51
|
Khan I, Joshi G, Nakhate KT, Kumar R, Gupta U. Nano-Co-Delivery of Berberine and Anticancer Drug Using PLGA Nanoparticles: Exploration of Better Anticancer Activity and In Vivo Kinetics. Pharm Res 2019; 36:149. [PMID: 31420752 DOI: 10.1007/s11095-019-2677-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/29/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE Combinatorial approach can be beneficial for cancer treatment with better patient recovery. Co-delivery of natural and synthetic anticancer drug not only valuable to achieve better anticancer effectivity but also to ascertain toxicity. This study was aimed to co-deliver berberine (natural origin) and doxorubicin (synthetic origin) utilizing conjugation/encapsulation strategy through poly (lactic-co-glycolic acid) (PLGA) nanoparticles. METHODS Doxorubicin was efficiently conjugated to PLGA via carbodiimide chemistry and the PLGA-doxorubicin conjugate (PDC) was used for encapsulation of berberine (PDBNP). RESULTS Significant anti-proliferative against MDA-MB-231 and T47D breast cancer cell lines were observed with IC50 of 1.94 ± 0.22 and 1.02 ± 0.36 μM, which was significantly better than both the bio-actives (p < 0.05). The ROS study revealed that the PDBNP portrayed the slight increase in the reactive oxygen species (ROS) pattern in MDA-MB-231 cell line in a dose-dependent manner, while in T47D cells, no significant change in ROS was seen. PDBNP exhibits significant alteration (depolarization) in mitochondrial membrane permeability and arrest of cell cycle progression at sub G1 phase while the Annexin V/PI assay followed by confocal microscopy resulted into cell death mode to be because of necrosis against MDA-MB-231 cells. In vivo studies in Sprague Dawley rats revealed almost 14-fold increase in half life and a significant increase in plasma drug concentration. CONCLUSION The overall approach of PLGA based co-delivery of doxorubicin and berberine witnessed synergetic effect and reduced toxicity as evidenced by preliminary toxicity studies.
Collapse
Affiliation(s)
- Iliyas Khan
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Kartik T Nakhate
- Rungta College of Pharmaceutical Science and Research, Kohka, Bhilai, Chhattisgarh, 490024, India
| | - Raj Kumar
- Department of Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
52
|
Mignani S, Rodrigues J, Roy R, Shi X, Ceña V, El Kazzouli S, Majoral JP. Exploration of biomedical dendrimer space based on in-vivo physicochemical parameters: Key factor analysis (Part 2). Drug Discov Today 2019. [DOI: https://doi.org/10.1016/j.drudis.2019.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
53
|
Mignani S, Rodrigues J, Roy R, Shi X, Ceña V, El Kazzouli S, Majoral JP. Exploration of biomedical dendrimer space based on in-vivo physicochemical parameters: Key factor analysis (Part 2). Drug Discov Today 2019; 24:1184-1192. [PMID: 30904723 DOI: 10.1016/j.drudis.2019.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/01/2019] [Accepted: 03/01/2019] [Indexed: 02/08/2023]
Abstract
In nanomedicine, the widespread concern of nanoparticles in general, and dendrimers, in particular, is the analysis of key in-vivo physicochemical parameters to ensure the preclinical and clinical development of 'safe' bioactive nanomaterials. It is clear that for biomedical applications, biocompatible dendrimers, used as nanocarriers or active per se, should be devoid of toxicity and immunogenicity, and have adequate PK/PD behaviors (adequate exposure) in order to diffuse in different tissues. Functionalization of dendrimers has a dramatic effect on in-vivo physicochemical parameters. In this review, we highlighted key in-vivo physicochemical properties, based on data from biochemical, cellular and animal models, to provide biocompatible dendrimers. Up-to-date, only scarce studies have been described on this topic.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006 Paris, France; CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; Glycovax Pharma, 424 Guy Street, Suite 202, Montreal, Quebec H3J 1S6, Canada; Department of Pharmacy, Zhengzhou Railway Vocational & Technical College, Zhengzhou 450018, China.
| | - João Rodrigues
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; School of Materials Science and Engineering/Center for Nano Energy Materials, Northwestern Polytechnical University, Xi'an 710072, China.
| | - René Roy
- Glycovax Pharma, 424 Guy Street, Suite 202, Montreal, Quebec H3J 1S6, Canada.
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Valentin Ceña
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; Centro de Investigación Biomédica en Red para Enfermedades Neurodegenerativas, ISCIII, 28031 Madrid, Spain
| | - Saïd El Kazzouli
- Euromed Research Center, Euromed Faculty of Engineering, Euromed University of Fes (UEMF), Route de Meknès, 30000 Fès, Morocco
| | - Jean-Pierre Majoral
- Department of Pharmacy, Zhengzhou Railway Vocational & Technical College, Zhengzhou 450018, China; Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France; Université Toulouse 118 route de Narbonne, 31077 Toulouse Cedex 4, France.
| |
Collapse
|
54
|
Farooqi AA, Qureshi MZ, Khalid S, Attar R, Martinelli C, Sabitaliyevich UY, Nurmurzayevich SB, Taverna S, Poltronieri P, Xu B. Regulation of Cell Signaling Pathways by Berberine in Different Cancers: Searching for Missing Pieces of an Incomplete Jig-Saw Puzzle for an Effective Cancer Therapy. Cancers (Basel) 2019; 11:cancers11040478. [PMID: 30987378 PMCID: PMC6521278 DOI: 10.3390/cancers11040478] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 12/16/2022] Open
Abstract
There has been a renewed interest in the identification of natural products having premium pharmacological properties and minimum off-target effects. In accordance with this approach, natural product research has experienced an exponential growth in the past two decades and has yielded a stream of preclinical and clinical insights which have deeply improved our knowledge related to the multifaceted nature of cancer and strategies to therapeutically target deregulated signaling pathways in different cancers. In this review, we have set the spotlight on the scientifically proven ability of berberine to effectively target a myriad of deregulated pathways.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan.
| | | | - Sumbul Khalid
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad 44000, Pakistan.
| | - Rukset Attar
- Department of Obstetrics and Gynecology, Yeditepe University Hospital, 34755 Istanbul, Turkey.
| | - Chiara Martinelli
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Pontedera, 56025 Pisa, Italy.
| | | | | | - Simona Taverna
- Department of Biomedical Science, Institute of Biomedicine and Molecular Immunology "A. Monroy", National Research Council, 90146 Palermo, Italy.
| | - Palmiro Poltronieri
- Department of Agrifood, National Research Council Italy Institute of Sciences of Food Productions (CNR-ISPA) Via Lecce-Monteroni km 7, 73100 Lecce, Italy.
| | - Baojun Xu
- Food Science and Technology Program, Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China.
| |
Collapse
|
55
|
Varshosaz J, Raghami F, Rostami M, Jahanian A. PEGylated trimethylchitosan emulsomes conjugated to octreotide for targeted delivery of sorafenib to hepatocellular carcinoma cells of HepG2. J Liposome Res 2019; 29:383-398. [PMID: 30668221 DOI: 10.1080/08982104.2019.1570250] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The current study aimed to develop PEGylated trimethyl chitosan (TMC) coated emulsomes (EMs) conjugated with octreotide for targeted delivery of sorafenib to hepatocellular carcinoma cells (HCC) of HepG2. Sorafenib loaded TMC coated EMs were prepared by the emulsion evaporation method and characterized concerning particle size, zeta potential, drug encapsulation efficiency, and in vitro drug release. Synthesized EMs were then conjugated to octreotide. The cytotoxicity of the targeted and non-targeted EMs was determined by cellular uptake and MTT assay on HepG2 cell. Cell cycle assay was also studied using flow cytometry. The results showed the optimized EMs had the particle size of 127 nm, zeta potential of -5.41 mV, loading efficiency of 95%, and drug release efficiency of 62% within 52 h. Octreotide was attached efficiently to the surface of EMs as much as 71%. MTT assay and cellular uptake studies showed that targeted EMs had more cytotoxicity than free sorafenib and non-targeted EMs. Cell cycle analyses revealed that there was a significant more accumulation of targeted EMs treated HepG2 cells in the G1 phase than free sorafenib and non-targeted EMs. The results indicate that designed EMs may be promising for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences , Isfahan , Iran
| | - Fatemeh Raghami
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences , Isfahan , Iran
| | - Mahboubeh Rostami
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences , Isfahan , Iran
| | - Ali Jahanian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences , Isfahan , Iran
| |
Collapse
|
56
|
Preparation and in vitro-in vivo evaluation of intestinal retention pellets of Berberine chloride to enhance hypoglycemic and lipid-lowing efficacy. Asian J Pharm Sci 2018; 14:559-568. [PMID: 32104483 PMCID: PMC7032169 DOI: 10.1016/j.ajps.2018.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/12/2018] [Accepted: 09/28/2018] [Indexed: 11/21/2022] Open
Abstract
Berberine chloride (BBR) is a pharmacokinetic profile of drug with poor bioavailability but good therapeutic efficacy, which is closely related to the discovery of BBR intestinal target. The major aim of this paper is to develop BBR intestinal retention type sustained-release pellets and evaluate their in vivo and in vitro behaviors base on the aspect of local action on intestinal tract. Here, wet milling technology is used to improve dissolution and dissolution rate of BBR by decreasing the particle size and increasing the wettability. The pellets are prepared by liquid layer deposition technology, and then the core pellets are coated with Eudragit® L30D-55 and Eudragit® NE30D aqueous dispersion. The prepared pellets show high drug loading capacity, and the drug loading up to 93%. Meanwhile, it possesses significant sustained drug release effect in purified water which is expected to improve the pharmacokinetic behavior of BBR. The pharmacokinetics results demonstrate that the half-life of BBR was increased significantly from 24 h to 36 h and the inter- and intra-subject variability are decreased compared to commercial BBR tablets. The retention test results indicate that the pellet size and Eudragit® NE30D plays an important role in retention time of the pellet, and it is found that the pellets with small particle size and high Eudragit® NE30D coating content can stay longer in the intestine than the pellets with large particle size. All in all, BBR intestinal retention type pellets are prepared successfully in this study, and the pellets show satisfactory in vivo and in vitro behaviors.
Collapse
|
57
|
Abedi-Gaballu F, Dehghan G, Ghaffari M, Yekta R, Abbaspour-Ravasjani S, Baradaran B, Dolatabadi JEN, Hamblin MR. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. APPLIED MATERIALS TODAY 2018; 12:177-190. [PMID: 30511014 PMCID: PMC6269116 DOI: 10.1016/j.apmt.2018.05.002] [Citation(s) in RCA: 248] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Drug delivery systems for cancer chemotherapy are employed to improve the effectiveness and decrease the side-effects of highly toxic drugs. Most chemotherapy agents have indiscriminate cytotoxicity that affects normal, as well as cancer cells. To overcome these problems, new more efficient nanosystems for drug delivery are increasingly being investigated. Polyamidoamine (PAMAM) dendrimers are an example of a versatile and reproducible type of nanocarrier that can be loaded with drugs, and modified by attaching target-specific ligands that recognize receptors that are over-expressed on cancer cells. PAMAM dendrimers with a high density of cationic charges display electrostatic interactions with nucleic acids (DNA, siRNA, miRNA, etc.), creating dendriplexes that can preserve the nucleic acids from degradation. Dendrimers are prepared by conducting several successive "generations" of synthetic reactions so their size can be easily controlled and they have good uniformity. Dendrimers are particularly well-suited to co-delivery applications (simultaneous delivery of drugs and/or genes). In the current review, we discuss dendrimer-based targeted delivery of drugs/genes and co-delivery systems mainly for cancer therapy.
Collapse
Affiliation(s)
- Fereydoon Abedi-Gaballu
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Maryam Ghaffari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Yekta
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
58
|
Mirhadi E, Rezaee M, Malaekeh-Nikouei B. Nano strategies for berberine delivery, a natural alkaloid of Berberis. Biomed Pharmacother 2018; 104:465-473. [DOI: 10.1016/j.biopha.2018.05.067] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 01/31/2023] Open
|
59
|
Sherje AP, Jadhav M, Dravyakar BR, Kadam D. Dendrimers: A versatile nanocarrier for drug delivery and targeting. Int J Pharm 2018; 548:707-720. [PMID: 30012508 DOI: 10.1016/j.ijpharm.2018.07.030] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/08/2018] [Accepted: 07/09/2018] [Indexed: 01/04/2023]
Abstract
Dendrimers are novel polymeric nanoarchitectures characterized by hyper-branched 3D-structure having multiple functional groups on the surface that increases their functionality and make them versatile and biocompatible. Their unique properties like nanoscale uniform size, high degree of branching, polyvalency, water solubility, available internal cavities and convenient synthesis approaches make them promising agent for biological and drug delivery applications. Dendrimers have received an enormous attention from researchers among various nanomaterials. Dendrimers can be used as a carrier for diverse therapeutic agents. They can be used for reducing drug toxicities and enhancement of their efficacies. The present review provide a comprehensive outline of synthesis of dendrimers, interaction of dendrimer with guest molecules, properties, characterization and their potential applications in pharmaceutical and biomedical field.
Collapse
Affiliation(s)
- Atul P Sherje
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India.
| | - Mrunal Jadhav
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India
| | - Bhushan R Dravyakar
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India
| | - Darshana Kadam
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India
| |
Collapse
|
60
|
Polyamidoamine Dendrimers for Enhanced Solubility of Small Molecules and Other Desirable Properties for Site Specific Delivery: Insights from Experimental and Computational Studies. Molecules 2018; 23:molecules23061419. [PMID: 29895742 PMCID: PMC6100328 DOI: 10.3390/molecules23061419] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 01/05/2023] Open
Abstract
Clinical applications of many small molecules are limited due to poor solubility and lack of controlled release besides lack of other desirable properties. Experimental and computational studies have reported on the therapeutic potential of polyamidoamine (PAMAM) dendrimers as solubility enhancers in pre-clinical and clinical settings. Besides formulation strategies, factors such as pH, PAMAM dendrimer generation, PAMAM dendrimer concentration, nature of the PAMAM core, special ligand and surface modifications of PAMAM dendrimer have an influence on drug solubility and other recommendable pharmacological properties. This review, therefore, compiles the recently reported applications of PAMAM dendrimers in pre-clinical and clinical uses as enhancers of solubility and other desirable properties such as sustained and controlled release, bioavailability, bio-distribution, toxicity reduction or enhancement, and targeted delivery of small molecules with emphasis on cancer treatment.
Collapse
|
61
|
Li J, Liang H, Liu J, Wang Z. Poly (amidoamine) (PAMAM) dendrimer mediated delivery of drug and pDNA/siRNA for cancer therapy. Int J Pharm 2018; 546:215-225. [PMID: 29787895 DOI: 10.1016/j.ijpharm.2018.05.045] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 12/18/2022]
Abstract
Poly (amidoamine) (PAMAM) dendrimers are well-defined, highly branched macromolecules with numerous active amine groups on the surface. Because of their unique properties, PAMAM dendrimers have steadily grown in popularity in drug delivery, gene therapy, medical imaging and diagnostic application. This review focuses on the recent developments on the application in PAMAM dendrimers as effective carriers for drug and gene (pDNA, siRNA) delivery in cancer therapy, including: a) PAMAM for anticancer drug delivery; b) PAMAM and gene therapy; c) PAMAM used in overcoming tumor multidrug resistance; d) PAMAM used for hybrid nanoparticles; and e) PAMAM linked or loaded in other nanoparticles.
Collapse
Affiliation(s)
- Jun Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China.
| | - Huamin Liang
- Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230088, Anhui, China
| | - Jing Liu
- Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing 100084, China
| | - Ziyuan Wang
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
62
|
Su Y, Wang K, Li Y, Song W, Xin Y, Zhao W, Tian J, Ren L, Lu L. Sorafenib-loaded polymeric micelles as passive targeting therapeutic agents for hepatocellular carcinoma therapy. Nanomedicine (Lond) 2018; 13:1009-1023. [PMID: 29630448 DOI: 10.2217/nnm-2018-0046] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIM The clinical application of sorafenib is limited because of its hydrophobicity, low bioavailability and unsatisfying treatment effect. Therefore, sorafenib-loaded PEG-poly (ε-caprolactone) micelles (SF micelles) were fabricated for sorafenib delivery. MATERIALS & METHODS In vitro assays investigated the solubility, dispersity, stability, cytotoxicity and uptake capacity of SF micelles. In vivo biodistribution and therapeutic effects were studied using HepG2-Luc tumor-bearing mice. RESULTS SF micelles had a regular spherical structure with good water solubility. In vivo imaging results showed PEG-poly (ε-caprolactone) micelles could elevate the sorafenib concentration in tumor tissues. Meanwhile, SF micelles exhibited higher tumor growth inhibition in vivo. CONCLUSION SF micelles might be a potential drug delivery system, which could enhance the therapeutic effects of sorafenib.
Collapse
Affiliation(s)
- Yanhong Su
- School of Medicine, South China University of Technology, Guangzhou 510006, China.,Center of Intervention Radiology, Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai 519000, China.,CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management & Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Kun Wang
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management & Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Li
- Center of Intervention Radiology, Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai 519000, China
| | - Wenjing Song
- School of Materials Science & Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yongjie Xin
- Center of Intervention Radiology, Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai 519000, China
| | - Wei Zhao
- Center of Intervention Radiology, Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai 519000, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management & Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Ren
- School of Medicine, South China University of Technology, Guangzhou 510006, China.,School of Materials Science & Engineering, South China University of Technology, Guangzhou 510641, China
| | - Ligong Lu
- School of Medicine, South China University of Technology, Guangzhou 510006, China.,Center of Intervention Radiology, Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai 519000, China
| |
Collapse
|