51
|
Pramanik A, Sahoo RN, Nanda A, Mohapatra R, Singh R, Mallick S. Ocular Permeation and Sustained Anti-inflammatory Activity of Dexamethasone from Kaolin Nanodispersion Hydrogel System. Curr Eye Res 2018. [DOI: 10.1080/02713683.2018.1446534] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Arunima Pramanik
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha O Anusandhan University, Bhubaneswar, OR, India
| | - Rudra Narayan Sahoo
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha O Anusandhan University, Bhubaneswar, OR, India
| | - Ashirbad Nanda
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha O Anusandhan University, Bhubaneswar, OR, India
| | - Rajaram Mohapatra
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha O Anusandhan University, Bhubaneswar, OR, India
| | - Ranveer Singh
- Division of Experimental Condensed Matter Physics, Institute of Physics, Bhubaneswar, India
| | - Subrata Mallick
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha O Anusandhan University, Bhubaneswar, OR, India
| |
Collapse
|
52
|
Silva ACD, Santos PDDF, Silva JTDP, Leimann FV, Bracht L, Gonçalves OH. Impact of curcumin nanoformulation on its antimicrobial activity. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.12.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
53
|
Dabbagh A, Abu Kasim NH, Yeong CH, Wong TW, Abdul Rahman N. Critical Parameters for Particle-Based Pulmonary Delivery of Chemotherapeutics. J Aerosol Med Pulm Drug Deliv 2017; 31:139-154. [PMID: 29022837 DOI: 10.1089/jamp.2017.1382] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Targeted delivery of chemotherapeutics through the respiratory system is a potential approach to improve drug accumulation in the lung tumor, while decreasing their negative side effects. However, elimination by the pulmonary clearance mechanisms, including the mucociliary transport system, and ingestion by the alveolar macrophages, rapid absorption into the blood, enzymatic degradation, and low control over the deposition rate and location remain the main complications for achieving an effective pulmonary drug delivery. Therefore, particle-based delivery systems have emerged to minimize pulmonary clearance mechanisms, enhance drug therapeutic efficacy, and control the release behavior. A successful implementation of a particle-based delivery system requires understanding the influential parameters in terms of drug carrier, inhalation technology, and health status of the patient's respiratory system. This review aims at investigating the parameters that significantly drive the clinical outcomes of various particle-based pulmonary delivery systems. This should aid clinicians in appropriate selection of a delivery system according to their clinical setting. It will also guide researchers in addressing the remaining challenges that need to be overcome to enhance the efficiency of current pulmonary delivery systems for aerosols.
Collapse
Affiliation(s)
- Ali Dabbagh
- 1 Wellness Research Cluster, Institute of Research Management and Services, University of Malaya , Kuala Lumpur, Malaysia
| | - Noor Hayaty Abu Kasim
- 1 Wellness Research Cluster, Institute of Research Management and Services, University of Malaya , Kuala Lumpur, Malaysia
| | - Chai Hong Yeong
- 2 Department of Biomedical Imaging, Faculty of Medicine, University of Malaya , Kuala Lumpur, Malaysia
| | - Tin Wui Wong
- 3 Department of Pharmaceutics and Pharmaceutical Biotechnology, Faculty of Pharmacy, Universiti Teknologi MARA , Puncak Alam, Malaysia
| | - Noorsaadah Abdul Rahman
- 4 Department of Chemistry, Faculty of Science, University of Malaya , Kuala Lumpur, Malaysia .,5 Drug Design and Development Research Group (DDDRG), University of Malaya , Kuala Lumpur, Malaysia
| |
Collapse
|
54
|
Li T, Chen L, Deng Y, Liu X, Zhao X, Cui Y, Shi J, Feng R, Song Y. Cholesterol derivative-based liposomes for gemcitabine delivery: preparation, in vitro, and in vivo characterization. Drug Dev Ind Pharm 2017; 43:2016-2025. [DOI: 10.1080/03639045.2017.1361965] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Tang Li
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Li Chen
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yihui Deng
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xinrong Liu
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaoyun Zhao
- Department of Microbiology and Cell Biology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Yiwen Cui
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Jia Shi
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Rui Feng
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanzhi Song
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
55
|
Di Francesco M, Celia C, Primavera R, D’Avanzo N, Locatelli M, Fresta M, Cilurzo F, Ventura CA, Paolino D, Di Marzio L. Physicochemical characterization of pH-responsive and fusogenic self-assembled non-phospholipid vesicles for a potential multiple targeting therapy. Int J Pharm 2017; 528:18-32. [DOI: 10.1016/j.ijpharm.2017.05.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 12/15/2022]
|
56
|
Yalcin TE, Ilbasmis-Tamer S, Ibisoglu B, Özdemir A, Ark M, Takka S. Gemcitabine hydrochloride-loaded liposomes and nanoparticles: comparison of encapsulation efficiency, drug release, particle size, and cytotoxicity. Pharm Dev Technol 2017; 23:76-86. [DOI: 10.1080/10837450.2017.1357733] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Tahir Emre Yalcin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Sibel Ilbasmis-Tamer
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Burçin Ibisoglu
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Aysun Özdemir
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Mustafa Ark
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Sevgi Takka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
57
|
Abd-El-Azim H, Ramadan A, Nafee N, Khalafallah N. Entrapment efficiency of pyridoxine hydrochloride in unilamellar liposomes: experimental versus model-generated data. J Liposome Res 2017; 28:112-116. [DOI: 10.1080/08982104.2016.1275679] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Heba Abd-El-Azim
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt and
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Alyaa Ramadan
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Noha Nafee
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Nawal Khalafallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
58
|
Sylvester B, Porfire A, Muntean DM, Vlase L, Lupuţ L, Licarete E, Sesarman A, Alupei MC, Banciu M, Achim M, Tomuţă I. Optimization of prednisolone-loaded long-circulating liposomes via application of Quality by Design (QbD) approach. J Liposome Res 2016; 28:49-61. [DOI: 10.1080/08982104.2016.1254242] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bianca Sylvester
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, University of Medicine and Pharmacy “Iuliu Haţieganu”, Cluj-Napoca, Romania,
| | - Alina Porfire
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, University of Medicine and Pharmacy “Iuliu Haţieganu”, Cluj-Napoca, Romania,
| | - Dana-Maria Muntean
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, University of Medicine and Pharmacy “Iuliu Haţieganu”, Cluj-Napoca, Romania,
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, University of Medicine and Pharmacy “Iuliu Haţieganu”, Cluj-Napoca, Romania,
| | - Lavinia Lupuţ
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania, and
- Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Emilia Licarete
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania, and
- Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Alina Sesarman
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania, and
- Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Marius Costel Alupei
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania, and
- Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania, and
- Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Marcela Achim
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, University of Medicine and Pharmacy “Iuliu Haţieganu”, Cluj-Napoca, Romania,
| | - Ioan Tomuţă
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, University of Medicine and Pharmacy “Iuliu Haţieganu”, Cluj-Napoca, Romania,
| |
Collapse
|
59
|
Improving drug retention in liposomes by aging with the aid of glucose. Int J Pharm 2016; 505:194-203. [DOI: 10.1016/j.ijpharm.2016.03.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/20/2016] [Accepted: 03/23/2016] [Indexed: 01/24/2023]
|
60
|
Hwang JY, Li Z, Loh XJ. Small molecule therapeutic-loaded liposomes as therapeutic carriers: from development to clinical applications. RSC Adv 2016. [DOI: 10.1039/c6ra09854a] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In this review, various methods and mechanisms for encapsulation of small therapeutic molecules in liposomes for targeted delivery and triggered release, as well as their potential in the clinical uses, are discussed.
Collapse
Affiliation(s)
- Jae Yoon Hwang
- Department of Materials Science and Engineering
- National University of Singapore
- Singapore 117576
- Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE)
- Singapore 117602
- Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE)
- Singapore 117602
- Singapore
- Department of Materials Science and Engineering
- National University of Singapore
| |
Collapse
|
61
|
Menina S, Labouta HI, Geyer R, Krause T, Gordon S, Dersch P, Lehr CM. Invasin-functionalized liposome nanocarriers improve the intracellular delivery of anti-infective drugs. RSC Adv 2016. [DOI: 10.1039/c6ra02988d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Liposomes containing gentamicin and surface-functionalized with InvA497 showed a reduced infection load of both cytosolic and vacuolar intracellular bacteria.
Collapse
Affiliation(s)
- Sara Menina
- Department of Drug Delivery
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Center for Infection Research (HZI)
- Saarbruecken
- Germany
| | - Hagar Ibrahim Labouta
- Department of Drug Delivery
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Center for Infection Research (HZI)
- Saarbruecken
- Germany
| | - Rebecca Geyer
- Department of Molecular Infection Biology
- Helmholtz Center for Infection Research (HZI)
- Braunschweig
- Germany
| | - Tanja Krause
- Department of Molecular Infection Biology
- Helmholtz Center for Infection Research (HZI)
- Braunschweig
- Germany
| | - Sarah Gordon
- Department of Drug Delivery
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Center for Infection Research (HZI)
- Saarbruecken
- Germany
| | - Petra Dersch
- Department of Molecular Infection Biology
- Helmholtz Center for Infection Research (HZI)
- Braunschweig
- Germany
| | - Claus-Michael Lehr
- Department of Drug Delivery
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Center for Infection Research (HZI)
- Saarbruecken
- Germany
| |
Collapse
|
62
|
Fonseca-Santos B, Gremião MPD, Chorilli M. Nanotechnology-based drug delivery systems for the treatment of Alzheimer's disease. Int J Nanomedicine 2015; 10:4981-5003. [PMID: 26345528 PMCID: PMC4531021 DOI: 10.2147/ijn.s87148] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease is a neurological disorder that results in cognitive and behavioral impairment. Conventional treatment strategies, such as acetylcholinesterase inhibitor drugs, often fail due to their poor solubility, lower bioavailability, and ineffective ability to cross the blood-brain barrier. Nanotechnological treatment methods, which involve the design, characterization, production, and application of nanoscale drug delivery systems, have been employed to optimize therapeutics. These nanotechnologies include polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, microemulsion, nanoemulsion, and liquid crystals. Each of these are promising tools for the delivery of therapeutic devices to the brain via various routes of administration, particularly the intranasal route. The objective of this study is to present a systematic review of nanotechnology-based drug delivery systems for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Bruno Fonseca-Santos
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Maria Palmira Daflon Gremião
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
63
|
Abd El Azim H, Nafee N, Ramadan A, Khalafallah N. Liposomal buccal mucoadhesive film for improved delivery and permeation of water-soluble vitamins. Int J Pharm 2015; 488:78-85. [DOI: 10.1016/j.ijpharm.2015.04.052] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/11/2015] [Accepted: 04/16/2015] [Indexed: 01/21/2023]
|
64
|
Jose A, Mandapalli PK, Venuganti VVK. Liposomal hydrogel formulation for transdermal delivery of pirfenidone. J Liposome Res 2015; 26:139-47. [PMID: 26114208 DOI: 10.3109/08982104.2015.1060611] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Pirfenidone (PFD) is an anti-fibrotic and anti-inflammatory agent indicated for the treatment of idiopathic pulmonary fibrosis (IPF). The current oral administration of PFD has several limitations including first pass metabolism and gastrointestinal irritation. OBJECTIVE The aim of this study is to investigate the feasibility of transdermal delivery of PFD using liposomal carrier system. MATERIALS AND METHODS PFD-loaded liposomes were prepared using soy phosphatidylcholine (SPC) and sodium cholate (SC). Encapsulation efficiency (EE) of PFD in liposomes was optimized using different preparation techniques including thin film hydration (TFH) method, direct injection method (DIM) and drug encapsulation using freeze-thaw cycles. In vitro drug release study was performed using dialysis membrane method. The skin permeation studies were performed using excised porcine ear skin model in a Franz diffusion cell apparatus. RESULTS AND DISCUSSION The average particle size and zeta-potential of liposomes were 191 ± 4.1 nm and -40.4 ± 4.5 mV, respectively. The liposomes prepared by TFH followed by 10 freeze-thaw cycles showed the greatest EE of 22.7 ± 0.63%. The optimized liposome formulation was incorporated in hydroxypropyl methyl cellulose (HPMC) hydrogel containing different permeation enhancers including oleic acid (OA), isopropyl myristate (IPM) and propylene glycol (PG). PFD-loaded liposomes incorporated in hydrogel containing OA and IPM showed the greatest flux of 10.9 ± 1.04 μg/cm(2)/h across skin, which was 5-fold greater compared with free PFD. The cumulative amount of PFD permeated was 344 ± 28.8 μg/cm(2) with a lag time of 2.3 ± 1.3 h. CONCLUSION The hydrogel formulation containing PFD-loaded liposomes can be developed as a potential transdermal delivery system.
Collapse
Affiliation(s)
- Anup Jose
- a Department of Pharmacy , Birla Institute of Technology and Science (BITS) Pilani , Hyderabad Campus , Hyderabad , Telangana , India
| | - Praveen Kumar Mandapalli
- a Department of Pharmacy , Birla Institute of Technology and Science (BITS) Pilani , Hyderabad Campus , Hyderabad , Telangana , India
| | - Venkata Vamsi Krishna Venuganti
- a Department of Pharmacy , Birla Institute of Technology and Science (BITS) Pilani , Hyderabad Campus , Hyderabad , Telangana , India
| |
Collapse
|
65
|
Ahmed OAA, Kurakula M, Banjar ZM, Afouna MI, Zidan AS. Quality by design coupled with near infrared in formulation of transdermal glimepiride liposomal films. J Pharm Sci 2015; 104:2062-2075. [PMID: 25873019 DOI: 10.1002/jps.24448] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/15/2015] [Accepted: 03/24/2015] [Indexed: 11/05/2022]
Abstract
This study is aimed at developing glimepiride (GMD) liposomal films using quality by design (QbD) and process analytical technology (PAT) principles. Risk analysis and Plackett-Burman design were utilized to evaluate formulation variables in two paths. Internal path included liposomal parameters (phosphatidylserine, cholesterol and drug concentrations, and pH of hydration medium). External path constituted films parameters, namely, polymer, plasticizer, and permeation enhancer percentages. As a PAT tool, near infrared (NIR)-based chemometric analysis was used in quantifying GMD contents. Liposomal formulations showed maximum GMD entrapment capacity of 41.9% with vesicular size of 0.51 μm at phospholipid to cholesterol to drug weight ratio of 2:1:0.8. Its transdermal films showed elongation ratio of 75%, folding endurance of 700-fold, 16.6% and 26.8% drug release after 1 and 12 h, respectively. Moreover, 3D response spaces for GMD entrapment and release characteristics were established. Regarding NIR analysis, partial-least-square regression model was accurate in quantifying drug content as indicated by the low root-mean-squared error of calibrations and prediction of 0.031 and 0.032, and bias values of 0.0015 and 0.0021, respectively. In conclusion, this study highlights the level of understanding that can be accomplished through a well-designed research based on QbD and PAT paradigms.
Collapse
Affiliation(s)
- Osama Abdelhakim Aly Ahmed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Mallesh Kurakula
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zainy Mohamed Banjar
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohsen Ibrahim Afouna
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ahmed Samir Zidan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
66
|
Development of a protective dermal drug delivery system for therapeutic DNAzymes. Int J Pharm 2015; 479:150-8. [DOI: 10.1016/j.ijpharm.2014.12.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/16/2014] [Accepted: 12/19/2014] [Indexed: 11/18/2022]
|
67
|
Monteiro N, Martins A, Reis RL, Neves NM. Liposomes in tissue engineering and regenerative medicine. J R Soc Interface 2014; 11:20140459. [PMID: 25401172 PMCID: PMC4223894 DOI: 10.1098/rsif.2014.0459] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 10/02/2014] [Indexed: 01/13/2023] Open
Abstract
Liposomes are vesicular structures made of lipids that are formed in aqueous solutions. Structurally, they resemble the lipid membrane of living cells. Therefore, they have been widely investigated, since the 1960s, as models to study the cell membrane, and as carriers for protection and/or delivery of bioactive agents. They have been used in different areas of research including vaccines, imaging, applications in cosmetics and tissue engineering. Tissue engineering is defined as a strategy for promoting the regeneration of tissues for the human body. This strategy may involve the coordinated application of defined cell types with structured biomaterial scaffolds to produce living structures. To create a new tissue, based on this strategy, a controlled stimulation of cultured cells is needed, through a systematic combination of bioactive agents and mechanical signals. In this review, we highlight the potential role of liposomes as a platform for the sustained and local delivery of bioactive agents for tissue engineering and regenerative medicine approaches.
Collapse
Affiliation(s)
- Nelson Monteiro
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra S. Cláudio do Barco, 4806-909, Caldas das Taipas, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Albino Martins
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra S. Cláudio do Barco, 4806-909, Caldas das Taipas, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra S. Cláudio do Barco, 4806-909, Caldas das Taipas, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno M. Neves
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra S. Cláudio do Barco, 4806-909, Caldas das Taipas, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
68
|
Sedláček V, Ptáčková N, Rejmontová P, Kučera I. The flavoprotein FerB ofParacoccus denitrificansbinds to membranes, reduces ubiquinone and superoxide, and acts as anin vivoantioxidant. FEBS J 2014; 282:283-96. [DOI: 10.1111/febs.13126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 01/28/2023]
Affiliation(s)
- Vojtĕch Sedláček
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
| | - Nikola Ptáčková
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
| | - Petra Rejmontová
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
| | - Igor Kučera
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
| |
Collapse
|
69
|
Liposomes as carriers of hydrophilic small molecule drugs: Strategies to enhance encapsulation and delivery. Colloids Surf B Biointerfaces 2014; 123:345-63. [DOI: 10.1016/j.colsurfb.2014.09.029] [Citation(s) in RCA: 292] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/30/2014] [Accepted: 09/14/2014] [Indexed: 12/18/2022]
|
70
|
Valizadeh H, Ghanbarzadeh S, Zakeri-Milani P. Fusogenic liposomal formulation of sirolimus: improvement of drug anti-proliferative effect on human T-cells. Drug Dev Ind Pharm 2014; 41:1558-65. [DOI: 10.3109/03639045.2014.971032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
71
|
Ultrathin core–sheath fibers for liposome stabilization. Colloids Surf B Biointerfaces 2014; 122:630-637. [DOI: 10.1016/j.colsurfb.2014.07.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 07/21/2014] [Accepted: 07/28/2014] [Indexed: 11/20/2022]
|
72
|
Drug compartmentalization as strategy to improve the physico-chemical properties of diclofenac sodium loaded niosomes for topical applications. Biomed Microdevices 2014; 16:851-8. [DOI: 10.1007/s10544-014-9889-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
73
|
Hong SS, Lim SJ. Laboratory scale production of injectable liposomes by using cell disruptor to avoid the probe sonication process. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2014. [DOI: 10.1007/s40005-014-0146-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
74
|
Fox CB, Sivananthan SJ, Duthie MS, Vergara J, Guderian JA, Moon E, Coblentz D, Reed SG, Carter D. A nanoliposome delivery system to synergistically trigger TLR4 AND TLR7. J Nanobiotechnology 2014; 12:17. [PMID: 24766820 PMCID: PMC4014409 DOI: 10.1186/1477-3155-12-17] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/14/2014] [Indexed: 01/30/2023] Open
Abstract
Background Recent reports that TLR4 and TLR7 ligands can synergistically trigger Th1 biased immune responses suggest that an adjuvant that contains both ligands would be an excellent candidate for co-administration with vaccine antigens for which heavily Th1 biased responses are desired. Ligands of each of these TLRs generally have disparate biochemical properties, however, and straightforward co-formulation may represent an obstacle. Results We show here that the TLR7 ligand, imiquimod, and the TLR4 ligand, GLA, synergistically trigger responses in human whole blood. We combined these ligands in an anionic liposomal formulation where the TLR7 ligand is in the interior of the liposome and the TLR4 ligand intercalates into the lipid bilayer. The new liposomal formulations are stable for at least a year and have an attractive average particle size of around 140 nm allowing sterile filtration. The synergistic adjuvant biases away from Th2 responses, as seen by significantly reduced IL-5 and enhanced interferon gamma production upon antigen-specific stimulation of cells from immunized mice, than any of the liposomal formulations with only one TLR agonist. Qualitative alterations in antibody responses in mice demonstrate that the adjuvant enhances Th1 adaptive immune responses above any adjuvant containing only a single TLR ligand as well. Conclusion We now have a manufacturable, synergistic TLR4/TLR7 adjuvant that is made with excipients and agonists that are pharmaceutically acceptable and will have a straightforward path into human clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Darrick Carter
- Infectious Disease Research Institute (IDRI), Seattle, WA, USA.
| |
Collapse
|
75
|
Chahid B, Vander Elst L, Flament J, Boumezbeur F, Medina C, Port M, Muller RN, Lesieur S. Entrapment of a neutral Tm(III)-based complex with two inner-sphere coordinated water molecules into PEG-stabilized vesicles: towards an alternative strategy to develop high-performance LipoCEST contrast agents for MR imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 9:391-9. [DOI: 10.1002/cmmi.1589] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 11/14/2013] [Accepted: 11/26/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Bochra Chahid
- Institut Galien Paris-Sud; UMR CNRS 8612; LabEx LERMIT; Université Paris-Sud; 5 rue Jean-Baptiste Clément F-92296 Châtenay-Malabry cedex France
- Recherche-Discovery; Guerbet, BP57400 F-95943 Roissy-Charles de Gaulle France
| | - Luce Vander Elst
- Department of General; Organic and Biomedical Chemistry; NMR and Molecular Imaging Laboratory; University of Mons-Hainaut; Avenue du champs de Mars, 24 B-7000 Mons Belgium
| | - Julien Flament
- Laboratoire d'imagerie et de spectroscopie - LRMN, NeuroSpin, CEA Saclay; F-91191 Gif-sur-Yvette France
| | - Fawzi Boumezbeur
- Laboratoire d'imagerie et de spectroscopie - LRMN, NeuroSpin, CEA Saclay; F-91191 Gif-sur-Yvette France
| | - Christelle Medina
- Recherche-Discovery; Guerbet, BP57400 F-95943 Roissy-Charles de Gaulle France
| | - Marc Port
- Recherche-Discovery; Guerbet, BP57400 F-95943 Roissy-Charles de Gaulle France
| | - Robert N. Muller
- Department of General; Organic and Biomedical Chemistry; NMR and Molecular Imaging Laboratory; University of Mons-Hainaut; Avenue du champs de Mars, 24 B-7000 Mons Belgium
| | - Sylviane Lesieur
- Institut Galien Paris-Sud; UMR CNRS 8612; LabEx LERMIT; Université Paris-Sud; 5 rue Jean-Baptiste Clément F-92296 Châtenay-Malabry cedex France
| |
Collapse
|
76
|
Development of high-content gemcitabine PEGylated liposomes and their cytotoxicity on drug-resistant pancreatic tumour cells. Pharm Res 2014; 31:2583-92. [PMID: 24639234 DOI: 10.1007/s11095-014-1353-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/27/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE The objective of this study was to develop high-content gemcitabine PEGylated liposomes to reverse gemcitabine resistance in pancreatic tumour cells. The mechanism of drug loading into liposomes was also investigated. METHODS To increase the drug entrapment efficiency (EE) and drug loading (DL), a novel passive loading approach named Small Volume Incubation method (SVI) was developed and compared to the reverse phase evaporation (REV) and remote loading methods. The in vitro cytotoxicity was evaluated using MIA PaCa-2 and Panc-1 cell lines. RESULTS The EE for remote loading was 12.3 ± 0.3%, much lower than expected and a burst release was observed with the resultant liposomes. Using the optimized SVI method, increased EE (37 ± 1%) and DL (4%, w/w) were obtained. The liposomes (200 ± 5 nm) showed minimal drug leakage, good stability, and significant improvement in cytotoxicity to the gemcitabine-resistant pancreatic cancer cell lines. CONCLUSIONS Remote loading was not suitable for loading gemcitabine into liposomes. pKa > 4.6 for basic drugs and intra-liposomal precipitation of loaded compounds were suggested as an additional requirement to the current criteria for remote loading using ammonium sulphate gradient (pKa < 11). High DL is essential for liposomes to reverse gemcitabine resistance in pancreatic cell lines.
Collapse
|
77
|
Zheng N, Jiang W, Lionberger R, Yu LX. Bioequivalence for Liposomal Drug Products. FDA BIOEQUIVALENCE STANDARDS 2014. [DOI: 10.1007/978-1-4939-1252-0_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
78
|
PLGA/liposome hybrid nanoparticles for short-chain ceramide delivery. Pharm Res 2013; 31:684-93. [PMID: 24065591 DOI: 10.1007/s11095-013-1190-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/09/2013] [Indexed: 12/29/2022]
Abstract
PURPOSE Rapid premature release of lipophilic drugs from liposomal lipid bilayer to plasma proteins and biological membranes is a challenge for targeted drug delivery. The purpose of this study is to reduce premature release of lipophilic short-chain ceramides by encapsulating ceramides into liposomal aqueous interior with the aid of poly (lactic-coglycolicacid) (PLGA). METHODS BODIPY FL labeled ceramide (FL-ceramide) and BODIPY-TR labeled ceramide (TR-ceramide) were encapsulated into carboxy-terminated PLGA nanoparticles. The negatively charged PLGA nanoparticles were then encapsulated into cationic liposomes to obtain PLGA/liposome hybrids. As a control, FL-ceramide and/or TR ceramide co-loaded liposomes without PLGA were prepared. The release of ceramides from PLGA/liposome hybrids and liposomes in rat plasma, cultured MDA-MB-231 cells, and rat blood circulation was compared using fluorescence resonance energy transfer (FRET) between FL-ceramide (donor) and TR-ceramide (acceptor). RESULTS FRET analysis showed that FL-ceramide and TR-ceramide in liposomal lipid bilayer were rapidly released during incubation with rat plasma. In contrast, the FL-ceramide and TR-ceramide in PLGA/liposome hybrids showed extended release. FRET images of cells revealed that ceramides in liposomal bilayer were rapidly transferred to cell membranes. In contrast, ceramides in PLGA/liposome hybrids were internalized into cells with nanoparticles simultaneously. Upon intravenous administration to rats, ceramides encapsulated in liposomal bilayer were completely released in 2 min. In contrast, ceramides encapsulated in the PLGA core were retained in PLGA/liposome hybrids for 4 h. CONCLUSIONS The PLGA/liposome hybrid nanoparticles reduced in vitro and in vivo premature release of ceramides and offer a viable platform for targeted delivery of lipophilic drugs.
Collapse
|
79
|
Costa AP, Xu X, Burgess DJ. Freeze-Anneal-Thaw Cycling of Unilamellar Liposomes: Effect on Encapsulation Efficiency. Pharm Res 2013; 31:97-103. [DOI: 10.1007/s11095-013-1135-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/24/2013] [Indexed: 11/29/2022]
|
80
|
Kibria G, Hatakeyama H, Ohga N, Hida K, Harashima H. The effect of liposomal size on the targeted delivery of doxorubicin to Integrin αvβ3-expressing tumor endothelial cells. Biomaterials 2013; 34:5617-27. [PMID: 23623323 DOI: 10.1016/j.biomaterials.2013.03.094] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/29/2013] [Indexed: 11/30/2022]
Abstract
Size of the liposomes (LPs) specially governs its biodistribution. In this study, LPs were developed with controlled sizes, where variation in LP size dictates the ligand-receptor interaction, cellular internalization and its distribution within the tumor microenvironment. The therapeutic efficacies of doxorubicin (DOX)-loaded RGD modified small size (~100 nm in diameter, dnm) and large size (~300 dnm) PEGylated LPs (RGD-PEG-LPs) were compared to that of Doxil (a clinically used DOX-loaded PEG-LP, ~100 dnm) in DOX resistant OSRC-2 (Renal cell carcinoma, RCC) tumor xenografts. Doxil, which accumulated in tumor tissue via the enhanced permeability and retention (EPR) effect, failed to suppress tumor growth. Small size RGD-PEG-LP, that targets the tumor endothelial cells (TECs) and extravasates to tumor cells, failed to provide anti-tumor effect. Large size RGD-PEG-LP preferentially targets the TECs via minimization of the EPR effect, and significantly reduced the tumor growth, which was exerted through its strong anti-angiogenic activity on the tumor vasculature rather than having a direct effect on DOX resistant RCC. The prepared large size RGD-PEG-LP that targets the TECs via interacting with Integrin αvβ3, is a potentially effective and alternate therapeutic strategy for the treatment of DOX resistant tumor cells by utilizing DOX, in cases where Doxil is ineffective.
Collapse
Affiliation(s)
- Golam Kibria
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| | | | | | | | | |
Collapse
|
81
|
Mosley GL, Yamanishi CD, Kamei DT. Mathematical Modeling of Vesicle Drug Delivery Systems 1. ACTA ACUST UNITED AC 2013; 18:34-45. [DOI: 10.1177/2211068212457161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
82
|
Karadag A, Özçelik B, Sramek M, Gibis M, Kohlus R, Weiss J. Presence of Electrostatically Adsorbed Polysaccharides Improves Spray Drying of Liposomes. J Food Sci 2013; 78:E206-21. [DOI: 10.1111/1750-3841.12023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 11/14/2012] [Indexed: 12/01/2022]
Affiliation(s)
- Ayse Karadag
- Dept. of Food Engineering, Faculty of Chemical and Metallurgical Engineering; Istanbul Technical Univ.; 34469; Maslak; Istanbul; Turkey
| | - Beraat Özçelik
- Dept. of Food Engineering, Faculty of Chemical and Metallurgical Engineering; Istanbul Technical Univ.; 34469; Maslak; Istanbul; Turkey
| | - Martin Sramek
- Dept. of Food Processing, Inst. of Food Science and Biotechnology; Univ. of Hohenheim; Garbenstrasse 25; 70599; Stuttgart; Germany
| | - Monika Gibis
- Dept. of Food Physics and Meat Science, Inst. of Food Science and Biotechnology; Univ. of Hohenheim; Garbenstrasse 25; 70599; Stuttgart; Germany
| | - Reinhard Kohlus
- Dept. of Food Processing, Inst. of Food Science and Biotechnology; Univ. of Hohenheim; Garbenstrasse 25; 70599; Stuttgart; Germany
| | | |
Collapse
|
83
|
Costa AP, Xu X, Burgess DJ. Langmuir balance investigation of superoxide dismutase interactions with mixed-lipid monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:10050-10056. [PMID: 22671579 DOI: 10.1021/la301614t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Higher than theoretical encapsulation efficiencies in liposomes of the cytoplasmic protein, superoxide dismutase (SOD), were previously observed. The high encapsulation of SOD led to the consideration of lipid-protein interactions and the embedding of SOD in the lipid bilayer. Difficulty in other methods such as dynamic scanning calorimetry due to cholesterol obscuring the measurements brought about the interest for a modified Langmuir monolayer relaxation study. A novel method was devised to distinguish between different lipid compositions that formed either a favorable or an unfavorable environment for SOD. Normalized monolayer relaxations with SOD were compared between mixed-lipid compositions containing 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), and cholesterol (Chol). Lipid-monolayer relaxation with and without SOD in the subphase was plotted over 30 min to determine if the protein was altering the lipid-monolayer relaxation. The monolayer relaxation with SOD was normalized to the monolayer relaxation without SOD over the 30 min period. The results indicated that lipid length and mole percent of cholesterol were important parameters that must be adjusted in order to support a favorable environment for SOD interaction with the lipid. It was determined that hydrophobic interactions were dominant over electrostatic forces; thus, SOD was embedding into the lipid monolayer. Additionally, this study was correlated to a previous liposome study and proved that lipid-protein interactions were the reason for the higher encapsulation efficiencies. The significance of this method is that it (1) provides a connection between lipid-protein interactions observed in monolayers and bilayers and (2) establishes a simple and effective manner to test lipid compositions for lipid-protein interaction that will aid in optimization of liposome encapsulation efficiency.
Collapse
Affiliation(s)
- Antonio P Costa
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | | | | |
Collapse
|
84
|
Xu X, Costa AP, Khan MA, Burgess DJ. Application of quality by design to formulation and processing of protein liposomes. Int J Pharm 2012; 434:349-59. [PMID: 22683453 DOI: 10.1016/j.ijpharm.2012.06.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 06/01/2012] [Accepted: 06/01/2012] [Indexed: 11/19/2022]
Abstract
Quality by design (QbD) principles were explored in the current study to gain a comprehensive understanding of the preparation of superoxide dismutase (SOD) containing liposome formulations prepared using freeze-and-thaw unilamellar vesicles (FAT-ULV). Risk analysis and D-optimal statistical design were performed. Of all the variables investigated, lipid concentration, cholesterol mol%, main lipid type and protein concentration were identified as critical parameters affecting SOD encapsulation efficiency, while the main lipid type was the only factor influencing liposome particle size. Using a model generated by the D-optimal design, a series of three-dimensional response spaces for SOD liposome encapsulation efficiency were established. The maximum values observed in the response surfaces indirectly confirmed the existence of a specific SOD-lipid interaction, which took place in the lipid bilayer under the following optimal conditions: (1) appropriate membrane thickness and curvature (DPPC liposomes); and (2) optimal "pocket size" generated by cholesterol content. With respect to storage stability, the prepared SOD liposomes remained stable for at least 6 months in aqueous dispersion state at 4°C. This research highlights the level of understanding that can be accomplished through a well-designed study based on the philosophy of QbD.
Collapse
Affiliation(s)
- Xiaoming Xu
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd U3092, Storrs, CT 06269, USA.
| | | | | | | |
Collapse
|
85
|
Xu X, Costa A, Burgess DJ. Protein Encapsulation in Unilamellar Liposomes: High Encapsulation Efficiency and A Novel Technique to Assess Lipid-Protein Interaction. Pharm Res 2012; 29:1919-31. [DOI: 10.1007/s11095-012-0720-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 02/22/2012] [Indexed: 11/30/2022]
|