained mean transdermal flux of 22.80 ± 2.10 μg/cm2/h through rat skin. Confocal laser scanning microscopy revealed an enhanced permeation of Rhodamine-Red-loaded isradipine invasomes to the deeper layers of the rat skin. During antihypertensive study, the treatment group showed a substantial and constant decrease in blood pressure, for up to 24 h. The isradipine invasomes formulation was found to be effective, with a 20% reduction in blood pressure by virtue of better permeation through Wistar rat skin. Conclusion It was concluded that the developed isradipine invasomes accentuate the transdermal flux and the results obtained encouraged the use of the isradipine-loaded invasomes as the formulation for the potential management of hypertension.
Collapse
Affiliation(s)
- Gauhar R Qadri
- a Department of Pharmaceutics, Faculty of Pharmacy , Jamia Hamdard (Hamdard University) , New Delhi , India
| | - Abdul Ahad
- b Department of Pharmaceutics, College of Pharmacy , King Saud University , Riyadh , Saudi Arabia
| | - Mohd Aqil
- a Department of Pharmaceutics, Faculty of Pharmacy , Jamia Hamdard (Hamdard University) , New Delhi , India
| | - Syed S Imam
- c Glocal School of Pharmacy, Glocal University , Saharanpur , Uttar Pradesh , India
| | - Asgar Ali
- a Department of Pharmaceutics, Faculty of Pharmacy , Jamia Hamdard (Hamdard University) , New Delhi , India
| |
Collapse
|
61
|
Woraphatphadung T, Sajomsang W, Gonil P, Treetong A, Akkaramongkolporn P, Ngawhirunpat T, Opanasopit P. pH-Responsive polymeric micelles based on amphiphilic chitosan derivatives: Effect of hydrophobic cores on oral meloxicam delivery. Int J Pharm 2016; 497:150-60. [DOI: 10.1016/j.ijpharm.2015.12.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/25/2015] [Accepted: 12/03/2015] [Indexed: 10/22/2022]
|
62
|
Ali A, Kumar N, Ahad A, Aqil M, Sultana Y. Enhanced delivery of diclofenac diethylamine loaded Eudragit RL 100® transdermal system against inflammation. JOURNAL OF POLYMER ENGINEERING 2015. [DOI: 10.1515/polyeng-2014-0352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A transdermal therapeutic system (TTS) of diclofenac diethylamine (DDE) was developed to obtain a prolonged controlled drug delivery by the solvent evaporation technique. The matrix diffusion controlled systems used various combinations of hydrophilic (polyvinylpyrrolidone K30) and lipophilic (Eudragit RL 100® and Eudragit RS 100®) polymers containing dimethyl sulfoxide (DMSO) (0, 5 and 10% w/w) as a penetration enhancer. In vitro drug release was improved with an increased fraction of hydrophilic polymer. Formulation F8 containing Eudragit RL 100® and polyvinylpyrrolidone K30 in the ratio 40:60 presented the highest drug release (92.45%) and permeation rate (0.0988±0.010 mg/cm2/h) with sustained release action for 48 h. In vivo pharmacodynamic study of DDE-loaded Eudragit RL 100® transdermal system (formulation F8) showed significant higher percent inhibition of rat paw edema compared with the marketed formulation of the drug. Our results suggest that a developed formulation is an efficient system for transdermal diclofenac delivery against inflammation. The optimized formulation was found to be stable and did not show physicochemical interaction. The system is envisaged to be stable for a sufficiently long period (2.52 years) at room temperature.
Collapse
|
63
|
Ahad A, Aqil M, Kohli K, Sultana Y, Mujeeb M. The ameliorated longevity and pharmacokinetics of valsartan released from a gel system of ultradeformable vesicles. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1457-63. [PMID: 25953248 DOI: 10.3109/21691401.2015.1041638] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The present study traces the development and characterization of the gel formulation of valsartan-loaded ultradeformable vesicles for management of hypertension. MATERIALS AND METHODS The prepared gel formulation of ultradeformable vesicles was evaluated for in vitro skin permeation, release kinetics, skin irritation, pharmacokinetics, and stability. RESULTS AND DISCUSSION The in vitro skin permeation study showed that the gel formulation of ultradeformable vesicles presented a flux value of 368.74 μg/cm(2)/h, in comparison to that of the traditional liposomal gel formulation, with an enhancement ratio of 26.91, through rat skin. The data for release kinetics showed that the release profile followed zero-order kinetics, and that the drug release mechanism was non-Fickian. The results of the skin irritation study demonstrated that the prepared formulation was safe, less irritant, and well-tolerated for transdermal delivery. The results of the pharmacokinetic study demonstrated that the AUC value of valsartan after transdermal administration was apparently increased. The formulation stored under a refrigerated condition showed greater stability, and results were found to be within the specification under storage conditions. CONCLUSION It is evident from this study that the gel formulation of ultradeformable vesicles of valsartan is a promising delivery system for lipophilic drugs, and has reasonably good stability characteristics.
Collapse
Affiliation(s)
- Abdul Ahad
- a Department of Pharmaceutics , College of Pharmacy, King Saud University , Riyadh , Saudi Arabia
| | - Mohd Aqil
- b Faculty of Pharmacy, Jamia Hamdard (Hamdard University) , M. B. Road, New Delhi , India
| | - Kanchan Kohli
- b Faculty of Pharmacy, Jamia Hamdard (Hamdard University) , M. B. Road, New Delhi , India
| | - Yasmin Sultana
- b Faculty of Pharmacy, Jamia Hamdard (Hamdard University) , M. B. Road, New Delhi , India
| | - Mohd Mujeeb
- b Faculty of Pharmacy, Jamia Hamdard (Hamdard University) , M. B. Road, New Delhi , India
| |
Collapse
|
64
|
Ahad A, Aqil M, Kohli K, Sultana Y, Mujeeb M. Nano vesicular lipid carriers of angiotensin II receptor blocker: Anti-hypertensive and skin toxicity study in focus. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1002-7. [PMID: 25707444 DOI: 10.3109/21691401.2015.1008509] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Nanoethosomal carriers of valsartan have been previously prepared, characterized and optimized. A gel formulation of valsartan vesicular lipid carriers was composed of Carbopol(®) (1% w/w), polyethylene glycol-400 (15% w/w) and triethanolamine (0.5% w/w). The influence of the valsartan nanoethosomal formulation developed on the blood pressure of experimental hypertensive rats, and its potential for skin irritation, are presented in this report. MATERIALS AND METHODS The experimental rats were divided into three groups; the control group received no treatment (Group A). Group B was administered methyl prednisolone acetate (20 mg/kg/week) for two weeks (hypertensive control). Group C received methyl prednisolone acetate, followed by administration of the valsartan ethosomal formulation. The blood pressure of the rats was measured using a non-invasive rat blood pressure instrument based on the tail-cuff technique. The statistical analysis was performed using GraphPad InStat 3 software. RESULTS AND DISCUSSION The treatment group showed a significant (P < 0.05) and constant fall in blood pressure, for up to 48 h. The valsartan ethosomal formulation was found to be effective, with a 34.11% reduction in blood pressure. The formulation's potential for skin irritation was assessed by the Draize irritation score test, which ruled out the possibility of any skin irritation caused by application of the formulation in rats. CONCLUSION Our results suggest that nanoethosomes are efficient carriers for transdermal delivery of valsartan, for the management of hypertension.
Collapse
Affiliation(s)
- Abdul Ahad
- a Department of Pharmaceutics , College of Pharmacy, King Saud University , Riyadh , 11451, Saudi Arabia
| | - Mohd Aqil
- b Faculty of Pharmacy, Jamia Hamdard (Hamdard University) , M. B. Road, New Delhi , 110062 , India
| | - Kanchan Kohli
- b Faculty of Pharmacy, Jamia Hamdard (Hamdard University) , M. B. Road, New Delhi , 110062 , India
| | - Yasmin Sultana
- b Faculty of Pharmacy, Jamia Hamdard (Hamdard University) , M. B. Road, New Delhi , 110062 , India
| | - Mohd Mujeeb
- b Faculty of Pharmacy, Jamia Hamdard (Hamdard University) , M. B. Road, New Delhi , 110062 , India
| |
Collapse
|
65
|
Ahad A, Aqil M, Kohli K, Sultana Y, Mujeeb M. Design, formulation and optimization of valsartan transdermal gel containing iso-eucalyptol as novel permeation enhancer: preclinical assessment of pharmacokinetics in Wistar albino rats. Expert Opin Drug Deliv 2014; 11:1149-62. [PMID: 24830648 DOI: 10.1517/17425247.2014.914027] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE The aim of this study was to develop and optimize a transdermal gel formulation of valsartan using Box-Behnken design and to evaluate it for pharmacokinetic study. METHODS The independent variables were Carbopol 940 (X1), PEG 400 (X2) and ethanol (X3) while valsartan flux (Y1), Tlag (Y2) and gel viscosity (Y3) were the dependent variables. Iso-eucalyptol was added in all gel formulations as permeation enhancer except for control gel. RESULTS It was observed that the permeation rate of valsartan significantly increased in direct proportion to the ethanol concentration, but significantly decreased in direct proportion to polymer concentration. Lag time and viscosity decreased in reverse proportion to ethanol concentration. The optimized valsartan gel formulation (VGF-OPT) yielded flux of 143.27 ± 7.11 µg/cm(2)/h and 27.55 ± 2.51 µg/cm(2)/h across rat and human cadaver skin, respectively. In vivo pharmacokinetic study of VGF-OPT-transdermal therapeutic system containing iso-eucalyptol showed a significant increase in the bioavailability (2.52 times) compared with oral formulation of valsartan by virtue of better permeation through Wistar rat skin. CONCLUSION It was concluded that the developed transdermal gel accentuates the flux of valsartan and could be used as an antihypertensive dosage form for effective transdermal delivery of valsartan.
Collapse
Affiliation(s)
- Abdul Ahad
- King Saud University, College of Pharmacy, Department of Pharmaceutics , Riyadh 11451 , Saudi Arabia
| | | | | | | | | |
Collapse
|