51
|
Bao W, He Y, Yu J, Liu M, Yang X, Ta N, Zhang E, Liang C. Regulatory Effect of Lactiplantibacillus plantarum 2-33 on Intestinal Microbiota of Mice With Antibiotic-Associated Diarrhea. Front Nutr 2022; 9:921875. [PMID: 35757257 PMCID: PMC9218693 DOI: 10.3389/fnut.2022.921875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/13/2022] [Indexed: 12/20/2022] Open
Abstract
Diarrhea is one of the common adverse reactions in antibiotic treatment, which is usually caused by the imbalance of intestinal flora, and probiotics play an important role in the structure of intestinal flora. Therefore, this experiment studied the regulatory effect of Lactiplantibacillus plantarum 2-33 on antibiotic-associated diarrhea (AAD) mice. First, the AAD mice model was established by the mixed antibiotic solution of gentamicin sulfate and cefradine. Then, the physiological indexes and diarrhea of mice were observed and recorded by gastric perfusion of low dose (1.0 × 107 CFU/ml), medium dose (1.0 × 108CFU/ml), and high dose (1.0 × 109 CFU/ml) strain 2-33. 16S rRNA gene V3-V4 regions were sequenced in colon contents of mice in control group, model group, self-healing group, and experimental group, respectively, and the diversity of intestinal flora and gene function prediction were analyzed. The results showed that the intestinal flora of AAD mice was not significantly regulated by gastric perfusion of strain 2-33 to 7 days, but the relative abundance and diversity of intestinal flora of AAD mice were significantly improved by gastric perfusion to 14 days (p < 0.05). In addition, at the genus level, the relative abundance of Lactobacillus increased significantly, and the relative abundance of Enterococcus and Bacillus decreased significantly (p < 0.05). In addition, the regulation of strain 2-33 on intestinal flora of AAD mice was time- and dose-dependent, short-term gastric perfusion, and low dose had no significant effect (p > 0.05). Strain 2-33 can significantly increase the levels of anti-inflammatory cytokines IL-4 and IL-10, significantly decrease the levels of proinflammatory cytokines TNF-α and IFN-γ (p < 0.05), and can also adjust carbohydrate metabolism, amino acid metabolism, and energy metabolism to normal levels, thus accelerating the recovery of intestinal flora structure of AAD mice. In summary, strain 2-33 can improve the structure and diversity of intestinal flora of AAD mice, balance the level of substance and energy metabolism, and play a positive role in relieving diarrhea, maintaining and improving the intestinal microecological balance.
Collapse
Affiliation(s)
- Wuyundalai Bao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Yuxing He
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Jinghe Yu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Mingchao Liu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaofeng Yang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Na Ta
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Enxin Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Chengyuan Liang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
52
|
Xu B, Liang S, Zhao J, Li X, Guo J, Xin B, Li B, Huo G, Ma W. Bifidobacterium animalis subsp. lactis XLTG11 improves antibiotic-related diarrhea by alleviating inflammation, enhancing intestinal barrier function and regulating intestinal flora. Food Funct 2022; 13:6404-6418. [PMID: 35616024 DOI: 10.1039/d1fo04305f] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Antibiotic-associated diarrhea (AAD) is a common side effect during antibiotic treatment. In this study, we evaluated the regulatory effect of Bifidobacterium animalis subsp. lactis XLTG11 on mouse diarrhea caused by antibiotic-induced intestinal flora disturbance. Then, two strains of Bifidobacterium animalis subsp. lactis XLTG11 and Bifidobacterium animalis subsp. lactis BB-12 were administered to AAD mice. We found that the recovery effect of using B. lactis XLTG11 was better than that of B. lactis BB-12. B. lactis XLTG11 reduced the pathological characteristics of the intestinal tract, and significantly reduced the levels of lipopolysaccharide (LPS), D-lactic acid (D-LA) and diamine oxidase (DAO) to decrease intestinal permeability. In addition, these two strains significantly increased the expression of aquaporin and tight junction proteins, and inhibited toll-like receptor 4 (TLR4)/activation of the nuclear factor-κB (NF-κB) signaling pathway, significantly increased the levels of anti-inflammatory cytokines and decreased levels of pro-inflammatory cytokines. Moreover, after treatment with B. lactis XLTG11, the contents of acetic acid, propionic acid, butyric acid and total short-chain fatty acids were significantly increased. Compared with the MC group, B. lactis XLTG11 increased the abundance and diversity of the intestinal flora and changed the composition of the intestinal flora. We found that B. lactis XLTG11 can promote the recovery of intestinal flora and mucosal barrier function, thereby effectively improving AAD-related symptoms, providing a scientific basis for future clinical applications.
Collapse
Affiliation(s)
- Baofeng Xu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China. .,Food College, Northeast Agricultural University, Harbin 150030, China. .,Heilongjiang Key Laboratory of Genetic and Metabolic Engineering of Lactic Acid Bacteria, Harbin 150030, China
| | - Shengnan Liang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China. .,Food College, Northeast Agricultural University, Harbin 150030, China. .,Heilongjiang Key Laboratory of Genetic and Metabolic Engineering of Lactic Acid Bacteria, Harbin 150030, China
| | - Jiayi Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China. .,Food College, Northeast Agricultural University, Harbin 150030, China. .,Heilongjiang Key Laboratory of Genetic and Metabolic Engineering of Lactic Acid Bacteria, Harbin 150030, China
| | - Xuetong Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China. .,Food College, Northeast Agricultural University, Harbin 150030, China. .,Heilongjiang Key Laboratory of Genetic and Metabolic Engineering of Lactic Acid Bacteria, Harbin 150030, China
| | - Jiayao Guo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China. .,Food College, Northeast Agricultural University, Harbin 150030, China. .,Heilongjiang Key Laboratory of Genetic and Metabolic Engineering of Lactic Acid Bacteria, Harbin 150030, China
| | - Bowen Xin
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China. .,Food College, Northeast Agricultural University, Harbin 150030, China. .,Heilongjiang Key Laboratory of Genetic and Metabolic Engineering of Lactic Acid Bacteria, Harbin 150030, China
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China. .,Food College, Northeast Agricultural University, Harbin 150030, China. .,Heilongjiang Key Laboratory of Genetic and Metabolic Engineering of Lactic Acid Bacteria, Harbin 150030, China
| | - Guicheng Huo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China. .,Food College, Northeast Agricultural University, Harbin 150030, China. .,Heilongjiang Key Laboratory of Genetic and Metabolic Engineering of Lactic Acid Bacteria, Harbin 150030, China
| | - Weiwei Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Haerbin 150000, China.
| |
Collapse
|
53
|
Wang H, Hou YN, Yang M, Feng Y, Zhang YL, Smith CM, Hou W, Mao JJ, Deng G. Herbal Formula Shenling Baizhu San for Chronic Diarrhea in Adults: A Systematic Review and Meta-analysis. Integr Cancer Ther 2022; 21:15347354221081214. [PMID: 35635135 PMCID: PMC9158428 DOI: 10.1177/15347354221081214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background: Shenling Baizhu San (SBS), a well-known Chinese medicine herbal formula, has been widely used for treating chronic diarrhea for thousands of years. However, the efficacy and safety of SBS in treating chronic diarrhea have not been fully assessed. Objective: This study evaluates the efficacy and safety of the herbal formula SBS in symptomatic relief of chronic diarrhea. Methods: English and Chinese language databases (PubMed, Cochrane Library, China National Knowledge Infrastructure, China Science and Technology Journal Database, Wanfang Data, and SinoMed electronic databases) were searched through April 2020 for relevant randomized controlled trials (RCTs). The outcomes in these RCTs included stool frequency, stool consistency, patient-reported satisfaction of chronic diarrhea treatment, quality of life and adverse events. Paired reviewers independently extracted data and conducted qualitative and quantitative analyses. The Cochrane revised risk of bias RoB-2 tool was applied to assess the risk of bias for each trial whereas the RevMan 5.3 software was used for outcomes data synthesis and meta-analysis. Mean difference (MD) and the 95% confidence interval (CI) were used to measure continuous data. The dichotomous data were analyzed via the relative risk (RR) with 95% CIs. Results: Fourteen RCTs including 1158 participants (54% males) with chronic diarrhea were included. Shenling Baizhu San combined with or without conventional medicine (CM) was associated with greater patient-reported satisfaction than CM alone. There was no increased risk of adverse events (AEs) during treatment. Conclusion: Treatment with SBS was associated with significant improvement in patient-reported satisfaction, irrespective of conventional medicine use. Rigorous and powered RCTs with objective outcome measures are needed to confirm the effects of SBS in specific gastrointestinal disease populations with chronic diarrhea symptoms. Systematic review registration number (PROSPERO): CRD42020178073
Collapse
Affiliation(s)
- Hui Wang
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yen-Nien Hou
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mingxiao Yang
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ye Feng
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Peking University Cancer Hospital and Institute, Beijing, China
| | - Yi Lily Zhang
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Wei Hou
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun J. Mao
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gary Deng
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
54
|
Effects of Lacidophilin Tablets, Yogurt, and Bifid Triple Viable Capsules on the Gut Microbiota of Mice with Antibiotic-Associated Diarrhea. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:6521793. [PMID: 35360462 PMCID: PMC8964159 DOI: 10.1155/2022/6521793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 02/08/2022] [Accepted: 02/23/2022] [Indexed: 12/14/2022]
Abstract
Antibiotic-associated diarrhea (AAD) is a common morbidity caused by antibiotic use and is characterized by the dysbiosis of the gut microbiota. Several clinical trials have shown that probiotics can prevent AAD. This study aimed at investigating the effects of Lacidophilin tablets (LB), yogurt (YG), and bifid triple viable capsules (BT) on the gut microbiota of mice with AAD. Mice with diarrhea were randomly allocated to treatment groups or the control group and were treated with either LB, YG, BT, or vehicle control. The body weight, diarrhea scores, cecum index, and cecal length were determined. Fecal samples of all mice were analyzed using 16S rRNA high-throughput sequencing. The results showed that LB, YG, and BT significantly decreased the diarrhea scores and inhibited increases in the cecum index and cecal length induced by AAD. In addition, they significantly changed the composition and richness of the gut microbiota. Specifically, they increased the abundance of the phylum Firmicutes and decreased the abundance of the phyla Bacteroidetes and the family Bacteroidaceae. Treatment with LB and YG also decreased the abundance of the phylum Proteobacteria and only LB could mediate the reduced levels of Lactobacillaceae in AAD mice. At the genus level, YG and BT treatment decreased the abundance of Bacteroides or Parasutterella. To our surprise, only LB treatment dramatically increased the abundance of Lactobacillus and decreased that of potential pathogens, such as Bacteroides, Parabacteroides, and Parasutterella, to almost normal values. Our findings indicate that LB, YG, and BT ameliorated diarrhea by regulating the composition and structure of the gut microbiota and that LB plays an important role in regulating the gut microbiota.
Collapse
|
55
|
Li Y, Yu P, Fu W, Wang J, Ma Y, Wu Y, Cui H, Zhao W, Zhang F, Yu X, Sui D, Xu H. Polysaccharides from Panax ginseng C. A. Meyer alleviated DSS-induced IBD by inhibiting JAK2/STAT1/NLPR3 inflammasome signalling pathway in mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
56
|
Huang R, Wu F, Zhou Q, Wei W, Yue J, Xiao B, Luo Z. Lactobacillus and intestinal diseases: mechanisms of action and clinical applications. Microbiol Res 2022; 260:127019. [DOI: 10.1016/j.micres.2022.127019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022]
|
57
|
Li S, Huo X, Qi Y, Ren D, Li Z, Qu D, Sun Y. The Protective Effects of Ginseng Polysaccharides and Their Effective Subfraction against Dextran Sodium Sulfate-Induced Colitis. Foods 2022; 11:foods11060890. [PMID: 35327312 PMCID: PMC8949837 DOI: 10.3390/foods11060890] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/08/2023] Open
Abstract
Polysaccharides from Panax ginseng are natural carbohydrates with multiple activities. However, little was known about its functions on colitis. In this study, we aim to investigate the protective effects of ginseng polysaccharides and its effective subfraction on dextran sodium sulfate (DSS)-induced colitis. Water soluble ginseng polysaccharides (WGP) were obtained from dry ginseng root, then purified to neutral fraction (WGPN) and acidic fraction (WGPA) by ion exchange chromatography. An animal model was constructed with male Wistar rats, which were treated with a normal diet (con group), DSS (DSS group), WGP (WGP group), WGPN (WGPN group), and WGPA (WGPA group), respectively. Both WGP and WGPA alleviated the colitis symptoms and colon structure changes of colitis rats. They decreased the disease activity index (DAI) scores and improved colon health; reduced colon damage and recovered the intestinal barrier via regulating the tight-junction-related proteins (ZO-1 and Occludin); downregulated inflammatory cytokines (IL-1β, IL-2, IL-6, and IL-17) and inhibited the TLR4/MyD88/NF-κB-signaling pathway in the colon; regulated the diversity and composition of gut microbiota, especially the relative abundance of Ruminococcus; enhanced the production of SCFAs. In conclusion, WGP exerted a protective effect against colitis with its acidic fraction (WGPA) as an effective fraction. The results support the utilization and investigation of ginseng polysaccharides as a potential intervention strategy for the prevention of colitis.
Collapse
Affiliation(s)
- Shanshan Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (S.L.); (X.H.); (Y.Q.); (D.R.); (Z.L.); (D.Q.)
- Department of Biology, College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Xiaohui Huo
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (S.L.); (X.H.); (Y.Q.); (D.R.); (Z.L.); (D.Q.)
| | - Yuli Qi
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (S.L.); (X.H.); (Y.Q.); (D.R.); (Z.L.); (D.Q.)
| | - Duoduo Ren
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (S.L.); (X.H.); (Y.Q.); (D.R.); (Z.L.); (D.Q.)
| | - Zhiman Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (S.L.); (X.H.); (Y.Q.); (D.R.); (Z.L.); (D.Q.)
| | - Di Qu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (S.L.); (X.H.); (Y.Q.); (D.R.); (Z.L.); (D.Q.)
| | - Yinshi Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (S.L.); (X.H.); (Y.Q.); (D.R.); (Z.L.); (D.Q.)
- Correspondence: ; Tel.: +86-431-81919580
| |
Collapse
|
58
|
Panax quinquefolius Polysaccharides Ameliorate Antibiotic-Associated Diarrhoea Induced by Lincomycin Hydrochloride in Rats via the MAPK Signaling Pathways. J Immunol Res 2022; 2022:4126273. [PMID: 35345778 PMCID: PMC8957475 DOI: 10.1155/2022/4126273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/27/2022] [Accepted: 03/02/2022] [Indexed: 12/21/2022] Open
Abstract
American ginseng (Panax quinquefolius L.) is an herbal medicine with polysaccharides as its important active ingredient. The purpose of this research was to identify the effects of the polysaccharides of P. quinquefolius (WQP) on rats with antibiotic-associated diarrhoea (AAD) induced by lincomycin hydrochloride. WQP was primarily composed of galacturonic acid, glucose, galactose, and arabinose. The yield, total sugar content, uronic acid content, and protein content were 6.71%, 85.2%, 31.9%, and 2.1%, respectively. WQP reduced the infiltration of inflammatory cells into the ileum and colon, reduced the IL-1β, IL-6, IL-17A, and TNF-α levels, increased the levels of IL-4 and IL-10 in colon tissues, improved the production of acetate and propionate, regulated the gut microbiota diversity and composition, improved the relative richness of Lactobacillus and Bacteroides, and reduced the relative richness of Blautia and Coprococcus. The results indicated that WQP can enhance the recovery of the intestinal structure in rats, reduce inflammatory cytokine levels, improve short-chain fatty acid (SCFA) levels, promote recovery of the gut microbiota and intestinal mucosal barrier, and alleviate antibiotic-related side effects such as diarrhoea and microbiota dysbiosis caused by lincomycin hydrochloride. We found that WQP can protect the intestinal barrier by increasing Occludin and Claudin-1 expression. In addition, WQP inhibited the MAPK inflammatory signaling pathway to improve the inflammatory status. This study provides a foundation for the treatment of natural polysaccharides to reduce antibiotic-related side effects.
Collapse
|
59
|
Zhang H, Jiang F, Zhang J, Wang W, Li L, Yan J. Modulatory effects of polysaccharides from plants, marine algae and edible mushrooms on gut microbiota and related health benefits: A review. Int J Biol Macromol 2022; 204:169-192. [PMID: 35122806 DOI: 10.1016/j.ijbiomac.2022.01.166] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
Naturally occurring carbohydrate polymers containing non-starch polysaccharides (NPs) are a class of biomacromolecules isolated from plants, marine algae, and edible mushrooms, and their biological activities has shown potential uses in the prevention and treatment of human diseases. Importantly, NPs serve as prebiotics to provide health benefits to the host through stimulating the proliferation of beneficial gut microbiota (GM) and enhancing the production of short-chain fatty acids (SCFAs). The composition and diversity of GM play a critical role in regulating host health and have been extensively studied in recent years. In this review, the extraction, isolation, purification, and structural characterization of NPs derived from plants, marine algae, and edible mushrooms are outlined. Importantly, the degradation and metabolism of these NPs in the intestinal tract, the effects of NPs on the microbial community and SCFAs generation, and the beneficial effects of NPs on host health by modulating GM are systematically highlighted. Overall, we hope that this review can provide some theoretical references and a new perspective for applications of NPs as prebiotics in functional food and drug development.
Collapse
Affiliation(s)
- Henan Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China.
| | - Fuchun Jiang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China
| | - Jinsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China
| | - Wenhan Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China
| | - Lin Li
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Jingkun Yan
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
60
|
Nan N, Gong MX, Wang Q, Li MJ, Xu R, Ma Z, Wang SH, Zhao H, Xu YS. Wuzhuyu Decoction relieves hyperalgesia by regulating central and peripheral 5-HT in chronic migraine model rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153905. [PMID: 35026523 DOI: 10.1016/j.phymed.2021.153905] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Chronic migraine (CM) is a highly disabling and burdensome disease. Wuzhuyu decoction (WZYD), a clinical used formula to treat and prevent episodic migraine and CM, has been reported to relieve the hyperalgesia of CM and increase brainstem and blood serotonin (5-hydroxytryptamine, 5-HT) in migraine model rats in previous studies; yet the mechanism is unclear. PURPOSE This study aimed to observe the hyperalgesia relief effect of WZYD and investigate the mechanistic association with the regulation on central and peripheral 5-HT. METHODS WZYD with different doses (3.372, 1.686 and 0.843 g/kg∙d) and the positive drug - sumatriptan (5.83 mg/kg∙3 d) were intragastrically administered in inflammatory soup (IS)-induced CM model rats, respectively. Hyperalgesia was assessed by facial mechanical withdrawal threshold and tail-flick latency. 5-HT was determined by ELISA. Western blot analysis, immunohistochemistry and immunofluorescence determination, and 16S rRNA gene sequencing were performed. RESULTS WZYD significantly relieved the hyperalgesia by elevating the facial mechanical withdrawal threshold and tail-flick latency. In WZYD groups, increased 5-HT and decreased calcitonin gene-related peptide in both the brainstem and plasma, downregulated TNF-α, IL-1β, and c-fos expression in the brainstem were observed in dose-dependent manner. Interestingly, 5-HT in colon tissues were also observed, which is associated with upregulating tryptophan hydroxylase, serotonin transporter and Piezo1 expression and increasing 5-HT and chromogranin A in enterochromaffin cells. Disorder of the microbiota, function and metabolism was correlated with 5-HT synthesis. WZYD could regulate the abundance of Anaerostipes and Acidifaciens. CONCLUSION WZYD has the pharmacological effect on relieving hyperalgesia in CM model rats, possibly by affecting central and peripheral 5-HT.
Collapse
Affiliation(s)
- Nan Nan
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing 100069, China
| | - Mu-Xin Gong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing 100069, China.
| | - Qi Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing 100069, China
| | - Mei-Jing Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing 100069, China
| | - Rui Xu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing 100069, China
| | - Zhe Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing 100069, China
| | - Si-Hui Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing 100069, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing 100069, China
| | - Yong-Song Xu
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospiital, Capital Medical University, Beijing 101149, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 101149, China
| |
Collapse
|
61
|
Supplementation of Bacillus sp. DU-106 Alleviates Antibiotic-Associated Diarrhea in Association with the Regulation of Intestinal Microbiota in Mice. Probiotics Antimicrob Proteins 2022; 14:372-383. [DOI: 10.1007/s12602-022-09906-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2022] [Indexed: 02/08/2023]
|
62
|
Hu Y, He Y, Niu Z, Shen T, Zhang J, Wang X, Hu W, Cho JY. A review of the immunomodulatory activities of polysaccharides isolated from Panax species. J Ginseng Res 2022; 46:23-32. [PMID: 35058724 PMCID: PMC8753523 DOI: 10.1016/j.jgr.2021.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/01/2021] [Indexed: 12/05/2022] Open
Abstract
Panax polysaccharides are biopolymers that are isolated and purified from the roots, stems, leaves, flowers, and fruits of Panax L. plants, which have attracted considerable attention because of their immunomodulatory activities. In this paper, the composition and structural characteristics of purified polysaccharides are reviewed. Moreover, the immunomodulatory activities of polysaccharides are described both in vivo and in vitro. In vitro, Panax polysaccharides exert immunomodulatory functions mainly by activating macrophages, dendritic cells, and the complement system. In vivo, Panax polysaccharides can increase the immune organ indices and stimulate lymphocytes. In addition, this paper also discusses the membrane receptors and various signalling pathways of immune cells. Panax polysaccharides have many beneficial therapeutic effects, including enhancing or activating the immune response, and may be helpful in treating cancer, sepsis, osteoporosis, and other conditions. Panax polysaccharides have the potential for use in the development of novel therapeutic agents or adjuvants with beneficial immunomodulatory properties.
Collapse
Affiliation(s)
- Yeye Hu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China
| | - Yang He
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China
| | - Zhiqiang Niu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China
| | - Ting Shen
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China
| | - Ji Zhang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China
| | - Xinfeng Wang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China
| | - Weicheng Hu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China
- Corresponding author. Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
- Corresponding author. Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
63
|
Liu C, Jiang W, Yang F, Guo Y, Yao W, Cheng Y, Zhao Y, He Q. Combination of microbiome and metabolome to analyze the cross-cooperation mechanism of Echinacea purpurea polysaccharide with gut microbiota in vitro and in vivo. Food Funct 2022; 13:10069-10082. [DOI: 10.1039/d2fo02336a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Echinacea purpurea polysaccharide (EPP) is a functional compound in Echinacea purpurea. At the present, it is generally recognized that plant polysaccharides can regulate the intestinal microecology, but there are few...
Collapse
|
64
|
Chen P, Lei S, Tong M, Chang Q, Zheng B, Zhang Y, Zeng H. Effect of polysaccharide fractions from Fortunella margarita on the fecal microbiota of mice and SCFA production in vitro. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
65
|
Sun Q, Ho CT, Zhang X, Liu Y, Zhang R, Wu Z. Strategies for circadian rhythm disturbances and related psychiatric disorders: A new cue based on plant polysaccharides and intestinal microbiota. Food Funct 2022; 13:1048-1061. [DOI: 10.1039/d1fo02716f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Circadian rhythm is essential to human physiological homeostasis and health. The oscillation of host circadian rhythm affects the composition and function of intestinal microbiota, meanwhile, the normal operation of host...
Collapse
|
66
|
Ma X, Xu T, Qian M, Zhang Y, Yang Z, Han X. Faecal microbiota transplantation alleviates early-life antibiotic-induced gut microbiota dysbiosis and mucosa injuries in a neonatal piglet model. Microbiol Res 2021; 255:126942. [PMID: 34915267 DOI: 10.1016/j.micres.2021.126942] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 12/16/2022]
Abstract
Faecal microbiota transplantation (FMT) is a promising approach to modulate the gut microbiota. Gut microbiota dysbiosis caused by antibiotic administration is a universal problem. This study aimed to evaluate the effect of FMT on the dysbiosis of gut microbiota and metabolic profiles and injury of the intestinal barrier induced by antibiotics and used a neonatal piglet model. Neonatal piglets were administered ampicillin for 3 days, and antibiotic-induced dysbiosis was evaluated by the occurrence of diarrhoea and alteration of gut microbiota. Then, FMT was conducted for 3 days to rebuild the gut microbiota. High-throughput sequencing and a mass spectrometry platform were used for integrated microbiome-metabolome analysis. The results showed that antibiotics led to a decline in the diversity of gut microbiota. Furthermore, there was an increase in the relative abundance of potential pathogenic bacteria, such as Oscillibacter, Pseudomonas and Eubacterium, and an increase in the relative abundance of tetracycline resistance genes (tet genes). FMT restored the diversity and promoted the relative abundance of beneficial bacteria, such as Parabacteroides, Dorea and Parasutterella, while decreasing the relative abundance of tet genes. Untargeted metabolomics analysis found that alpha linolenic acid and linoleic acid metabolism were the key metabolic pathways utilized in the FMT group, and targeted metabolomics analysis further verified the variation in the associated metabolites arachidonic acid and conjugated linoleic acid. FMT also significantly enhanced the relative expression of tight junction (ZO-1, claudin-1 and occludin) and adherens junction (β-catenin, E-cadherin) proteins and anti-inflammatory cytokines (IL-10, TGF-β1) and reduced the production of proinflammatory cytokines (IL-6, IL-1β, TNF-α and IFN-γ) in the colon. FMT not only modulated the gut microbiota composition and microbial metabolism but also reduced the relative abundance of tet genes, improving the intestinal barrier function and inflammatory responses in antibiotic-treated piglets.
Collapse
Affiliation(s)
- Xin Ma
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tingting Xu
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mengqi Qian
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuchen Zhang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhiren Yang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| | - Xinyan Han
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China.
| |
Collapse
|
67
|
Peng X, Hao M, Zhao Y, Cai Y, Chen X, Chen H, Zhang Y, Dong L, Liu X, Ding C, Liu W, Yang M, Luo Y. Red ginseng has stronger anti-aging effects compared to ginseng possibly due to its regulation of oxidative stress and the gut microbiota. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153772. [PMID: 34753028 DOI: 10.1016/j.phymed.2021.153772] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Panax ginseng (PG) and red ginseng (RG) are considered to be effective anti-aging treatments. However, evidence of their therapeutic mechanisms and difference in anti-aging effects is lacking. PURPOSE To explore the potential therapeutic mechanisms of RG and PG in brain damage in D-Gal-induced aging mice, and evaluate the difference in anti-aging effects caused by their compositional differences. METHODS We first tested the chemical components in PG and RG. In D-Gal aging mouse model, RG and PG (800 mg/kg) were orally administered for 9 weeks. The mice performed the Radial Arm Maze (RAM) behavior test. We collected blood, brain tissue, and fecal samples and performed biochemical analysis, histological examination, western blot, and Illumina MiSeq sequencing analysis. RESULTS The results of component analysis showed that the total polyphenols and rare ginsenosides were present in RG in 3.2, and 2.2 fold greater concentrations, respectively, compared to PG, while the proportion of non-starch polysaccharides in the crude polysaccharides of RG was 1.94 fold greater than that of PG. In D-Gal-induced aging mice, both PG and RG could prevent the increase in acetylcholinesterase (AChE), and malondialdehyde (MDA) levels, and improved the expression of superoxide dismutase (SOD), and catalase (CAT) in the serum. Meanwhile, both PG and RG could ameliorate brain tissue architecture and behavioral trial. In addition, the D-Gal-induced translocation of nuclear factor-κB (NF-κB), as well as activation of the pro-apoptotic factors Caspase-3 and the PI3K/Akt pathways were inhibited by PG and RG. Overall, both PG and RG exerted anti-aging effects, with RG stronger than PG. Finally, although both PG and RG regulated the diversity of gut microbes, RG appeared to aggravate the increase in probiotics, such as Bifidobacterium and Akkermania, and the decrease in inflammatory bacteria to a greater extent compared to PG. CONCLUSION Our results suggest that RG is more conducive to delay the D-Gal-induced aging process than PG, with possible mechanisms including beneficial changes in brain structure, cognitive functions, oxidative stress inhibition, and gut microbiome structure and diversity than PG, These mechanisms may rely on the presence of more total polyphenols, rare ginsenosides and non-starch polysaccharides in RG.
Collapse
Affiliation(s)
- Xiaojuan Peng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Mingqian Hao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yingchun Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yuan Cai
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Xueyan Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Huiying Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yue Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ling Dong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Xinglong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; Jilin Agricultural Science and Technology University, Jilin 132101, China.
| | - Wencong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Min Yang
- Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Yunqing Luo
- Jilin Institute of Bioloy, Changchun 130012, China
| |
Collapse
|
68
|
Guan Z, Zhao Q, Huang Q, Zhao Z, Zhou H, He Y, Li S, Wan S. Modified Renshen Wumei Decoction Alleviates Intestinal Barrier Destruction in Rats with Diarrhea. J Microbiol Biotechnol 2021; 31:1295-1304. [PMID: 34319258 PMCID: PMC9706012 DOI: 10.4014/jmb.2106.06037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/01/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022]
Abstract
Modified Renshen Wumei decoction (MRWD), a famous traditional Chinese medicine, is widely used for treating persistent diarrhea. However, as the mechanism by which MRWD regulates diarrhea remains unknown, we examined the protective effects of MRWD on intestinal barrier integrity in a diarrhea model. In total, 48 male rats were randomly distributed to four treatment groups: the blank group (CK group), model group (MC group), Medilac-Vita group (MV group) and Chinese herb group (MRWD group). After a 21-day experiment, serum and colon samples were assessed. The diarrhea index, pathological examination findings and change in D-lactate and diamine oxidase (DAO) contents illustrated that the induction of diarrhea caused intestinal injury, which was ameliorated by MV and MRWD infusion. Metabolomics analysis identified several metabolites in the serum. Some critical metabolites, such as phosphoric acid, taurine, cortisone, leukotriene B4 and calcitriol, were found to be significantly elevated by MRWD infusion. Importantly, these differences correlated with mineral absorption and metabolism and peroxisome proliferator-activated receptor (PPAR) pathways. Moreover, it significantly increased the expression levels of TLR4, MyD88 and p-NF-κB p65 proteins and the contents of IL-1 and TNF-α, while the expression levels of occludin, claudin-1 and ZO-1 proteins decreased. These deleterious effects were significantly alleviated by MV and MRWD infusion. Our findings indicate that MRWD infusion helps alleviate diarrhea, possibly by maintaining electrolyte homeostasis, improving the intestinal barrier integrity, and inhibiting the TLR4/NF-κB axis.
Collapse
Affiliation(s)
- Zhiwei Guan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P.R. China,The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000, P.R. China
| | - Qiong Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P.R. China,Corresponding author E-mail:
| | - Qinwan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, P.R. China
| | - Zhonghe Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P.R. China
| | - Hongyun Zhou
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000, P.R. China
| | - Yuanyuan He
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P.R. China
| | - Shanshan Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P.R. China
| | - Shifang Wan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P.R. China
| |
Collapse
|
69
|
Qi H, Zhang Z, Liu J, Chen Z, Huang Q, Li J, Chen J, Wang M, Zhao D, Wang Z, Li X. Comparisons of Isolation Methods, Structural Features, and Bioactivities of the Polysaccharides from Three Common Panax Species: A Review of Recent Progress. Molecules 2021; 26:4997. [PMID: 34443587 PMCID: PMC8400370 DOI: 10.3390/molecules26164997] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 12/27/2022] Open
Abstract
Panax spp. (Araliaceae family) are widely used medicinal plants and they mainly include Panax ginseng C.A. Meyer, Panax quinquefolium L. (American ginseng), and Panax notoginseng (notoginseng). Polysaccharides are the main active ingredients in these plants and have demonstrated diverse pharmacological functions, but comparisons of isolation methods, structural features, and bioactivities of these polysaccharides have not yet been reported. This review summarizes recent advances associated with 112 polysaccharides from ginseng, 25 polysaccharides from American ginseng, and 36 polysaccharides from notoginseng and it compares the differences in extraction, purification, structural features, and bioactivities. Most studies focus on ginseng polysaccharides and comparisons are typically made with the polysaccharides from American ginseng and notoginseng. For the extraction, purification, and structural analysis, the processes are similar for the polysaccharides from the three Panax species. Previous studies determined that 55 polysaccharides from ginseng, 18 polysaccharides from American ginseng, and 9 polysaccharides from notoginseng exhibited anti-tumor activity, immunoregulatory effects, anti-oxidant activity, and other pharmacological functions, which are mediated by multiple signaling pathways, including mitogen-activated protein kinase, nuclear factor kappa B, or redox balance pathways. This review can provide new insights into the similarities and differences among the polysaccharides from the three Panax species, which can facilitate and guide further studies to explore the medicinal properties of the Araliaceae family used in traditional Chinese medicine.
Collapse
Affiliation(s)
- Hongyu Qi
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China; (Z.Z.); (M.W.)
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jiaqi Liu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Zhaoqiang Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Qingxia Huang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China; (Z.Z.); (M.W.)
| | - Jing Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Jinjin Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Mingxing Wang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China; (Z.Z.); (M.W.)
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| | - Zeyu Wang
- Department of Scientific Research, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (H.Q.); (J.L.); (Z.C.); (Q.H.); (J.L.); (J.C.); (D.Z.)
| |
Collapse
|
70
|
Seong E, Bose S, Han SY, Song EJ, Lee M, Nam YD, Kim H. Positive influence of gut microbiota on the effects of Korean red ginseng in metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial. EPMA J 2021; 12:177-197. [PMID: 34194584 DOI: 10.1007/s13167-021-00243-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 12/19/2022]
Abstract
Background Ginseng, a traditional herbal medicine, has been used for thousands of years to treat various diseases including metabolic syndrome (MS). However, the underlying mechanism(s) of such beneficial actions of ginseng against MS is poorly understood. Emerging evidence indicates a close association of the host gut microbiota with MS. The present study was conducted to examine, whether the beneficial effects of Korean red ginseng (KRG) against MS could be influenced by gut microbial population and whether gut microbial profile could be considered a valuable biomarker for targeted treatment strategy for MS in compliance with the predictive, preventive, and personalized medicine (PPPM / 3PM). Methods This clinical study was a randomized, double-blind, placebo-controlled trial evaluating the effects of KRG treatment for 8 weeks on patients with MS. The anthropometric parameters, vital signs, metabolic biomarkers, and gut microbial composition through 16S rRNA gene sequencing were assessed at the baseline and endpoint. The impact of KRG was also evaluated after categorizing the subjects into responders and non-responders, as well as enterotypes 1 and 2 based on their gut microbial profile at the baseline. Results Fifty out of 60 subjects who meet the MS criteria completed the trial without showing adverse reactions. The KRG treatment caused a significant decrease in systolic blood pressure (SBP). Microbial analysis revealed a decrease in Firmicutes, Proteobacteria, and an increase in Bacteroidetes in response to KRG. In patient stratification analysis, the responders showing marked improvement in the serum levels of lipid metabolic biomarkers TC and LDL due to the KRG treatment exhibited higher population of both the family Lachnospiraceae and order Clostridiales compared to the non-responders. The homeostasis model assessment-insulin resistance (HOMA-IR) and insulin level were decreased in enterotype 1 (Bacteroides-abundant group) and increased in enterotype 2 (prevotella-abundant group) following the KRG treatment. Conclusion In this study, the effects of KRG on the glucose metabolism in MS patients were influenced by the relative abundances of gut microbial population and differed according to the individual enterotype. Therefore, the analysis of enterotype categories is considered to be helpful in predicting the effectiveness of KRG on glucose homeostasis of MS patients individually. This will further help to decide on the appropriate treatment strategy for MS, in compliance with the perspective of PPPM.
Collapse
Affiliation(s)
- Eunhak Seong
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Gyeonggi-do 10326, Republic of Korea
| | - Shambhunath Bose
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Gyeonggi-do 10326, Republic of Korea
| | - Song-Yi Han
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Gyeonggi-do 10326, Republic of Korea
| | - Eun-Ji Song
- Research Group of Healthcare, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Myeongjong Lee
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Gyeonggi-do 10326, Republic of Korea
| | - Young-Do Nam
- Research Group of Healthcare, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Gyeonggi-do 10326, Republic of Korea
| |
Collapse
|
71
|
Wei XM, Jiang S, Li SS, Sun YS, Wang SH, Liu WC, Wang Z, Wang YP, Zhang R, Li W. Endoplasmic Reticulum Stress-Activated PERK-eIF2α-ATF4 Signaling Pathway is Involved in the Ameliorative Effects of Ginseng Polysaccharides against Cisplatin-Induced Nephrotoxicity in Mice. ACS OMEGA 2021; 6:8958-8966. [PMID: 33842766 PMCID: PMC8027996 DOI: 10.1021/acsomega.0c06339] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/01/2021] [Indexed: 05/25/2023]
Abstract
Although previous studies have reported that saponins (ginsenosides, the major active and most representative ingredients in Panax ginseng C.A. Meyer) exerted a good ameliorative effect on cisplatin (CP)-induced acute kidney injury in animal models, little attention has been paid to a large number of polysaccharides isolated and purified from ginseng. This work aimed to investigate the protective effect and the possible molecular mechanism of ginseng polysaccharide (WGP) on CP-induced kidney toxicology in mice. The results from biomarker analysis including serum creatinine (CRE) and blood urea nitrogen (BUN) confirmed the protective effect of WGP at 200 and 400 mg/kg on CP-induced renal-toxicology. We found that WGP reduces the apoptosis of kidney cells by inhibiting endoplasmic reticulum (ER) stress caused by CP, which is manifested by increased phosphorylation of PERK. In addition, the apoptosis-associated with caspase 3 activation in renal cells induced by CP was inhibited after administration of WGP, and the phosphorylation levels of PI3K and AKT were also reduced significantly. We also demonstrated that after exposure to CP, the unfolded protein response signaling pathway PERK-eIF2α-ATF4 axis was significantly activated, manifested by increased phosphorylation of eIF2α and increased expression of ATF4 and CHOP. Interestingly, the WGP administration improves this situation. Furthermore, the supplement of WGP inhibited the overexpression of nuclear factor-kappa B p65 (NF-κB p65) and tumor necrosis factor-α (TNF-α) caused by CP exposure. In short, for the first time, our findings indicated that WGP could effectively prevent CP-induced ER stress, inflammation, and apoptosis in renal cells, in part, by regulating the PI3K/AKT and PERK-eIF2α-ATF4 signaling pathways.
Collapse
Affiliation(s)
- Xiao-meng Wei
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Shuang Jiang
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
- National
& Local Joint Engineering Research Center for Ginseng Breeding
and Development, Changchun 130118, China
| | - Shan-shan Li
- Institute
of Special Wild Economic Animals and Plant, Chinese Academy of Agricultural Sciences, Changchun 132109, China
| | - Yin-shi Sun
- Institute
of Special Wild Economic Animals and Plant, Chinese Academy of Agricultural Sciences, Changchun 132109, China
| | - Shi-han Wang
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
- National
& Local Joint Engineering Research Center for Ginseng Breeding
and Development, Changchun 130118, China
| | - Wen-cong Liu
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
- National
& Local Joint Engineering Research Center for Ginseng Breeding
and Development, Changchun 130118, China
| | - Zi Wang
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
- National
& Local Joint Engineering Research Center for Ginseng Breeding
and Development, Changchun 130118, China
| | - Ying-ping Wang
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
- National
& Local Joint Engineering Research Center for Ginseng Breeding
and Development, Changchun 130118, China
| | - Rui Zhang
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
- National
& Local Joint Engineering Research Center for Ginseng Breeding
and Development, Changchun 130118, China
| | - Wei Li
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
- National
& Local Joint Engineering Research Center for Ginseng Breeding
and Development, Changchun 130118, China
| |
Collapse
|
72
|
Whole and polysaccharide powdered Sporisorium reilianum improves DSS-induced colitis in BALB/c mice by modulating gut microbiota. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
73
|
Hu Y, Zhao M, Lu Z, Lv F, Zhao H, Bie X. L. johnsonii, L. plantarum, and L. rhamnosus alleviated Enterohaemorrhagic Escherichia coli-induced diarrhoea in mice by regulating gut microbiota. Microb Pathog 2021; 154:104856. [PMID: 33766633 DOI: 10.1016/j.micpath.2021.104856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/04/2021] [Accepted: 03/12/2021] [Indexed: 12/20/2022]
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) is a prominent foodborne pathogen that causes infectious intestinal diarrhoea. Lactobacillus is a recognized probiotic that inhibits intestinal pathogens and maintains the balance of the intestinal flora. The purpose of this study was to investigate the regulatory effects of three Lactobacillus strains, L. johnsonii, L. plantarum, and L. rhamnosus, on the intestinal flora of EHEC-infected mice. The initial weight and diarrhoea index of the mice were recorded. After 21 days, the faeces of the mice were subjected to 16S rDNA high-throughput sequencing. The diarrhoea index of mice treated with Lactobacillus improved, their body weight continued to rise, and their liver index gradually decreased. The α diversity analysis showed that the intestinal flora diversity and abundance were lower in mice infected with EHEC than in healthy mice. L. plantarum, L. johnsonii, and L. rhamnosus significantly improved the diversity of the flora species. In terms of flora composition, the three main phyla present were Bacteroidetes, Firmicutes, and Proteobacteria. The abundance of these three phyla was reduced to 93.81% after infection and restored to over 96.30% after treatment. At the genus level, Lactobacillus reduced the abundance of Bacteroides, Helicobacter pylori, and Shigella, while increasing the abundance of butyric acid-producing bacteria and Lactobacillus. Finally, a heat map and non-metric multidimensional scaling analysis showed that the intestinal flora structures in the L. johnsonii, L. plantarum, and L. rhamnosus treatment groups were closest to those of healthy mice. In conclusion, L. johnsonii, L. plantarum, and L. rhamnosus regulated and improved the structure of intestinal flora and relieved diarrhoea caused by EHEC infection.
Collapse
Affiliation(s)
- Yafan Hu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Mengna Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Fengxia Lv
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
74
|
Qu Q, Yang F, Zhao C, Liu X, Yang P, Li Z, Han L, Shi X. Effects of fermented ginseng on the gut microbiota and immunity of rats with antibiotic-associated diarrhea. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113594. [PMID: 33217518 DOI: 10.1016/j.jep.2020.113594] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng (Panax ginseng Meyer) is a well-known herb in traditional Chinese medicine and has been used to treat many diseases for thousands of years. Recent studies have shown that ginseng is a promising agent for improving the gut microbiota and treating ulcerative colitis. Fermentation is a common process in traditional Chinese medicine making that can be used to enhance efficacy and reduce toxicity. AIM OF THE STUDY The purpose of the present study was to research the efficacy of ginseng fermented with probiotics (Lactobacillus fermentum) on the gut microbiota and immunity of rats with antibiotic-associated diarrhea (AAD). MATERIALS AND METHODS SPF Sprague-Dawley rats were randomly divided into eight groups: control group, antibiotic group, natural recovery group, and five groups treated with different doses of fermented ginseng (FG1 to FG5). A model of AAD was established by treating the rats with triple antibiotics, and obvious symptoms of AAD were observed. A histopathological analysis of the colon was performed. The total bacteria in the intestinal microbiota and five types of gut microbes in the feces were detected by quantitative PCR. The expression levels of related immune factors TLR4 and NF-κB in the colon were assayed. RESULTS An appropriate dose of fermented ginseng (0.5 g/kg/d) relieved some of the symptoms of AAD and colon inflammation and reduced the expression of the immune factors TLR4 and NF-κB in the colon. The alteration of the gut microbiota observed in the rats treated with antibiotics also returned to normal after treatment with fermented ginseng. Moreover, different doses of fermented ginseng exerted different influences on the gut microbiota, and excessively high or low doses of fermented ginseng were disadvantageous for resolving the symptoms of AAD and promoting recovery. CONCLUSIONS These results demonstrate that fermented ginseng can treat AAD symptoms and colon inflammation and restore the gut microbiota to its original state.
Collapse
Affiliation(s)
- Qingsong Qu
- School of Life Science, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, 102488, Beijing, China.
| | - Fang Yang
- School of Life Science, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, 102488, Beijing, China.
| | - Chongyan Zhao
- School of Life Science, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, 102488, Beijing, China.
| | - Xing Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, 102488, Beijing, China.
| | - Pengshuo Yang
- School of Life Science, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, 102488, Beijing, China.
| | - Zhixun Li
- School of Life Science, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, 102488, Beijing, China.
| | - Lu Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, 102488, Beijing, China.
| | - Xinyuan Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan, 102488, Beijing, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, 100029, Beijing, China.
| |
Collapse
|
75
|
Ma Y, Zhang Q, Liu W, Chen Z, Zou C, Fu L, Wang Y, Liu Y. Preventive Effect of Depolymerized Sulfated Galactans from Eucheuma serra on Enterotoxigenic Escherichia coli-Caused Diarrhea via Modulating Intestinal Flora in Mice. Mar Drugs 2021; 19:80. [PMID: 33535475 PMCID: PMC7912752 DOI: 10.3390/md19020080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
In this work, the preventive effect of depolymerized sulfated polysaccharides from Eucheuma serra (DESP) on bacterial diarrhea by regulating intestinal flora was investigated in vivo. Based on the enterotoxigenic Escherichia coli (ETEC)-infected mouse diarrhea model, DESP at doses ranging from 50 mg/kg to 200 mg/kg alleviated weight loss and decreased the diarrhea rate and diarrhea index. Serological tests showed that the levels of inflammation-related factors were effectively suppressed. Furthermore, the repaired intestinal mucosa was verified by morphology and pathological tissue section observations. Compared with the model group, the richness and diversity of the intestinal flora in the DESP group increased according to the 16S rRNA high-throughput sequencing of the gut microbiota. Specifically, Firmicutes and Actinobacteria increased, and Proteobacteria decreased after DESP administration. At the family level, DESP effectively improved the abundance of Lactobacillaceae, Bifidobacteriaceae, and Lachnospiraceae, while significantly inhibiting the growth of Enterobacteriaceae. Therefore, the antimicrobial diarrhea function of DESP may be related to the regulation of intestinal microbiota.
Collapse
Affiliation(s)
- Yu Ma
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Y.M.); (Q.Z.); (W.L.); (Z.C.); (C.Z.); (Y.W.)
| | - Qian Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Y.M.); (Q.Z.); (W.L.); (Z.C.); (C.Z.); (Y.W.)
| | - Wenqiang Liu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Y.M.); (Q.Z.); (W.L.); (Z.C.); (C.Z.); (Y.W.)
| | - Zhaohua Chen
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Y.M.); (Q.Z.); (W.L.); (Z.C.); (C.Z.); (Y.W.)
| | - Chao Zou
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Y.M.); (Q.Z.); (W.L.); (Z.C.); (C.Z.); (Y.W.)
| | - Linglin Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China;
| | - Yanbo Wang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Y.M.); (Q.Z.); (W.L.); (Z.C.); (C.Z.); (Y.W.)
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China;
| | - Yixiang Liu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Y.M.); (Q.Z.); (W.L.); (Z.C.); (C.Z.); (Y.W.)
| |
Collapse
|
76
|
Yang L, Zhang Q, Huang J, Liu D, Lan Y, Yuan L, Chen Q. Xianglian Pill ameliorates antibiotic-associated diarrhea by restoring intestinal microbiota and attenuating mucosal damage. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113377. [PMID: 32920136 DOI: 10.1016/j.jep.2020.113377] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 08/13/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xianglian Pill (XLP), a traditional Chinese pharmaceutical preparation for the treatment of gastrointestinal disease, possessing anti-inflammatory, anti-microbial and analgesic activities, may represent a promising candidate for the treatment of antibiotic-associated diarrhea (AAD). AIM OF THE STUDY This study aimed to unravel the underlying mechanism of XLP on the amelioration of AAD. MATERIALS AND METHODS AAD was induced by intragastric administration of a mixture of cefuroxime and levofoxacin (300 mg/kg. bw + 200 mg/kg. bw) for five consecutive days. Then AAD mice were treated with XLP at the dose of 500, 1000 and 2000 mg/kg. bw, respectively for 5 days. The physical manifestations, diarrhea status were monitored during the drug delivery. Histopathology of colon, intestinal microbiota, inflammatory cytokines, tight junction protein and short chain fat acids (SCFAs) were determined. RESULTS Mice received cefuroxime and levofoxacin for 5 days developed medium to severe diarrhea. XLP treatment, however, mitigated the diarrhea status. Further evaluation revealed that XLP promoted the recovery of mucosa, maintained the integrity of tight junction, attenuated the inflammatory disorders, restored intestinal microbiota and increased SCFAs level in feces. CONCLUSION XLP ameliorates AAD by restoring intestinal microbiota and attenuating mucosal damage.
Collapse
Affiliation(s)
- Lujia Yang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Qian Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Jieyao Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Danning Liu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Yunfei Lan
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Lujiang Yuan
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China.
| | - Qianfeng Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
77
|
Bie N, Duan S, Meng M, Guo M, Wang C. Regulatory effect of non-starch polysaccharides from purple sweet potato on intestinal microbiota of mice with antibiotic-associated diarrhea. Food Funct 2021; 12:5563-5575. [PMID: 34008607 DOI: 10.1039/d0fo03465g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Antibiotic treatment causes antibiotic-associated diarrhea (AAD), which is usually accompanied by disorders of the intestinal flora, aggravating the patient's condition. Recently, more attention has been devoted to the ability of plant polysaccharides to improve the body's flora and enhance immunity. However, reports on whether purple sweet potato polysaccharides (PSPPs) can improve AAD are scarce. This study aimed to extract a non-starch polysaccharide from purple sweet potato and analyze its structure and ability to regulate the intestinal flora of mice with AAD. The diarrhea model was established via intragastric administration of lincomycin and different concentrations of PSPPs (0.1 g kg-1, 0.2 g kg-1, and 0.4 g kg-1) to Balb/C mice. The results showed that PSPP was a pyran polysaccharide with 1 → 2, 1 → 2, 6, 1 → 4, 1 → 4, 6 glycosidic bonds in an α-configuration. In vivo experiments showed that PSPP could relieve diarrhea and improve the structural damage in the ileum caused by lincomycin hydrochloride. In addition, treatment with PSPPs decreased the levels of IL-1β, IL-6 and TNF-α but increased the level of IL-10 in the intestines of mice (p < 0.01). The results of 16S rRNA sequencing showed that PSPPs changed the composition and diversity of the intestinal flora of mice with AAD. In addition, PSPP treatment increased the content of short-chain fatty acids (p < 0.01). These results revealed that PSPPs regulated the intestinal flora, balanced fatty acid metabolism, and relieved the symptoms of diarrhea to a certain extent in mice.
Collapse
Affiliation(s)
- Nana Bie
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin, 300457, People's Republic of China.
| | - Shengquan Duan
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin, 300457, People's Republic of China.
| | - Meng Meng
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin, 300457, People's Republic of China.
| | - Mingzhu Guo
- Department of biological engineering, College of food science and technology, Agricultural University of Hebei, No. 2596, Lekai nan Avenue, Baoding, Hebei Province 071001, People's Republic of China
| | - Chunling Wang
- "State Key Laboratory of Food Nutrition and Safety", Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
78
|
Guo M, Shao S, Wang D, Zhao D, Wang M. Recent progress in polysaccharides from Panax ginseng C. A. Meyer. Food Funct 2020; 12:494-518. [PMID: 33331377 DOI: 10.1039/d0fo01896a] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Panax ginseng C. A. Meyer (P. ginseng) has a long history of medicinal use and can treat a variety of diseases. P. ginseng contains a variety of active ingredients, such as saponins, polypeptides, volatile oils, and polysaccharides. Among them, saponins have always been considered as the main components responsible for its pharmacological activities. However, more and more studies have shown that polysaccharides play an indispensable role in the medicinal value of ginseng. Modern biological and medical studies have found that ginseng polysaccharides have complex structural characteristics and diverse biological activities, such as immune regulation, anti-tumor, antioxidant, hypoglycemic, and anti-radiation functions, among others. Additionally, the structural characteristics of ginseng polysaccharides are closely related to their activity. In this review, the research background, extraction, purification, structural characteristics, and biological activities of ginseng polysaccharides from different parts of P. ginseng (roots, flowers stems and leaves, and berries) under different growth conditions (artificially cultivated ginseng, mountain ginseng, and wild ginseng) are summarized. The structural characteristics of purified polysaccharides were reviewed. Meanwhile, their biological activities were introduced, and some possible mechanisms were listed. Furthermore, the structure-activity relationship of polysaccharides was discussed. Some research perspectives for the study of ginseng polysaccharides were also provided.
Collapse
Affiliation(s)
- Mingkun Guo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130021, China
| | | | | | | | | |
Collapse
|
79
|
Liu L, Xu FR, Wang YZ. Traditional uses, chemical diversity and biological activities of Panax L. (Araliaceae): A review. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:112792. [PMID: 32311488 DOI: 10.1016/j.jep.2020.112792] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax L. (Araliaceae) is globally-recognized plant resource suitable for the globalization of traditional Chinese medicines. It has traditionally been used as tonic agents in various ethnomedicinal systems of East Asia, especially in China. It is often used to regulate bodily functions and considered as adjuvant therapy for tumor, resuscitation of traumatic hemorrhagic shock, etc. AIM OF THIS REVIEW: This review systematically summarized the information on distributions, botanical characteristics, traditional uses, chemical components and biological activities of the genus Panax, in order to explore and exploit the therapeutic potential of this plant. MATERIALS AND METHODS The available information about genus Panax was collected via the online search on Web of Science, Google Scholar, PubMed, Baidu Scholar, Science Direct, China National Knowledge Infrastructure and Springer search. The keywords used include Panax, saponin, secondary metabolites, chemical components, biological activity, pharmacology, traditional medicinal uses, safety and other related words. The Plant List (www.theplantlist.org) and Catalogue of Life: 2019 Annual Checklist (www.catalogueoflife.org/col/) databases were used to provide the scientific names, subspecies classification and distribution information of Panax. RESULTS Panax is widely assessed concerning its phytochemistry and biological activities. To date, at least 748 chemical compounds from genus Panax were isolated, including saponins, flavonoids, polysaccharides, steroids and phenols. Among them, triterpenoid saponins and polysaccharides were the representative active ingredients of Panax plants, which have been widely investigated. Modern pharmacological studies showed that these compounds exhibited a wide range of biological activities in vitro and in vivo including antineoplastic, anti-inflammatory, hepatorenal protective, neuroprotective, immunoregulatory, cardioprotective and antidiabetic activities. Many studies also confirmed that the mechanisms of organ-protective were closely related to molecular signaling pathways, the expression of related proteins and antioxidant reactions. To sum up, genus Panax has high medicinal and social value, deserving further investigation. CONCLUSIONS The genus Panax is very promising to be fully utilized in the development of nutraceutical and pharmaceutical products. However, there is a lack of in-depth studies on ethnomedicinal uses of Panax plants. In addition, further studies of single chemical component should be performed based on the diversity of chemical structure, significant biological activities and clinical application. If the bioactive molecules and multicomponent interactions are discovered, it will be of great significance to the clinical application of Panax plants. It is an urgent requirement to carry out detailed phytochemical, pharmacology and clinical research on Panax classical prescriptions for the establishment of modern medication guidelines. Exploring the molecular basis of herbal synergistic actions may provide a new understanding of the complex disease mechanisms and accelerate the process of pharmaceutical development.
Collapse
Affiliation(s)
- Lu Liu
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China; College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Fu-Rong Xu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China.
| | - Yuan-Zhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.
| |
Collapse
|
80
|
Zhang R, Lv C, Lu J. Studies on laccase mediated conversion of lignin from ginseng residues for the production of sugars. BIORESOURCE TECHNOLOGY 2020; 317:123945. [PMID: 32805484 DOI: 10.1016/j.biortech.2020.123945] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
The purpose of this study was to determine the production of sugars from ginseng residues treated with laccase. Laccase was used to degrade lignin from ginseng residues in order to increase the yield of sugars. Reaction conditions, including solid loading, pH, enzyme concentration, incubation temperature, and incubation time, were investigated and optimized. The results showed that the optimum conditions were 20% of solid loading (w/v), pH 7, 300 IU/ml, temperature of 40 °C and incubation time of 6 h. The minimum residual lignin obtained was 59.89%. The results also showed that 56.58% sugars including 12.04% water soluble polysaccharides (WSP), 16.24% water insoluble polysaccharides (WIP) and 5.08% reducing sugar were afforded from delignify substance. Chemical characters of these sugars were analyzed. Pretreat of laccase delignification for sugars production is expected to be applied to other herbal residues.
Collapse
Affiliation(s)
- Ruiqi Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110006, China
| | - Chongning Lv
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110006, China; Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang 110006, China
| | - Jincai Lu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110006, China; Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang 110006, China.
| |
Collapse
|
81
|
Ma ZJ, Wang HJ, Ma XJ, Li Y, Yang HJ, Li H, Su JR, Zhang CE, Huang LQ. Modulation of gut microbiota and intestinal barrier function during alleviation of antibiotic-associated diarrhea with Rhizoma Zingiber officinale (Ginger) extract. Food Funct 2020; 11:10839-10851. [PMID: 33241234 DOI: 10.1039/d0fo01536a] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Antibiotic-associated diarrhea (AAD) is typically mediated by antibiotic therapy, which has increased in prevalence in recent years. Previous studies have suggested that ginger, a common spice and herbal medicine, can modulate the composition of gut microbiota and is beneficial against gastrointestinal disease. This study investigates the therapeutic effects of fresh ginger extract on AAD in a rat model. Gut microbiota and intestinal barrier function were also studied. Ginger was administered to rats with AAD. Diarrhea symptoms were assessed, and 16s rRNA sequencing analysis of gut microbiota was performed. An AAD model was successfully established, and ginger was found to effectively ameliorate AAD-related diarrhea symptoms. After the intervention of ginger decoction, the diversity (rather than richness) of gut microbiota was significantly improved, and the gut microbiota recovery was accelerated. At the genus level, Escherichia_Shigella and Bacteroides levels decreased and increased the most, respectively. Additionally, these changes were demonstrated to be coincidental with the moderate restoration of intestinal barrier function, especially the restoration of tight junction protein ZO-1. Our data indicate that ginger could restore gut microbiota and intestinal barrier function during alleviation of AAD.
Collapse
Affiliation(s)
- Zhi-Jie Ma
- Center for Post-doctoral Research, Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Hu JS, Huang YY, Kuang JH, Yu JJ, Zhou QY, Liu DM. Streptococcus thermophiles DMST-H2 Promotes Recovery in Mice with Antibiotic-Associated Diarrhea. Microorganisms 2020; 8:microorganisms8111650. [PMID: 33114373 PMCID: PMC7693992 DOI: 10.3390/microorganisms8111650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/23/2022] Open
Abstract
Antibiotic-associated diarrhea (AAD) is the most common side effect of antibiotics and is routinely treated with probiotics in clinical. Streptococcus thermophiles, extensively utilized for producing dairy foods, has recently been regarded as a new promising probiotic candidate. In this study, the efficacy of Streptococcus thermophiles DMST-H2 (DMST-H2) for AAD treatment in mice was investigated. DMST-H2 was isolated from Chinese traditional yogurt, proved to be non-toxic, and presented tolerance against simulated gastrointestinal conditions in vitro. Additionally, genomic analysis revealed that it possessed genes related to acid tolerance, bile salt tolerance, adhesion, oxidative stress and bacteriocin production. The animal experiment results showed that both DMST-H2 treatment and natural recovery could reduce fecal water content. Compared with spontaneous recovery, DMST-H2 accelerated the recovery of the enlarged caecum and intestinal barrier injury from AAD, and further decreased endotoxin (ET), D-lactate (D-LA) and diamine oxidase (DAO) content in serum. Moreover, pro-inflammatory cytokines (TNF-α) were reduced, while interferon-γ (IFN-γ) and anti-inflammatory cytokines (IL-10) increased after treating with DMST-H2. Furthermore, DMST-H2 better restored the structure of intestinal flora. At the phylum level, Firmicutes increased and Proteobacteria decreased. These findings indicate that DMST-H2 could promote recovery in mice with antibiotic-associated diarrhea.
Collapse
|
83
|
Hua M, Sun Y, Shao Z, Lu J, Lu Y, Liu Z. Functional soluble dietary fiber from ginseng residue: Polysaccharide characterization, structure, antioxidant, and enzyme inhibitory activity. J Food Biochem 2020; 44:e13524. [PMID: 33073381 DOI: 10.1111/jfbc.13524] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 01/19/2023]
Abstract
Ginseng (Panax ginseng C.A. Meyer) is the most famous edible Chinese herbal medicine. In the present study, soluble dietary fiber of ginseng (ginseng-SDF, 8.98% content) was extracted from ginseng residue, and its physicochemical characterization, structure, and biological activities were studied. Ginseng-SDF was an acidic heteropolysaccharide (uronic acid, 4.42% content) rich in protein, amino acids, and mineral elements. Glucose was its main monosaccharide composition (58.03%). Ginseng-SDF had a porous microstructure, a typical cellulose I structure and a large number of hydroxyl functional groups. These chemical composition and structural characteristics gave ginseng-SDF a good water solubility (98.56%), oil-holding capacity (OHC) (3.01 g/g), and biological activities, as the antioxidant activity (13.35 μM TE/g, 105.17 μM TE/g, 54.20 μM TE/g for DPPH, ABTs, and FRAP assays, respectively), glucose diffusion retardation index (GDRI, 33.33%-7.43%), and α-amylase/α-glucosidase inhibitory activities (IC50 , 6.70 mg/ml, and 4.89 mg/ml, respectively). The results suggested that ginseng residue is a valuable source of functional dietary fiber, and the ginseng-SDF has a potential use in antioxidant and hypoglycemic foods. PRACTICAL APPLICATIONS: Ginseng has long been popular as a health food in Asia, North America, and Europe. Ginseng residue is rich in polysaccharides, dietary fiber, proteins, and other components, which is also of great research value. However, there are few studies focus on the soluble dietary fiber of ginseng at present. The research shows that ginseng residue is a valuable source of functional dietary fiber. The chemical components and structural characteristics give ginseng-SDF a noteworthy antioxidant activity and enzyme inhibitory activity in vitro. These properties and biological activities indicate that ginseng-SDF has application value in antioxidant and hypoglycemic foods.
Collapse
Affiliation(s)
- Mei Hua
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yinshi Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zijun Shao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jiaxi Lu
- The Hague University of Applied Science, The Hague, the Netherlands
| | - Yushun Lu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhengbo Liu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
84
|
Chitosan-chelated zinc modulates cecal microbiota and attenuates inflammatory response in weaned rats challenged with Escherichia coli. J Microbiol 2020; 58:780-792. [PMID: 32870484 DOI: 10.1007/s12275-020-0056-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 02/08/2023]
Abstract
Escherichia coli (E. coli) infection is very common among young growing animals, and zinc supplementation is often used to alleviate inflammation induced by this disease. Therefore, the objective of this study was to evaluate whether chitosan-chelated zinc (CS-Zn) supplementation could attenuate gut injury induced by E. coli challenge and to explore how CS-Zn modulates cecal microbiota and alleviates intestinal inflammation in weaned rats challenged with E. coli. 36 weaned rats (55.65 ± 2.18 g of BW, n = 12) were divided into three treatment groups consisting of unchallenged rats fed a basal diet (Control) and two groups of rats challenged with E. coli and fed a basal diet or a diet containing 640 mg/kg CS-Zn (E. coli + CS-Zn, containing 50 mg/kg Zn) for a 14-day experiment. On days 10 to 12, each rat was given 4 ml of E. coli solution with a total bacteria count of 1010 CFU by oral gavage daily or normal saline of equal dosage. CS-Zn supplementation mitigated intestinal morphology impairment (e.g. higher crypt depth and lower macroscopic damage index) induced by E. coli challenge (P < 0.05), and alleviated the increase of Myeloperoxidase (MPO) activity after E. coli challenge (P < 0.05). 16S rRNA sequencing analyses revealed that E. coli challenge significantly increased the abundance of Verrucomicrobia and E. coli (P < 0.05). However, CS-Zn supplementation increased the abundance of Lactobacillus and decreased the relative abundance of Proteobacteria, Desulfovibrio and E. coli (P < 0.05). The concentrations of butyrate in the cecal digesta, which decreased due to the challenge, were higher in the E. coli + CS-Zn group (P < 0.05). In addition, CS-Zn supplementation significantly prevented the elevation of pro-inflammatory cytokines IL-6 concentration and up-regulated the level of anti-inflammatory cytokines IL-10 in cecal mucosa induced by E. coli infection (P < 0.05). In conclusion, these results indicate that CS-Zn produces beneficial effects in alleviating gut mucosal injury of E. coli challenged rats by enhancing the intestinal morphology and modulating cecal bacterial composition, as well as attenuating inflammatory response.
Collapse
|
85
|
Liu Y, Ma Y, Chen Z, Li D, Liu W, Huang L, Zou C, Cao MJ, Liu GM, Wang Y. Antibacterial Activity of Sulfated Galactans from Eucheuma serra and Gracilari verrucosa against Diarrheagenic Escherichia coli via the Disruption of the Cell Membrane Structure. Mar Drugs 2020; 18:E397. [PMID: 32751049 PMCID: PMC7459719 DOI: 10.3390/md18080397] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/28/2022] Open
Abstract
Seaweed sulfated polysaccharides have attracted significant attention due to their antibacterial activity. This work investigated the antibacterial activity and mechanism of depolymerized sulfated galactans from Eucheuma serra (E. serra) and Gracilaria verrucosa (G. verrucosa) against enterotoxigenic Escherichia coli (ETEC) K88. The results show that removing the metal ions improves the anti-ETEC K88 activity of the galactans. The fluorescence labeling study confirmed that the sulfated galactans penetrated the cell walls and eventually reached the interior of the ETEC K88. Nucleic acid staining and intracellular protein leakage were also observed, indicating the destruction of permeability and integrity of the cell membrane. Interestingly, the two polysaccharides exhibited no effect on the proliferation of the selected Gram-positive bacteria and yeast. This indicates that the cell wall structure of the microorganisms could influence the bacteriostatic activity of the sulfated polysaccharides, as well. These results suggest that the sulfated seaweed polysaccharides might have potential application value in antibacterial diarrhea.
Collapse
Affiliation(s)
- Yixiang Liu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China; (Y.M.); (Z.C.); (D.L.); (W.L.); (L.H.); (C.Z.); (M.-J.C.); (G.-M.L.)
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, Fujian, China
- National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Xiamen 361021, Fujian, China
| | - Yu Ma
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China; (Y.M.); (Z.C.); (D.L.); (W.L.); (L.H.); (C.Z.); (M.-J.C.); (G.-M.L.)
| | - Zhaohua Chen
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China; (Y.M.); (Z.C.); (D.L.); (W.L.); (L.H.); (C.Z.); (M.-J.C.); (G.-M.L.)
| | - Donghui Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China; (Y.M.); (Z.C.); (D.L.); (W.L.); (L.H.); (C.Z.); (M.-J.C.); (G.-M.L.)
| | - Wenqiang Liu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China; (Y.M.); (Z.C.); (D.L.); (W.L.); (L.H.); (C.Z.); (M.-J.C.); (G.-M.L.)
| | - Ling Huang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China; (Y.M.); (Z.C.); (D.L.); (W.L.); (L.H.); (C.Z.); (M.-J.C.); (G.-M.L.)
| | - Chao Zou
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China; (Y.M.); (Z.C.); (D.L.); (W.L.); (L.H.); (C.Z.); (M.-J.C.); (G.-M.L.)
| | - Min-Jie Cao
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China; (Y.M.); (Z.C.); (D.L.); (W.L.); (L.H.); (C.Z.); (M.-J.C.); (G.-M.L.)
- National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Xiamen 361021, Fujian, China
| | - Guang-Ming Liu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China; (Y.M.); (Z.C.); (D.L.); (W.L.); (L.H.); (C.Z.); (M.-J.C.); (G.-M.L.)
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, Fujian, China
| | - Yanbo Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China;
| |
Collapse
|
86
|
Zhang C, Shao H, Li D, Xiao N, Tan Z. Role of tryptophan-metabolizing microbiota in mice diarrhea caused by Folium sennae extracts. BMC Microbiol 2020; 20:185. [PMID: 32600333 PMCID: PMC7325056 DOI: 10.1186/s12866-020-01864-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Although reports have provided evidence that diarrhea caused by Folium sennae can result in intestinal microbiota diversity disorder, the intestinal bacterial characteristic and specific mechanism are still unknown. The objective of our study was to investigate the mechanism of diarrhea caused by Folium sennae, which was associated with intestinal bacterial characteristic reshaping and metabolic abnormality. RESULTS For the intervention of Folium sennae extracts, Chao1 index and Shannon index were statistical decreased. The Beta diversity clusters of mice interfered by Folium sennae extracts were distinctly separated from control group. Combining PPI network analysis, cytochrome P450 enzymes metabolism was the main signaling pathway of diarrhea caused by Folium sennae. Moreover, 10 bacterial flora communities had statistical significant difference with Folium sennae intervention: the abundance of Paraprevotella, Streptococcus, Epulopiscium, Sutterella and Mycoplasma increased significantly; and the abundance of Adlercreutzia, Lactobacillus, Dehalobacterium, Dorea and Oscillospira reduced significantly. Seven of the 10 intestinal microbiota communities were related to the synthesis of tryptophan derivatives, which affected the transformation of aminotryptophan into L-tryptophan, leading to abnormal tryptophan metabolism in the host. CONCLUSIONS Folium sennae targeted cytochrome P450 3A4 to alter intestinal bacterial characteristic and intervene the tryptophan metabolism of intestinal microbiota, such as Streptococcus, Sutterella and Dorea, which could be the intestinal microecological mechanism of diarrhea caused by Folium sennae extracts.
Collapse
Affiliation(s)
- Chenyang Zhang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China.,Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Changsha, Hunan, China
| | - Haoqing Shao
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China.,Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Changsha, Hunan, China
| | - Dandan Li
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Nenqun Xiao
- Hunan University of Chinese Medicine, Changsha, Hunan, China.
| | - Zhoujin Tan
- Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Changsha, Hunan, China. .,Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
87
|
Cui M, Zhou R, Wang Y, Zhang M, Liu K, Ma C. Beneficial effects of sulfated polysaccharides from the red seaweed Gelidium pacificum Okamura on mice with antibiotic-associated diarrhea. Food Funct 2020; 11:4625-4637. [PMID: 32400829 DOI: 10.1039/d0fo00598c] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The purpose of this study was to investigate whether Gelidium pacificum Okamura polysaccharides (sulfated polysaccharide, GPOP-1) had beneficial effects on mice with antibiotic-associated diarrhea (AAD). Compared with the natural recovery group, GPOP-1 increased the richness and diversity of the gut microbiome, as well as altered the composition of the gut microbiota. At the genus level, GPOP-1 significantly increased the relative abundance of Bacteroides, Oscillospira, and Bifidobacterium and decreased the relative abundance of Parabacteroides, Sutterella, and AF12. The metabolic pathway differences according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that the metabolic function of the gut microbiota could be significantly improved by GPOP-1. Furthermore, GPOP-1 downregulated the concentrations of inflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-2 (IL-2), alleviated the pathological features of the cecum, and increased the contents of acetates, propionates, butyrates, and total short-chain fatty acids (SCFAs). Results indicated that GPOP-1 had beneficial effects on mice with AAD by promoting the recovery of the gut microbiota and mucosal barrier function, reversing metabolic disorders, downregulating the levels of inflammatory cytokines and improving the content of SCFAs.
Collapse
Affiliation(s)
- Mingxiao Cui
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | | | | | | | | | | |
Collapse
|
88
|
Chang J, Wang T, Wang P, Yin Q, Liu C, Zhu Q, Lu F, Gao T. Compound probiotics alleviating aflatoxin B 1 and zearalenone toxic effects on broiler production performance and gut microbiota. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110420. [PMID: 32151861 DOI: 10.1016/j.ecoenv.2020.110420] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
In order to alleviate toxic effects of aflatoxins B1 (AFB1) and zearalenone (ZEA) on broiler production performance and gut microbiota, three kinds of compound probiotics (CP) were selected. The optimal ratios of Bacillus subtilis, Lactobacillus casei and Candida utilis in broiler diets were 7, 5 and 6 log CFU/g for ZEA biodegradation (CP1); 6, 7 and 7 log CFU/g for AFB1 biodegradation (CP2); 7, 6 and 7 log CFU/g for ZEA + AFB1 biodegradation (CP3). A total of 350 1-day-old Ross broilers were randomly divided into 7 groups. Group A was the basal diet, group B-G contained ZEA, AFB1, ZEA + AFB1, ZEA + CP1, AFB1+CP2, ZEA + AFB1+CP3, respectively. The experiment showed that AFB1 or AFB1+ZEA significantly decreased broiler production performance, damaged liver and jejunum, increased mycotoxin residues in broiler body; however, three kinds of compound probiotics additions could alleviate mycotoxin negative effects on the above parameters (p < 0.05). The gut microbiota analysis indicated that AFB1+ZEA increased jejunal microbial richness, but which were decreased to almost the same level as the control group by CP3 addition. CP3 addition significantly increased jejunal Firmicutes and Lactobacillus aviarius abundances. The correlative analysis showed that gut Lactobacillus aviarius abundance was positively correlated with average daily gain (ADG) of broilers (p < 0.05), while AFB1+ZEA addition decreased its relative abundance, indicating that CP3 addition increased broiler growth by increasing Lactobacillus aviarius abundance. AFB1 and ZEA residues in broiler body were negatively correlated with the gut beneficial bacterial abundances (p < 0.01), but positively correlated with the potentially harmful bacterial abundances (p < 0.05), which inferred that CP3 addition could decrease mycotoxin residues through positively regulating gut relative bacterial abundances. In conclusion, compound probiotics could keep gut microbiota stable, degrade mycotoxins, alleviate histological lesions, increase production performance and reduce mycotoxin toxicity for broilers.
Collapse
Affiliation(s)
- Juan Chang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Tao Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Ping Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Qingqiang Yin
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Chaoqi Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Qun Zhu
- Henan Delin Biological Product Co., Ltd., Xinxiang, 453000, China.
| | - Fushan Lu
- Henan Puai Feed Co., Ltd., Zhoukou, 466000, China.
| | - Tianzeng Gao
- Henan Guangan Biotechnology Co., Ltd., Zhengzhou, 450001, China.
| |
Collapse
|
89
|
Enzyme-assisted extraction of a cup plant (Silphium perfoliatum L.) Polysaccharide and its antioxidant and hypoglycemic activities. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
90
|
Li X, Wu Y, Xu Z, Chen J, Li Y, Xing H, Zhang X, Yuan J. Effects of Hetiao Jianpi Decoction on Intestinal Injury and Repair in Rats with Antibiotic-Associated Diarrhea. Med Sci Monit 2020; 26:e921745. [PMID: 32062668 PMCID: PMC7043351 DOI: 10.12659/msm.921745] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Through observing the changes of indexes of the intestinal mucosal barrier and intestinal flora in rats, we explored the mechanism by which Hetiao Jianpi Decoction (HTJPD) treats antibiotic-associated diarrhea (AAD) by repairing intestinal mucosal injury and regulating intestinal flora. MATERIAL AND METHODS Samples of colon tissues were collected for HE staining. Enzyme-linked immunosorbent assay (ELISA) was used to assess levels of diamine oxidase (DAO) and D-lactic acid in rat plasma and the expression of secretory immunoglobulin A (SIgA) in colon tissue. We assessed the abundance of intestinal contents by high-throughput sequencing of the 16S rRNA gene. RESULTS Compared with the Model group, the muscle layer and intestinal mucosal edema were improved, and the continuity was restored; the levels of DAO and D-lactic acid in plasma decreased, and the SIgA level were increased in the HTJPD group. The structure of the intestinal flora changed, as indicated by increased levels of certain beneficial bacteria (Verrucomicrobia, Actinobacteria, CF231, and Akkermansia), decreased levels of pathogenic bacteria (Spirochaetes and Treponema), and increased species diversity. CONCLUSIONS By improving the permeability and immune function of the intestinal mucosa, Hetiao Jianpi decoction prevented the occurrence of AAD by repairing the intestinal mucosal damage and regulating the structure and diversity of intestinal flora.
Collapse
Affiliation(s)
- Xiaoya Li
- College of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China (mainland)
| | - Yueying Wu
- College of First Clinical Medical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China (mainland)
| | - Zhenyuan Xu
- College of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China (mainland)
| | - Jing Chen
- College of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China (mainland).,Provincial Innovation Team of Yunnan University of Chinese Medicine for Traditional Chinese Medicine to Regulate Human Microecology, Kunming, Yunnan, China (mainland)
| | - Yuqing Li
- College of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China (mainland).,Provincial Innovation Team of Yunnan University of Chinese Medicine for Traditional Chinese Medicine to Regulate Human Microecology, Kunming, Yunnan, China (mainland)
| | - Haijing Xing
- College of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China (mainland).,Provincial Innovation Team of Yunnan University of Chinese Medicine for Traditional Chinese Medicine to Regulate Human Microecology, Kunming, Yunnan, China (mainland)
| | - Xiaomei Zhang
- College of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China (mainland).,Provincial Innovation Team of Yunnan University of Chinese Medicine for Traditional Chinese Medicine to Regulate Human Microecology, Kunming, Yunnan, China (mainland)
| | - Jiali Yuan
- Provincial Innovation Team of Yunnan University of Chinese Medicine for Traditional Chinese Medicine to Regulate Human Microecology, Kunming, Yunnan, China (mainland)
| |
Collapse
|
91
|
Sun J, Gou Y, Liu J, Chen H, Kan J, Qian C, Zhang N, Niu F, Jin C. Anti-inflammatory activity of a water-soluble polysaccharide from the roots of purple sweet potato. RSC Adv 2020; 10:39673-39686. [PMID: 35515390 PMCID: PMC9057464 DOI: 10.1039/d0ra07551e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
In this study, a water-soluble polysaccharide was isolated from purple sweet potato roots. The in vitro and in vivo anti-inflammatory effects of the polysaccharide were evaluated by lipopolysaccharide (LPS)-induced inflammatory RAW264.7 macrophages and mice, respectively. The in vitro anti-inflammatory assay showed that the polysaccharide could effectively inhibit the overproduction of nitric oxide and pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) while increasing the secretion of anti-inflammatory cytokine (IL-10). The in vivo anti-inflammatory assay revealed that mice administered with the polysaccharide showed higher IL-10, SOD, and T-AOC levels but lower TNF-α, IL-1β, IL-6 and MDA levels as compared to the LPS-treated model. Meanwhile, mice administered with the polysaccharide showed increased abundance of Lachnospiraceae, Lactobacillales and Parabacteroides but decreased amounts of Psychrobacter and Staphylococcus as compared to the LPS model group. Moreover, mice administered with polysaccharide showed enhanced production of short chain fatty acids by gut microbiota in the lipopolysaccharide-induced inflammatory mice. Our results suggested that the water-soluble polysaccharide from purple sweet potato roots could be utilized as a novel anti-inflammatory agent. A water-soluble polysaccharide from purple sweet potato roots played anti-inflammatory roles by regulating inflammatory cytokines, gut microbiota and antioxidant defense system.![]()
Collapse
Affiliation(s)
- Jian Sun
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area
| | - Yarun Gou
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Jun Liu
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Hong Chen
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Juan Kan
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Chunlu Qian
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Nianfeng Zhang
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Fuxiang Niu
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area
- Xuzhou 221131
- China
| | - Changhai Jin
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
- College of Food Science and Engineering
| |
Collapse
|
92
|
Koh YC, Ho CT, Pan MH. Recent advances in cancer chemoprevention with phytochemicals. J Food Drug Anal 2020; 28:14-37. [DOI: 10.1016/j.jfda.2019.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023] Open
|
93
|
The Structure Features and Improving Effects of Polysaccharide from Astragalus membranaceus on Antibiotic-Associated Diarrhea. Antibiotics (Basel) 2019; 9:antibiotics9010008. [PMID: 31877915 PMCID: PMC7168208 DOI: 10.3390/antibiotics9010008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022] Open
Abstract
Astragalus membranaceus (Astragalus) is often used as a medical and food resource in China. The present study was designed to investigate the features and effects of polysaccharide from Astragalus membranaceus (WAP) on rats with antibiotic-associated diarrhea (AAD). WAP was mainly composed of glucose, galactose, arabinose and glacturonic acid, with glucan, arabinogalactan and RG-I regions, and it showed loosely irregular sheet conformation. WAP decreased the inflammatory cell infiltration of colon in AAD rats, increased propionate and butyrate production, improved metabolic levels, adjusted the diversity and composition of gut microbiota, increased the relative abundance of Pseudomonas, and decreased the relative abundance of Allobaculum and Coprococcus. In conclusion, WAP contained different types of polysaccharide regions and sheet three-dimensional conformation, while it ameliorated AAD by recovering the colon structure, adjusting the gut microbiota, and improving the SCFAs levels. The results can provide some data basis for natural products to alleviate the side effects related to antibiotics.
Collapse
|
94
|
Liu Y, Liu W, Wang Y, Ma Y, Huang L, Zou C, Li D, Cao MJ, Liu GM. Inhibitory Effect of Depolymerized Sulfated Galactans from Marine Red Algae on the Growth and Adhesion of Diarrheagenic Escherichia coli. Mar Drugs 2019; 17:md17120694. [PMID: 31835446 PMCID: PMC6950454 DOI: 10.3390/md17120694] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/03/2019] [Accepted: 12/07/2019] [Indexed: 12/17/2022] Open
Abstract
Active polysaccharides as safe and natural polymers against bacterial diarrhea have been reconsidered as an alternative to antibiotics. This work investigated the inhibiting effect of depolymerized sulfated galactans from Eucheuma serra and Gracilaria verrucosa on the growth and adhesion of diarrheagenic enterotoxigenic Escherichia coli (ETEC) K88. Results showed that the sulfated polysaccharides with molecular weight distribution ≤20.0 kDa exhibited antibacterial activity against ETEC K88. A structure-activity study revealed that the anti-ETEC K88 activity of sulfated polysaccharides is strictly determined by their molecular weight distribution, sulfate group content, and monosaccharide composition. In addition, the promoted nucleic acid release and the fluorescence quenching of membrane proteins were observed after the treatment with selected polysaccharides. Scanning electron microscopy further confirmed that the depolymerized sulfated galactans can effectively inhibit ETEC K88 adhesion. In conclusion, depolymerized sulfated galactans exhibited an inhibitory effect on the growth and adhesion of ETEC K88.
Collapse
Affiliation(s)
- Yixiang Liu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China (M.-J.C.); (G.-M.L.)
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
- Correspondence: ; Tel.: +86-0592-6181915; Fax: +86-0592-6180470
| | - Wenqiang Liu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China (M.-J.C.); (G.-M.L.)
| | - Yanbo Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China;
| | - Yu Ma
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China (M.-J.C.); (G.-M.L.)
| | - Ling Huang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China (M.-J.C.); (G.-M.L.)
| | - Chao Zou
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China (M.-J.C.); (G.-M.L.)
| | - Donghui Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China (M.-J.C.); (G.-M.L.)
| | - Min-Jie Cao
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China (M.-J.C.); (G.-M.L.)
| | - Guang-Ming Liu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China (M.-J.C.); (G.-M.L.)
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| |
Collapse
|
95
|
Yu M, Li Z, Chen W, Wang G, Cui Y, Ma X. Dietary Supplementation With Citrus Extract Altered the Intestinal Microbiota and Microbial Metabolite Profiles and Enhanced the Mucosal Immune Homeostasis in Yellow-Feathered Broilers. Front Microbiol 2019; 10:2662. [PMID: 31849855 PMCID: PMC6887900 DOI: 10.3389/fmicb.2019.02662] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/01/2019] [Indexed: 01/10/2023] Open
Abstract
The present study aimed to investigate the effects of citrus extract (CE) on intestinal microbiota, microbial metabolite profiles, and the mucosal immune status in broilers. A total of 540 one-day-old yellow-feathered broilers were randomly allotted into three groups and fed a basal diet (control group), or a basal diet containing 10 mg/kg of zinc bacitracin (antibiotic group), or 10 mg/kg of CE (CE group). Each treatment consisted of six replicates, with 30 broilers per replicate. After 63-day feeding, two broilers per replicate were randomly selected and slaughtered, and their ileal and cecal digesta and ileal tissue were collected for microbial composition, microbial metabolites, and gene expression analysis. The results showed that CE significantly increased the abundance of Barnesiella and Blautia than did the antibiotic group (adjusted P < 0.05), whereas it decreased the abundance of Alistipes and Bacteroides (adjusted P < 0.05). Meanwhile, the CE group also increased the numbers of Bifidobacterium and Lactobacillus than did the control and antibiotic groups (P < 0.05), whereas it decreased the number of Escherichia coli (P < 0.05). For microbial metabolites, dietary supplementation with CE increased the concentrations of lactate, total short-chain fatty acids, acetate, and butyrate in the cecum than did the control and antibiotic groups (P < 0.05), whereas it decreased the concentrations of amino acid fermentation products (ammonia, amines, p-cresol, and indole) (P < 0.05). Additionally, supplementation with CE up-regulated (P < 0.05) the mRNA expression of intestinal barrier genes (ZO-1 and Claudin) in the ileum than did both the control and antibiotic groups. However, antibiotic treatment induced gut microbiota dysbiosis, altered the microbial metabolism, and disturbed the innate immune homeostasis. In summary, these results provide evidence that dietary supplementation with CE can improve the intestinal barrier function by changing microbial composition and metabolites, likely toward a host-friendly gut environment. This suggests that CE may possibly act as an efficient antibiotic alternative for yellow-feathered broiler production.
Collapse
Affiliation(s)
- Miao Yu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China.,Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China.,Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Zhenming Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China.,Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China.,Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Weidong Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China.,Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China.,Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Gang Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China.,Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China.,Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Yiyan Cui
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China.,Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China.,Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Xianyong Ma
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China.,Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China.,Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| |
Collapse
|
96
|
Ma H, Xiong H, Zhu X, Ji C, Xue J, Li R, Ge B, Cui H. Polysaccharide from Spirulina platensis ameliorates diphenoxylate-induced constipation symptoms in mice. Int J Biol Macromol 2019; 133:1090-1101. [PMID: 31054300 DOI: 10.1016/j.ijbiomac.2019.04.209] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/22/2019] [Accepted: 04/30/2019] [Indexed: 12/18/2022]
Abstract
The aim of this study is to probe new functions of a polysaccharide from Spirulina platensis (PSP) on constipation and intestinal microbiota in mice. Diphenoxylate-induced constipation in mice was treated with different doses of PSP, followed by examining the defecation patterns, levels of acetyl cholinesterase (AchE), nitric oxide (NO), and tissue section histopathology. The composition of intestinal microbiota was determined by genome sequencing analysis of the 16S rDNA. This study found that the average molecular weight of PSP was 29, 600 Da, and mainly monosaccharides of PSP were rhamnose (24.7%), glucose (16.15%) and galactose (13.32%). The beneficial effects of PSP treatment include defecation improvement, increase of AchE activity, reduction of NO concentration, renovation of the damaged intestinal villus and affection on the expression of some related genes in the constipated mice. In addition, PSP had significant effects on the gut microbiota, showing the enhancement in abundance of beneficial bacteria including Akkermansia, Lactobacillus, Butyricimonas, Candidatus Arthromitus and Prevotella, and the reduction in abundance of harmful bacteria such as Clostridium and Dorea. The present s uncovered a new function of PSP, indicating that PSP could be used in constipation therapies.
Collapse
Affiliation(s)
- Haotian Ma
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, China
| | - Huaye Xiong
- College of Resources and Environment, National Experimental Teaching Demonstration Center for Agricultural Resources and Environment, Shanxi Agricultural University, Taigu 030801, China
| | - Xiaoli Zhu
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, China
| | - Chunli Ji
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, China
| | - Jinai Xue
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, China
| | - Runzhi Li
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, China.
| | - Baosheng Ge
- Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China.
| | - Hongli Cui
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, China; Functional Food Research Institute, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
97
|
Yang CM, Han QJ, Wang KL, Xu YL, Lan JH, Cao GT. Astragalus and Ginseng Polysaccharides Improve Developmental, Intestinal Morphological, and Immune Functional Characters of Weaned Piglets. Front Physiol 2019; 10:418. [PMID: 31031640 PMCID: PMC6473041 DOI: 10.3389/fphys.2019.00418] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/27/2019] [Indexed: 12/26/2022] Open
Abstract
Antibiotic resistance is a major issue in animal industries and antibiotic-free alternatives are needed to treat infectious diseases and improve performance of pigs. Plant extracts have been suggested as a potential solution. The present study was conducted to investigate the effects of Astragalus polysaccharides (Aps) and ginseng polysaccharide (Gps) on growth performance, intestinal morphology, immune function, volatile fatty acids (VFAs), and microfloral community in weaned piglets. A total of 180 weaned piglets were randomly divided into three treatment groups during a 28-days feeding experiment, including a basal diet (Con), basal diet supplemented with 800 mg/kg Aps (Aps), and basal diet supplemented with 800 mg/kg Gps (Gps). Results showed that both Aps and Gps increased body weight, average daily gain and feed conversion rate, and reduced the rate of diarrhea. Gps also decreased aspartate aminotransferase compared to the Con piglets after 14 days. No significant effects on alanine aminotransferase were observed. Both Aps and Gps piglets exhibited higher serum immunoglobulin M levels after 14 and 28 days, and also decreased jejunal crypt depth, increased jejunal villus length and villus height/crypt depth ratio, and increased expression of toll-like receptor 4, myeloid differentiation primary response 88, nuclear factor-kappa B proteins in the jejunum. Aps and Gps piglets also had higher concentrations of acetic acid, isobutyric acid, and butyrate in their colon. Data of high-throughput sequencing revealed that Aps and Gps affected bacterial quantity and diversity in the colon. Species richness and evenness were higher in both Aps and Gps piglets than the control piglets. Aps and Gps piglets also had a higher relative abundance of Lachnospiraceae and Anaerostipes, and the Aps piglets had a higher relative abundance of Lactobacillus gasseri and L. amylovorus. Therefore, dietary supplementation with Aps and Gps could be beneficial for optimizing the performance of industry pigs and reducing dependence on antibiotics. Furthermore, Plant polysaccharides play a great role in promoting the sustainable development of animal husbandry.
Collapse
Affiliation(s)
- C. M. Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, The Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - Q. J. Han
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, The Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - K. L. Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, The Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - Y. L. Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, The Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - J. H. Lan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, The Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - G. T. Cao
- College of Standardization, China Jiliang University, Hangzhou, China
| |
Collapse
|