51
|
Vasile C, Pamfil D, Stoleru E, Baican M. New Developments in Medical Applications of Hybrid Hydrogels Containing Natural Polymers. Molecules 2020; 25:E1539. [PMID: 32230990 PMCID: PMC7180755 DOI: 10.3390/molecules25071539] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 01/08/2023] Open
Abstract
New trends in biomedical applications of the hybrid polymeric hydrogels, obtained by combining natural polymers with synthetic ones, have been reviewed. Homopolysaccharides, heteropolysaccharides, as well as polypeptides, proteins and nucleic acids, are presented from the point of view of their ability to form hydrogels with synthetic polymers, the preparation procedures for polymeric organic hybrid hydrogels, general physico-chemical properties and main biomedical applications (i.e., tissue engineering, wound dressing, drug delivery, etc.).
Collapse
Affiliation(s)
- Cornelia Vasile
- Physical Chemistry of Polymers Department, “P. Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO, Iaşi 700484, Romania; (D.P.); (E.S.)
| | - Daniela Pamfil
- Physical Chemistry of Polymers Department, “P. Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO, Iaşi 700484, Romania; (D.P.); (E.S.)
| | - Elena Stoleru
- Physical Chemistry of Polymers Department, “P. Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO, Iaşi 700484, Romania; (D.P.); (E.S.)
| | - Mihaela Baican
- Pharmaceutical Physics Department, “Grigore T. Popa” Medicine and Pharmacy University, 16, University Str., Iaşi 700115, Romania
| |
Collapse
|
52
|
Wen N, Jiang B, Wang X, Shang Z, Jiang D, Zhang L, Sun C, Wu Z, Yan H, Liu C, Guo Z. Overview of Polyvinyl Alcohol Nanocomposite Hydrogels for Electro‐Skin, Actuator, Supercapacitor and Fuel Cell. CHEM REC 2020; 20:773-792. [DOI: 10.1002/tcr.202000001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Nan Wen
- College of Chemistry, Chemical Engineering and Resource UtilizationNortheast Forestry University Harbin 150040, PR China
| | - Bojun Jiang
- College of Chemistry, Chemical Engineering and Resource UtilizationNortheast Forestry University Harbin 150040, PR China
| | - Xiaojing Wang
- School of Materials Science and EngineeringJiangsu University of Science and Technology Zhenjiang 212003 China
| | - Zhifu Shang
- College of Chemistry, Chemical Engineering and Resource UtilizationNortheast Forestry University Harbin 150040, PR China
| | - Dawei Jiang
- College of Chemistry, Chemical Engineering and Resource UtilizationNortheast Forestry University Harbin 150040, PR China
- Post-doctoral Mobile Research Station of Forestry EngineeringNortheast Forestry University Harbin 150040 China
| | - Lu Zhang
- College of Chemistry, Chemical Engineering and Resource UtilizationNortheast Forestry University Harbin 150040, PR China
| | - Caiying Sun
- College of Chemistry, Chemical Engineering and Resource UtilizationNortheast Forestry University Harbin 150040, PR China
| | - Zijian Wu
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, HarbinUniversity of Science and Technology Harbin 150040 China
| | - Hui Yan
- School of Mechatronics EngineeringHarbin Institute of Technology Harbin 150001 China
| | - Chuntai Liu
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing TechnologyZhengzhou University, Zhengzhou Henan 450002 China
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical EngineeringUniversity of Tennessee Knoxville TN 37996 USA
| |
Collapse
|
53
|
Rico-García D, Ruiz-Rubio L, Pérez-Alvarez L, Hernández-Olmos SL, Guerrero-Ramírez GL, Vilas-Vilela JL. Lignin-Based Hydrogels: Synthesis and Applications. Polymers (Basel) 2020; 12:E81. [PMID: 31947714 PMCID: PMC7023625 DOI: 10.3390/polym12010081] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
Polymers obtained from biomass are an interesting alternative to petro-based polymers due to their low cost of production, biocompatibility, and biodegradability. This is the case of lignin, which is the second most abundant biopolymer in plants. As a consequence, the exploitation of lignin for the production of new materials with improved properties is currently considered as one of the main challenging issues, especially for the paper industry. Regarding its chemical structure, lignin is a crosslinked polymer that contains many functional hydrophilic and active groups, such as hydroxyls, carbonyls and methoxyls, which provides a great potential to be employed in the synthesis of biodegradable hydrogels, materials that are recognized for their interesting applicability in biomedicine, soil and water treatment, and agriculture, among others. This work describes the main methods for the preparation of lignin-based hydrogels reported in the last years, based on the chemical and/or physical interaction with polymers widely used in hydrogels formulations. Furthermore, herein are also reviewed the current applications of lignin hydrogels as stimuli-responsive materials, flexible supercapacitors, and wearable electronics for biomedical and water remediation applications.
Collapse
Affiliation(s)
- Diana Rico-García
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, 44430 Guadalajara, Mexico; (D.R.-G.); (S.L.H.-O.); (G.L.G.-R.)
| | - Leire Ruiz-Rubio
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain; (L.P.-A.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Leyre Pérez-Alvarez
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain; (L.P.-A.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Saira L. Hernández-Olmos
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, 44430 Guadalajara, Mexico; (D.R.-G.); (S.L.H.-O.); (G.L.G.-R.)
| | - Guillermo L. Guerrero-Ramírez
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, 44430 Guadalajara, Mexico; (D.R.-G.); (S.L.H.-O.); (G.L.G.-R.)
| | - José Luis Vilas-Vilela
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain; (L.P.-A.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|